A BIM-Based Approach for Pavement Monitoring Integrating Data from Non-Destructive Testing Methods (NDTs)
Monitoring of critical civil engineering infrastructures has become a priority for public owners and administrative authorities. Several laws and regulations have been issued on this topic, emphasizing the crucial role of Building Information Modeling (BIM)- based procedures for the design and manag...
Ausführliche Beschreibung
Autor*in: |
Luca Bertolini [verfasserIn] Fabrizio D’Amico [verfasserIn] Antonio Napolitano [verfasserIn] Luca Bianchini Ciampoli [verfasserIn] Valerio Gagliardi [verfasserIn] Jhon Romer Diezmos Manalo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Infrastructures - MDPI AG, 2017, 8(2023), 5, p 81 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2023 ; number:5, p 81 |
Links: |
---|
DOI / URN: |
10.3390/infrastructures8050081 |
---|
Katalog-ID: |
DOAJ094365024 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ094365024 | ||
003 | DE-627 | ||
005 | 20240413033826.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/infrastructures8050081 |2 doi | |
035 | |a (DE-627)DOAJ094365024 | ||
035 | |a (DE-599)DOAJ32891d243762498294a3f63cc13008e3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Luca Bertolini |e verfasserin |4 aut | |
245 | 1 | 2 | |a A BIM-Based Approach for Pavement Monitoring Integrating Data from Non-Destructive Testing Methods (NDTs) |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Monitoring of critical civil engineering infrastructures has become a priority for public owners and administrative authorities. Several laws and regulations have been issued on this topic, emphasizing the crucial role of Building Information Modeling (BIM)- based procedures for the design and management of civil infrastructures. This study aims at examining the potential of an interoperable and upgradeable BIM model supplemented by ground-based non-destructive survey data, such as Mobile Laser Scanner (MLS) and Ground-Penetrating Radar (GPR), for the analysis of the potential distresses identified in a transport infrastructure’s pavement. The main goal of the work is to implement an infrastructure management process that aims to reduce the limits associated with the separate observation of these assessments and to provide a more efficient way to store data regarding the status of a linear transport infrastructure, to the advantage of an integrated analysis. As on-site surveys are carried out, preliminary analyses on the condition of the inspected infrastructure are performed by relying on the information provided by Non-Destructive Testing (NDTs) inspections. Subsequently, a digital informative model capable of storing the data obtained by the surveys is generated, integrating both the MLS and GPR information to accurately represent the status of the infrastructure’s pavement in a three-dimensional environment. Data obtained from these instruments were used as the input for the digitalization process, making use of parametric digital elements capable of adapting their configuration to the information provided by the NDT surveys. As more analysis on the surveys’ results is carried out, potential distresses in the deep layers of the pavement are identified, and the information related to these elements is then integrated into the BIM model previously created. The process hereby described allows for an analysis of the three-dimensional configuration of the pavement, along with potential distresses and their location into the road’s superstructure. This digitalization process has shown promising viability for data management aimed at supporting asset managers in various management phases. | ||
650 | 4 | |a InfraBIM | |
650 | 4 | |a MLS | |
650 | 4 | |a GPR | |
650 | 4 | |a NDT | |
650 | 4 | |a pavement | |
650 | 4 | |a infrastructure | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Fabrizio D’Amico |e verfasserin |4 aut | |
700 | 0 | |a Antonio Napolitano |e verfasserin |4 aut | |
700 | 0 | |a Luca Bianchini Ciampoli |e verfasserin |4 aut | |
700 | 0 | |a Valerio Gagliardi |e verfasserin |4 aut | |
700 | 0 | |a Jhon Romer Diezmos Manalo |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Infrastructures |d MDPI AG, 2017 |g 8(2023), 5, p 81 |w (DE-627)1015391176 |x 24123811 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2023 |g number:5, p 81 |
856 | 4 | 0 | |u https://doi.org/10.3390/infrastructures8050081 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/32891d243762498294a3f63cc13008e3 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2412-3811/8/5/81 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2412-3811 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2023 |e 5, p 81 |
author_variant |
l b lb f d fd a n an l b c lbc v g vg j r d m jrdm |
---|---|
matchkey_str |
