Exploring the Potential of Three-Dimensional Imaging, Printing, and Modeling in Pediatric Surgical Oncology: A New Era of Precision Surgery
Pediatric surgical oncology is a technically challenging field that relies on CT and MRI as the primary imaging tools for surgical planning. However, recent advances in 3D reconstructions, including Cinematic Rendering, Volume Rendering, 3D modeling, Virtual Reality, Augmented Reality, and 3D printi...
Ausführliche Beschreibung
Autor*in: |
Arnau Valls-Esteve [verfasserIn] Núria Adell-Gómez [verfasserIn] Albert Pasten [verfasserIn] Ignasi Barber [verfasserIn] Josep Munuera [verfasserIn] Lucas Krauel [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Children - MDPI AG, 2014, 10(2023), 5, p 832 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2023 ; number:5, p 832 |
Links: |
---|
DOI / URN: |
10.3390/children10050832 |
---|
Katalog-ID: |
DOAJ094401020 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ094401020 | ||
003 | DE-627 | ||
005 | 20240413034406.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/children10050832 |2 doi | |
035 | |a (DE-627)DOAJ094401020 | ||
035 | |a (DE-599)DOAJ18a43a99dcfd49febf291c147599198b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RJ1-570 | |
100 | 0 | |a Arnau Valls-Esteve |e verfasserin |4 aut | |
245 | 1 | 0 | |a Exploring the Potential of Three-Dimensional Imaging, Printing, and Modeling in Pediatric Surgical Oncology: A New Era of Precision Surgery |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Pediatric surgical oncology is a technically challenging field that relies on CT and MRI as the primary imaging tools for surgical planning. However, recent advances in 3D reconstructions, including Cinematic Rendering, Volume Rendering, 3D modeling, Virtual Reality, Augmented Reality, and 3D printing, are increasingly being used to plan complex cases bringing new insights into pediatric tumors to guide therapeutic decisions and prognosis in different pediatric surgical oncology areas and locations including thoracic, brain, urology, and abdominal surgery. Despite this, challenges to their adoption remain, especially in soft tissue-based specialties such as pediatric surgical oncology. This work explores the main innovative imaging reconstruction techniques, 3D modeling technologies (CAD, VR, AR), and 3D printing applications through the analysis of three real cases of the most common and surgically challenging pediatric tumors: abdominal neuroblastoma, thoracic inlet neuroblastoma, and a bilateral Wilms tumor candidate for nephron-sparing surgery. The results demonstrate that these new imaging and modeling techniques offer a promising alternative for planning complex pediatric oncological cases. A comprehensive analysis of the advantages and limitations of each technique has been carried out to assist in choosing the optimal approach. | ||
650 | 4 | |a personalized medicine | |
650 | 4 | |a three-dimensional printing | |
650 | 4 | |a virtual reality | |
650 | 4 | |a pediatrics | |
650 | 4 | |a oncology | |
650 | 4 | |a surgery | |
653 | 0 | |a Pediatrics | |
700 | 0 | |a Núria Adell-Gómez |e verfasserin |4 aut | |
700 | 0 | |a Albert Pasten |e verfasserin |4 aut | |
700 | 0 | |a Ignasi Barber |e verfasserin |4 aut | |
700 | 0 | |a Josep Munuera |e verfasserin |4 aut | |
700 | 0 | |a Lucas Krauel |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Children |d MDPI AG, 2014 |g 10(2023), 5, p 832 |w (DE-627)768093007 |w (DE-600)2732685-8 |x 22279067 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2023 |g number:5, p 832 |
856 | 4 | 0 | |u https://doi.org/10.3390/children10050832 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/18a43a99dcfd49febf291c147599198b |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2227-9067/10/5/832 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2227-9067 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2023 |e 5, p 832 |
author_variant |
a v e ave n a g nag a p ap i b ib j m jm l k lk |
---|---|
matchkey_str |
article:22279067:2023----::xlrnteoetaotreiesoaiaigrnignmdlnipdarcugcln |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
RJ |
publishDate |
2023 |
allfields |