article:24123811:2023----::bmaeapocfraeetoioignertndtfonnetu |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.3390/infrastructures8050081 doi (DE-627)DOAJ094365024 (DE-599)DOAJ32891d243762498294a3f63cc13008e3 DE-627 ger DE-627 rakwb eng Luca Bertolini verfasserin aut A BIM-Based Approach for Pavement Monitoring Integrating Data from Non-Destructive Testing Methods (NDTs) 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Monitoring of critical civil engineering infrastructures has become a priority for public owners and administrative authorities. Several laws and regulations have been issued on this topic, emphasizing the crucial role of Building Information Modeling (BIM)- based procedures for the design and management of civil infrastructures. This study aims at examining the potential of an interoperable and upgradeable BIM model supplemented by ground-based non-destructive survey data, such as Mobile Laser Scanner (MLS) and Ground-Penetrating Radar (GPR), for the analysis of the potential distresses identified in a transport infrastructure’s pavement. The main goal of the work is to implement an infrastructure management process that aims to reduce the limits associated with the separate observation of these assessments and to provide a more efficient way to store data regarding the status of a linear transport infrastructure, to the advantage of an integrated analysis. As on-site surveys are carried out, preliminary analyses on the condition of the inspected infrastructure are performed by relying on the information provided by Non-Destructive Testing (NDTs) inspections. Subsequently, a digital informative model capable of storing the data obtained by the surveys is generated, integrating both the MLS and GPR information to accurately represent the status of the infrastructure’s pavement in a three-dimensional environment. Data obtained from these instruments were used as the input for the digitalization process, making use of parametric digital elements capable of adapting their configuration to the information provided by the NDT surveys. As more analysis on the surveys’ results is carried out, potential distresses in the deep layers of the pavement are identified, and the information related to these elements is then integrated into the BIM model previously created. The process hereby described allows for an analysis of the three-dimensional configuration of the pavement, along with potential distresses and their location into the road’s superstructure. This digitalization process has shown promising viability for data management aimed at supporting asset managers in various management phases. InfraBIM MLS GPR NDT pavement infrastructure Technology T Fabrizio D’Amico verfasserin aut Antonio Napolitano verfasserin aut Luca Bianchini Ciampoli verfasserin aut Valerio Gagliardi verfasserin aut Jhon Romer Diezmos Manalo verfasserin aut In Infrastructures MDPI AG, 2017 8(2023), 5, p 81 (DE-627)1015391176 24123811 nnns volume:8 year:2023 number:5, p 81 https://doi.org/10.3390/infrastructures8050081 kostenfrei https://doaj.org/article/32891d243762498294a3f63cc13008e3 kostenfrei https://www.mdpi.com/2412-3811/8/5/81 kostenfrei https://doaj.org/toc/2412-3811 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 8 2023 5, p 81 |
spelling |
10.3390/infrastructures8050081 doi (DE-627)DOAJ094365024 (DE-599)DOAJ32891d243762498294a3f63cc13008e3 DE-627 ger DE-627 rakwb eng Luca Bertolini verfasserin aut A BIM-Based Approach for Pavement Monitoring Integrating Data from Non-Destructive Testing Methods (NDTs) 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Monitoring of critical civil engineering infrastructures has become a priority for public owners and administrative authorities. Several laws and regulations have been issued on this topic, emphasizing the crucial role of Building Information Modeling (BIM)- based procedures for the design and management of civil infrastructures. This study aims at examining the potential of an interoperable and upgradeable BIM model supplemented by ground-based non-destructive survey data, such as Mobile Laser Scanner (MLS) and Ground-Penetrating Radar (GPR), for the analysis of the potential distresses identified in a transport infrastructure’s pavement. The main goal of the work is to implement an infrastructure management process that aims to reduce the limits associated with the separate observation of these assessments and to provide a more efficient way to store data regarding the status of a linear transport infrastructure, to the advantage of an integrated analysis. As on-site surveys are carried out, preliminary analyses on the condition of the inspected infrastructure are performed by relying on the information provided by Non-Destructive Testing (NDTs) inspections. Subsequently, a digital informative model capable of storing the data obtained by the surveys is generated, integrating both the MLS and GPR information to accurately represent the status of the infrastructure’s pavement in a three-dimensional environment. Data obtained from these instruments were used as the input for the digitalization process, making use of parametric digital elements capable of adapting their configuration to the information provided by the NDT surveys. As more analysis on the surveys’ results is carried out, potential distresses in the deep layers of the pavement are identified, and the information related to these elements is then integrated into the BIM model previously created. The process hereby described allows for an analysis of the three-dimensional configuration of the pavement, along with potential distresses and their location into the road’s superstructure. This digitalization process has shown promising viability for data management aimed at supporting asset managers in various management phases. InfraBIM MLS GPR NDT pavement infrastructure Technology T Fabrizio D’Amico verfasserin aut Antonio Napolitano verfasserin aut Luca Bianchini Ciampoli verfasserin aut Valerio Gagliardi verfasserin aut Jhon Romer Diezmos Manalo verfasserin aut In Infrastructures MDPI AG, 2017 8(2023), 5, p 81 (DE-627)1015391176 24123811 nnns volume:8 year:2023 number:5, p 81 https://doi.org/10.3390/infrastructures8050081 kostenfrei https://doaj.org/article/32891d243762498294a3f63cc13008e3 kostenfrei https://www.mdpi.com/2412-3811/8/5/81 kostenfrei https://doaj.org/toc/2412-3811 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 8 2023 5, p 81 |
allfields_unstemmed |
10.3390/infrastructures8050081 doi (DE-627)DOAJ094365024 (DE-599)DOAJ32891d243762498294a3f63cc13008e3 DE-627 ger DE-627 rakwb eng Luca Bertolini verfasserin aut A BIM-Based Approach for Pavement Monitoring Integrating Data from Non-Destructive Testing Methods (NDTs) 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Monitoring of critical civil engineering infrastructures has become a priority for public owners and administrative authorities. Several laws and regulations have been issued on this topic, emphasizing the crucial role of Building Information Modeling (BIM)- based procedures for the design and management of civil infrastructures. This study aims at examining the potential of an interoperable and upgradeable BIM model supplemented by ground-based non-destructive survey data, such as Mobile Laser Scanner (MLS) and Ground-Penetrating Radar (GPR), for the analysis of the potential distresses identified in a transport infrastructure’s pavement. The main goal of the work is to implement an infrastructure management process that aims to reduce the limits associated with the separate observation of these assessments and to provide a more efficient way to store data regarding the status of a linear transport infrastructure, to the advantage of an integrated analysis. As on-site surveys are carried out, preliminary analyses on the condition of the inspected infrastructure are performed by relying on the information provided by Non-Destructive Testing (NDTs) inspections. Subsequently, a digital informative model capable of storing the data obtained by the surveys is generated, integrating both the MLS and GPR information to accurately represent the status of the infrastructure’s pavement in a three-dimensional environment. Data obtained from these instruments were used as the input for the digitalization process, making use of parametric digital elements capable of adapting their configuration to the information provided by the NDT surveys. As more analysis on the surveys’ results is carried out, potential distresses in the deep layers of the pavement are identified, and the information related to these elements is then integrated into the BIM model previously created. The process hereby described allows for an analysis of the three-dimensional configuration of the pavement, along with potential distresses and their location into the road’s superstructure. This digitalization process has shown promising viability for data management aimed at supporting asset managers in various management phases. InfraBIM MLS GPR NDT pavement infrastructure Technology T Fabrizio D’Amico verfasserin aut Antonio Napolitano verfasserin aut Luca Bianchini Ciampoli verfasserin aut Valerio Gagliardi verfasserin aut Jhon Romer Diezmos Manalo verfasserin aut In Infrastructures MDPI AG, 2017 8(2023), 5, p 81 (DE-627)1015391176 24123811 nnns volume:8 year:2023 number:5, p 81 https://doi.org/10.3390/infrastructures8050081 kostenfrei https://doaj.org/article/32891d243762498294a3f63cc13008e3 kostenfrei https://www.mdpi.com/2412-3811/8/5/81 kostenfrei https://doaj.org/toc/2412-3811 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 8 2023 5, p 81 |
allfieldsGer |