10.3390/children10050832 doi (DE-627)DOAJ094401020 (DE-599)DOAJ18a43a99dcfd49febf291c147599198b DE-627 ger DE-627 rakwb eng RJ1-570 Arnau Valls-Esteve verfasserin aut Exploring the Potential of Three-Dimensional Imaging, Printing, and Modeling in Pediatric Surgical Oncology: A New Era of Precision Surgery 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pediatric surgical oncology is a technically challenging field that relies on CT and MRI as the primary imaging tools for surgical planning. However, recent advances in 3D reconstructions, including Cinematic Rendering, Volume Rendering, 3D modeling, Virtual Reality, Augmented Reality, and 3D printing, are increasingly being used to plan complex cases bringing new insights into pediatric tumors to guide therapeutic decisions and prognosis in different pediatric surgical oncology areas and locations including thoracic, brain, urology, and abdominal surgery. Despite this, challenges to their adoption remain, especially in soft tissue-based specialties such as pediatric surgical oncology. This work explores the main innovative imaging reconstruction techniques, 3D modeling technologies (CAD, VR, AR), and 3D printing applications through the analysis of three real cases of the most common and surgically challenging pediatric tumors: abdominal neuroblastoma, thoracic inlet neuroblastoma, and a bilateral Wilms tumor candidate for nephron-sparing surgery. The results demonstrate that these new imaging and modeling techniques offer a promising alternative for planning complex pediatric oncological cases. A comprehensive analysis of the advantages and limitations of each technique has been carried out to assist in choosing the optimal approach. personalized medicine three-dimensional printing virtual reality pediatrics oncology surgery Pediatrics Núria Adell-Gómez verfasserin aut Albert Pasten verfasserin aut Ignasi Barber verfasserin aut Josep Munuera verfasserin aut Lucas Krauel verfasserin aut In Children MDPI AG, 2014 10(2023), 5, p 832 (DE-627)768093007 (DE-600)2732685-8 22279067 nnns volume:10 year:2023 number:5, p 832 https://doi.org/10.3390/children10050832 kostenfrei https://doaj.org/article/18a43a99dcfd49febf291c147599198b kostenfrei https://www.mdpi.com/2227-9067/10/5/832 kostenfrei https://doaj.org/toc/2227-9067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 5, p 832 |
spelling |
10.3390/children10050832 doi (DE-627)DOAJ094401020 (DE-599)DOAJ18a43a99dcfd49febf291c147599198b DE-627 ger DE-627 rakwb eng RJ1-570 Arnau Valls-Esteve verfasserin aut Exploring the Potential of Three-Dimensional Imaging, Printing, and Modeling in Pediatric Surgical Oncology: A New Era of Precision Surgery 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pediatric surgical oncology is a technically challenging field that relies on CT and MRI as the primary imaging tools for surgical planning. However, recent advances in 3D reconstructions, including Cinematic Rendering, Volume Rendering, 3D modeling, Virtual Reality, Augmented Reality, and 3D printing, are increasingly being used to plan complex cases bringing new insights into pediatric tumors to guide therapeutic decisions and prognosis in different pediatric surgical oncology areas and locations including thoracic, brain, urology, and abdominal surgery. Despite this, challenges to their adoption remain, especially in soft tissue-based specialties such as pediatric surgical oncology. This work explores the main innovative imaging reconstruction techniques, 3D modeling technologies (CAD, VR, AR), and 3D printing applications through the analysis of three real cases of the most common and surgically challenging pediatric tumors: abdominal neuroblastoma, thoracic inlet neuroblastoma, and a bilateral Wilms tumor candidate for nephron-sparing surgery. The results demonstrate that these new imaging and modeling techniques offer a promising alternative for planning complex pediatric oncological cases. A comprehensive analysis of the advantages and limitations of each technique has been carried out to assist in choosing the optimal approach. personalized medicine three-dimensional printing virtual reality pediatrics oncology surgery Pediatrics Núria Adell-Gómez verfasserin aut Albert Pasten verfasserin aut Ignasi Barber verfasserin aut Josep Munuera verfasserin aut Lucas Krauel verfasserin aut In Children MDPI AG, 2014 10(2023), 5, p 832 (DE-627)768093007 (DE-600)2732685-8 22279067 nnns volume:10 year:2023 number:5, p 832 https://doi.org/10.3390/children10050832 kostenfrei https://doaj.org/article/18a43a99dcfd49febf291c147599198b kostenfrei https://www.mdpi.com/2227-9067/10/5/832 kostenfrei https://doaj.org/toc/2227-9067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 5, p 832 |
allfields_unstemmed |
10.3390/children10050832 doi (DE-627)DOAJ094401020 (DE-599)DOAJ18a43a99dcfd49febf291c147599198b DE-627 ger DE-627 rakwb eng RJ1-570 Arnau Valls-Esteve verfasserin aut Exploring the Potential of Three-Dimensional Imaging, Printing, and Modeling in Pediatric Surgical Oncology: A New Era of Precision Surgery 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pediatric surgical oncology is a technically challenging field that relies on CT and MRI as the primary imaging tools for surgical planning. However, recent advances in 3D reconstructions, including Cinematic Rendering, Volume Rendering, 3D modeling, Virtual Reality, Augmented Reality, and 3D printing, are increasingly being used to plan complex cases bringing new insights into pediatric tumors to guide therapeutic decisions and prognosis in different pediatric surgical oncology