10.3390/infrastructures8050081 doi (DE-627)DOAJ094365024 (DE-599)DOAJ32891d243762498294a3f63cc13008e3 DE-627 ger DE-627 rakwb eng Luca Bertolini verfasserin aut A BIM-Based Approach for Pavement Monitoring Integrating Data from Non-Destructive Testing Methods (NDTs) 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Monitoring of critical civil engineering infrastructures has become a priority for public owners and administrative authorities. Several laws and regulations have been issued on this topic, emphasizing the crucial role of Building Information Modeling (BIM)- based procedures for the design and management of civil infrastructures. This study aims at examining the potential of an interoperable and upgradeable BIM model supplemented by ground-based non-destructive survey data, such as Mobile Laser Scanner (MLS) and Ground-Penetrating Radar (GPR), for the analysis of the potential distresses identified in a transport infrastructure’s pavement. The main goal of the work is to implement an infrastructure management process that aims to reduce the limits associated with the separate observation of these assessments and to provide a more efficient way to store data regarding the status of a linear transport infrastructure, to the advantage of an integrated analysis. As on-site surveys are carried out, preliminary analyses on the condition of the inspected infrastructure are performed by relying on the information provided by Non-Destructive Testing (NDTs) inspections. Subsequently, a digital informative model capable of storing the data obtained by the surveys is generated, integrating both the MLS and GPR information to accurately represent the status of the infrastructure’s pavement in a three-dimensional environment. Data obtained from these instruments were used as the input for the digitalization process, making use of parametric digital elements capable of adapting their configuration to the information provided by the NDT surveys. As more analysis on the surveys’ results is carried out, potential distresses in the deep layers of the pavement are identified, and the information related to these elements is then integrated into the BIM model previously created. The process hereby described allows for an analysis of the three-dimensional configuration of the pavement, along with potential distresses and their location into the road’s superstructure. This digitalization process has shown promising viability for data management aimed at supporting asset managers in various management phases. InfraBIM MLS GPR NDT pavement infrastructure Technology T Fabrizio D’Amico verfasserin aut Antonio Napolitano verfasserin aut Luca Bianchini Ciampoli verfasserin aut Valerio Gagliardi verfasserin aut Jhon Romer Diezmos Manalo verfasserin aut In Infrastructures MDPI AG, 2017 8(2023), 5, p 81 (DE-627)1015391176 24123811 nnns volume:8 year:2023 number:5, p 81 https://doi.org/10.3390/infrastructures8050081 kostenfrei https://doaj.org/article/32891d243762498294a3f63cc13008e3 kostenfrei https://www.mdpi.com/2412-3811/8/5/81 kostenfrei https://doaj.org/toc/2412-3811 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 8 2023 5, p 81 |
allfieldsSound |
10.3390/infrastructures8050081 doi (DE-627)DOAJ094365024 (DE-599)DOAJ32891d243762498294a3f63cc13008e3 DE-627 ger DE-627 rakwb eng Luca Bertolini verfasserin aut A BIM-Based Approach for Pavement Monitoring Integrating Data from Non-Destructive Testing Methods (NDTs) 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Monitoring of critical civil engineering infrastructures has become a priority for public owners and administrative authorities. Several laws and regulations have been issued on this topic, emphasizing the crucial role of Building Information Modeling (BIM)- based procedures for the design and management of civil infrastructures. This study aims at examining the potential of an interoperable and upgradeable BIM model supplemented by ground-based non-destructive survey data, such as Mobile Laser Scanner (MLS) and Ground-Penetrating Radar (GPR), for the analysis of the potential distresses identified in a transport infrastructure’s pavement. The main goal of the work is to implement an infrastructure management process that aims to reduce the limits associated with the separate observation of these assessments and to provide a more efficient way to store data regarding the status of a linear transport infrastructure, to the advantage of an integrated analysis. As on-site surveys are carried out, preliminary analyses on the condition of the inspected infrastructure are performed by relying on the information provided by Non-Destructive Testing (NDTs) inspections. Subsequently, a digital informative model capable of storing the data obtained by the surveys is generated, integrating both the MLS and GPR information to accurately represent the status of the infrastructure’s pavement in a three-dimensional environment. Data obtained from these instruments were used as the input for the digitalization process, making use of parametric digital elements capable of adapting their configuration to the information provided by the NDT surveys. As more analysis on the surveys’ results is carried out, potential distresses in the deep layers of the pavement are identified, and the information related to these elements is then integrated into the BIM model previously created. The process hereby described allows for an analysis of the three-dimensional configuration of the pavement, along with potential distresses and their location into the road’s superstructure. This digitalization process has shown promising viability for data management aimed at supporting asset managers in various management phases. InfraBIM MLS GPR NDT pavement infrastructure Technology T Fabrizio D’Amico verfasserin aut Antonio Napolitano verfasserin aut Luca Bianchini Ciampoli verfasserin aut Valerio Gagliardi verfasserin aut Jhon Romer Diezmos Manalo verfasserin aut In Infrastructures MDPI AG, 2017 8(2023), 5, p 81 (DE-627)1015391176 24123811 nnns volume:8 year:2023 number:5, p 81 https://doi.org/10.3390/infrastructures8050081 kostenfrei https://doaj.org/article/32891d243762498294a3f63cc13008e3 kostenfrei https://www.mdpi.com/2412-3811/8/5/81 kostenfrei https://doaj.org/toc/2412-3811 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 8 2023 5, p 81 |
language |
English |
source |
In Infrastructures 8(2023), 5, p 81 volume:8 year:2023 number:5, p 81 |
sourceStr |
In Infrastructures 8(2023), 5, p 81 volume:8 year:2023 number:5, p 81 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
InfraBIM MLS GPR NDT pavement infrastructure Technology T |
isfreeaccess_bool |
true |
container_title |
Infrastructures |
authorswithroles_txt_mv |
Luca Bertolini @@aut@@ Fabrizio D’Amico @@aut@@ Antonio Napolitano @@aut@@ Luca Bianchini Ciampoli @@aut@@ Valerio Gagliardi @@aut@@ Jhon Romer Diezmos Manalo @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
1015391176 |
id |
DOAJ094365024 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094365024</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413033826.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/infrastructures8050081</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094365024</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ32891d243762498294a3f63cc13008e3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Luca Bertolini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A BIM-Based Approach for Pavement Monitoring Integrating Data from Non-Destructive Testing Methods (NDTs)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Monitoring of critical civil engineering infrastructures has become a priority for public owners and administrative authorities. Several laws and regulations have been issued on this topic, emphasizing the crucial role of Building Information Modeling (BIM)- based procedures for the design and management of civil infrastructures. This study aims at examining the potential of an interoperable and upgradeable BIM model supplemented by ground-based non-destructive survey data, such as Mobile Laser Scanner (MLS) and Ground-Penetrating Radar (GPR), for the analysis of the potential distresses identified in a transport infrastructure’s pavement. The main goal of the work is to implement an infrastructure management process that aims to reduce the limits associated with the separate observation of these assessments and to provide a more efficient way to store data regarding the status of a linear transport infrastructure, to the advantage of an integrated analysis. As on-site surveys are carried out, preliminary analyses on the condition of the inspected infrastructure are performed by relying on the information provided by Non-Destructive Testing (NDTs) inspections. Subsequently, a digital informative model capable of storing the data obtained by the surveys is generated, integrating both the MLS and GPR information to accurately represent the status of the infrastructure’s pavement in a three-dimensional environment. Data obtained from these instruments were used as the input for the digitalization process, making use of parametric digital elements capable of adapting their configuration to the information provided by the NDT surveys. As more analysis on the surveys’ results is carried out, potential distresses in the deep layers of the pavement are identified, and the information related to these elements is then integrated into the BIM model previously created. The process hereby described allows for an analysis of the three-dimensional configuration of the pavement, along with potential distresses and their location into the road’s superstructure. This digitalization process has shown promising viability for data management aimed at supporting asset managers in various management phases.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">InfraBIM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MLS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GPR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NDT</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pavement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">infrastructure</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fabrizio D’Amico</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Antonio Napolitano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luca Bianchini Ciampoli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Valerio Gagliardi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jhon Romer Diezmos Manalo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Infrastructures</subfield><subfield code="d">MDPI AG, 2017</subfield><subfield code="g">8(2023), 5, p 81</subfield><subfield code="w">(DE-627)1015391176</subfield><subfield code="x">24123811</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:5, p 81</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/infrastructures8050081</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/32891d243762498294a3f63cc13008e3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2412-3811/8/5/81</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2412-3811</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2023</subfield><subfield code="e">5, p 81</subfield></datafield></record></collection>
|
author |
Luca Bertolini |
spellingShingle |
Luca Bertolini misc InfraBIM misc MLS misc GPR misc NDT misc pavement misc infrastructure misc Technology misc T A BIM-Based Approach for Pavement Monitoring Integrating Data from Non-Destructive Testing Methods (NDTs) |
authorStr |
Luca Bertolini |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1015391176 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
24123811 |
topic_title |
A BIM-Based Approach for Pavement Monitoring Integrating Data from Non-Destructive Testing Methods (NDTs) InfraBIM MLS GPR NDT pavement infrastructure |
topic |
misc InfraBIM misc MLS misc GPR misc NDT misc pavement misc infrastructure misc Technology misc T |
topic_unstemmed |
misc InfraBIM misc MLS misc GPR misc NDT misc pavement misc infrastructure misc Technology misc T |
topic_browse |
misc InfraBIM misc MLS misc GPR misc NDT misc pavement misc infrastructure misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Infrastructures |
hierarchy_parent_id |
1015391176 |
hierarchy_top_title |
Infrastructures |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1015391176 |
title |
A BIM-Based Approach for Pavement Monitoring Integrating Data from Non-Destructive Testing Methods (NDTs) |
ctrlnum |
(DE-627)DOAJ094365024 (DE-599)DOAJ32891d243762498294a3f63cc13008e3 |
title_full |
A BIM-Based Approach for Pavement Monitoring Integrating Data from Non-Destructive Testing Methods (NDTs) |
author_sort |
Luca Bertolini |
journal |
Infrastructures |
journalStr |
Infrastructures |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Luca Bertolini Fabrizio D’Amico Antonio Napolitano Luca Bianchini Ciampoli Valerio Gagliardi Jhon Romer Diezmos Manalo |
container_volume |
8 |
format_se |
Elektronische Aufsätze |
author-letter |
Luca Bertolini |
doi_str_mv |
10.3390/infrastructures8050081 |
author2-role |
verfasserin |
title_sort |
bim-based approach for pavement monitoring integrating data from non-destructive testing methods (ndts) |
title_auth |
A BIM-Based Approach for Pavement Monitoring Integrating Data from Non-Destructive Testing Methods (NDTs) |
abstract |
Monitoring of critical civil engineering infrastructures has become a priority for public owners and administrative authorities. Several laws and regulations have been issued on this topic, emphasizing the crucial role of Building Information Modeling (BIM)- based procedures for the design and management of civil infrastructures. This study aims at examining the potential of an interoperable and upgradeable BIM model supplemented by ground-based non-destructive survey data, such as Mobile Laser Scanner (MLS) and Ground-Penetrating Radar (GPR), for the analysis of the potential distresses identified in a transport infrastructure’s pavement. The main goal of the work is to implement an infrastructure management process that aims to reduce the limits associated with the separate observation of these assessments and to provide a more efficient way to store data regarding the status of a linear transport infrastructure, to the advantage of an integrated analysis. As on-site surveys are carried out, preliminary analyses on the condition of the inspected infrastructure are performed by relying on the information provided by Non-Destructive Testing (NDTs) inspections. Subsequently, a digital informative model capable of storing the data obtained by the surveys is generated, integrating both the MLS and GPR information to accurately represent the status of the infrastructure’s pavement in a three-dimensional environment. Data obtained from these instruments were used as the input for the digitalization process, making use of parametric digital elements capable of adapting their configuration to the information provided by the NDT surveys. As more analysis on the surveys’ results is carried out, potential distresses in the deep layers of the pavement are identified, and the information related to these elements is then integrated into the BIM model previously created. The process hereby described allows for an analysis of the three-dimensional configuration of the pavement, along with potential distresses and their location into the road’s superstructure. This digitalization process has shown promising viability for data management aimed at supporting asset managers in various management phases. |
abstractGer |
Monitoring of critical civil engineering infrastructures has become a priority for public owners and administrative authorities. Several laws and regulations have been issued on this topic, emphasizing the crucial role of Building Information Modeling (BIM)- based procedures for the design and management of civil infrastructures. This study aims at examining the potential of an interoperable and upgradeable BIM model supplemented by ground-based non-destructive survey data, such as Mobile Laser Scanner (MLS) and Ground-Penetrating Radar (GPR), for the analysis of the potential distresses identified in a transport infrastructure’s pavement. The main goal of the work is to implement an infrastructure management process that aims to reduce the limits associated with the separate observation of these assessments and to provide a more efficient way to store data regarding the status of a linear transport infrastructure, to the advantage of an integrated analysis. As on-site surveys are carried out, preliminary analyses on the condition of the inspected infrastructure are performed by relying on the information provided by Non-Destructive Testing (NDTs) inspections. Subsequently, a digital informative model capable of storing the data obtained by the surveys is generated, integrating both the MLS and GPR information to accurately represent the status of the infrastructure’s pavement in a three-dimensional environment. Data obtained from these instruments were used as the input for the digitalization process, making use of parametric digital elements capable of adapting their configuration to the information provided by the NDT surveys. As more analysis on the surveys’ results is carried out, potential distresses in the deep layers of the pavement are identified, and the information related to these elements is then integrated into the BIM model previously created. The process hereby described allows for an analysis of the three-dimensional configuration of the pavement, along with potential distresses and their location into the road’s superstructure. This digitalization process has shown promising viability for data management aimed at supporting asset managers in various management phases. |
abstract_unstemmed |
Monitoring of critical civil engineering infrastructures has become a priority for public owners and administrative authorities. Several laws and regulations have been issued on this topic, emphasizing the crucial role of Building Information Modeling (BIM)- based procedures for the design and management of civil infrastructures. This study aims at examining the potential of an interoperable and upgradeable BIM model supplemented by ground-based non-destructive survey data, such as Mobile Laser Scanner (MLS) and Ground-Penetrating Radar (GPR), for the analysis of the potential distresses identified in a transport infrastructure’s pavement. The main goal of the work is to implement an infrastructure management process that aims to reduce the limits associated with the separate observation of these assessments and to provide a more efficient way to store data regarding the status of a linear transport infrastructure, to the advantage of an integrated analysis. As on-site surveys are carried out, preliminary analyses on the condition of the inspected infrastructure are performed by relying on the information provided by Non-Destructive Testing (NDTs) inspections. Subsequently, a digital informative model capable of storing the data obtained by the surveys is generated, integrating both the MLS and GPR information to accurately represent the status of the infrastructure’s pavement in a three-dimensional environment. Data obtained from these instruments were used as the input for the digitalization process, making use of parametric digital elements capable of adapting their configuration to the information provided by the NDT surveys. As more analysis on the surveys’ results is carried out, potential distresses in the deep layers of the pavement are identified, and the information related to these elements is then integrated into the BIM model previously created. The process hereby described allows for an analysis of the three-dimensional configuration of the pavement, along with potential distresses and their location into the road’s superstructure. This digitalization process has shown promising viability for data management aimed at supporting asset managers in various management phases. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
5, p 81 |
title_short |
A BIM-Based Approach for Pavement Monitoring Integrating Data from Non-Destructive Testing Methods (NDTs) |
url |
https://doi.org/10.3390/infrastructures8050081 https://doaj.org/article/32891d243762498294a3f63cc13008e3 https://www.mdpi.com/2412-3811/8/5/81 https://doaj.org/toc/2412-3811 |
remote_bool |
true |
author2 |
Fabrizio D’Amico Antonio Napolitano Luca Bianchini Ciampoli Valerio Gagliardi Jhon Romer Diezmos Manalo |
author2Str |
Fabrizio D’Amico Antonio Napolitano Luca Bianchini Ciampoli Valerio Gagliardi Jhon Romer Diezmos Manalo |
ppnlink |
1015391176 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/infrastructures8050081 |
up_date |
2024-07-03T22:45:40.194Z |
_version_ |
1803599730646712320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094365024</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413033826.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/infrastructures8050081</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094365024</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ32891d243762498294a3f63cc13008e3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Luca Bertolini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A BIM-Based Approach for Pavement Monitoring Integrating Data from Non-Destructive Testing Methods (NDTs)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Monitoring of critical civil engineering infrastructures has become a priority for public owners and administrative authorities. Several laws and regulations have been issued on this topic, emphasizing the crucial role of Building Information Modeling (BIM)- based procedures for the design and management of civil infrastructures. This study aims at examining the potential of an interoperable and upgradeable BIM model supplemented by ground-based non-destructive survey data, such as Mobile Laser Scanner (MLS) and Ground-Penetrating Radar (GPR), for the analysis of the potential distresses identified in a transport infrastructure’s pavement. The main goal of the work is to implement an infrastructure management process that aims to reduce the limits associated with the separate observation of these assessments and to provide a more efficient way to store data regarding the status of a linear transport infrastructure, to the advantage of an integrated analysis. As on-site surveys are carried out, preliminary analyses on the condition of the inspected infrastructure are performed by relying on the information provided by Non-Destructive Testing (NDTs) inspections. Subsequently, a digital informative model capable of storing the data obtained by the surveys is generated, integrating both the MLS and GPR information to accurately represent the status of the infrastructure’s pavement in a three-dimensional environment. Data obtained from these instruments were used as the input for the digitalization process, making use of parametric digital elements capable of adapting their configuration to the information provided by the NDT surveys. As more analysis on the surveys’ results is carried out, potential distresses in the deep layers of the pavement are identified, and the information related to these elements is then integrated into the BIM model previously created. The process hereby described allows for an analysis of the three-dimensional configuration of the pavement, along with potential distresses and their location into the road’s superstructure. This digitalization process has shown promising viability for data management aimed at supporting asset managers in various management phases.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">InfraBIM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MLS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GPR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NDT</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pavement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">infrastructure</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fabrizio D’Amico</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Antonio Napolitano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luca Bianchini Ciampoli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Valerio Gagliardi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jhon Romer Diezmos Manalo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Infrastructures</subfield><subfield code="d">MDPI AG, 2017</subfield><subfield code="g">8(2023), 5, p 81</subfield><subfield code="w">(DE-627)1015391176</subfield><subfield code="x">24123811</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:5, p 81</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/infrastructures8050081</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/32891d243762498294a3f63cc13008e3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2412-3811/8/5/81</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2412-3811</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2023</subfield><subfield code="e">5, p 81</subfield></datafield></record></collection>
|
score |
7.4022093 |