areas and locations including thoracic, brain, urology, and abdominal surgery. Despite this, challenges to their adoption remain, especially in soft tissue-based specialties such as pediatric surgical oncology. This work explores the main innovative imaging reconstruction techniques, 3D modeling technologies (CAD, VR, AR), and 3D printing applications through the analysis of three real cases of the most common and surgically challenging pediatric tumors: abdominal neuroblastoma, thoracic inlet neuroblastoma, and a bilateral Wilms tumor candidate for nephron-sparing surgery. The results demonstrate that these new imaging and modeling techniques offer a promising alternative for planning complex pediatric oncological cases. A comprehensive analysis of the advantages and limitations of each technique has been carried out to assist in choosing the optimal approach. personalized medicine three-dimensional printing virtual reality pediatrics oncology surgery Pediatrics Núria Adell-Gómez verfasserin aut Albert Pasten verfasserin aut Ignasi Barber verfasserin aut Josep Munuera verfasserin aut Lucas Krauel verfasserin aut In Children MDPI AG, 2014 10(2023), 5, p 832 (DE-627)768093007 (DE-600)2732685-8 22279067 nnns volume:10 year:2023 number:5, p 832 https://doi.org/10.3390/children10050832 kostenfrei https://doaj.org/article/18a43a99dcfd49febf291c147599198b kostenfrei https://www.mdpi.com/2227-9067/10/5/832 kostenfrei https://doaj.org/toc/2227-9067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 5, p 832 |
allfieldsGer |
10.3390/children10050832 doi (DE-627)DOAJ094401020 (DE-599)DOAJ18a43a99dcfd49febf291c147599198b DE-627 ger DE-627 rakwb eng RJ1-570 Arnau Valls-Esteve verfasserin aut Exploring the Potential of Three-Dimensional Imaging, Printing, and Modeling in Pediatric Surgical Oncology: A New Era of Precision Surgery 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pediatric surgical oncology is a technically challenging field that relies on CT and MRI as the primary imaging tools for surgical planning. However, recent advances in 3D reconstructions, including Cinematic Rendering, Volume Rendering, 3D modeling, Virtual Reality, Augmented Reality, and 3D printing, are increasingly being used to plan complex cases bringing new insights into pediatric tumors to guide therapeutic decisions and prognosis in different pediatric surgical oncology areas and locations including thoracic, brain, urology, and abdominal surgery. Despite this, challenges to their adoption remain, especially in soft tissue-based specialties such as pediatric surgical oncology. This work explores the main innovative imaging reconstruction techniques, 3D modeling technologies (CAD, VR, AR), and 3D printing applications through the analysis of three real cases of the most common and surgically challenging pediatric tumors: abdominal neuroblastoma, thoracic inlet neuroblastoma, and a bilateral Wilms tumor candidate for nephron-sparing surgery. The results demonstrate that these new imaging and modeling techniques offer a promising alternative for planning complex pediatric oncological cases. A comprehensive analysis of the advantages and limitations of each technique has been carried out to assist in choosing the optimal approach. personalized medicine three-dimensional printing virtual reality pediatrics oncology surgery Pediatrics Núria Adell-Gómez verfasserin aut Albert Pasten verfasserin aut Ignasi Barber verfasserin aut Josep Munuera verfasserin aut Lucas Krauel verfasserin aut In Children MDPI AG, 2014 10(2023), 5, p 832 (DE-627)768093007 (DE-600)2732685-8 22279067 nnns volume:10 year:2023 number:5, p 832 https://doi.org/10.3390/children10050832 kostenfrei https://doaj.org/article/18a43a99dcfd49febf291c147599198b kostenfrei https://www.mdpi.com/2227-9067/10/5/832 kostenfrei https://doaj.org/toc/2227-9067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 5, p 832 |
allfieldsSound |
10.3390/children10050832 doi (DE-627)DOAJ094401020 (DE-599)DOAJ18a43a99dcfd49febf291c147599198b DE-627 ger DE-627 rakwb eng RJ1-570 Arnau Valls-Esteve verfasserin aut Exploring the Potential of Three-Dimensional Imaging, Printing, and Modeling in Pediatric Surgical Oncology: A New Era of Precision Surgery 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pediatric surgical oncology is a technically challenging field that relies on CT and MRI as the primary imaging tools for surgical planning. However, recent advances in 3D reconstructions, including Cinematic Rendering, Volume Rendering, 3D modeling, Virtual Reality, Augmented Reality, and 3D printing, are increasingly being used to plan complex cases bringing new insights into pediatric tumors to guide therapeutic decisions and prognosis in different pediatric surgical oncology areas and locations including thoracic, brain, urology, and abdominal surgery. Despite this, challenges to their adoption remain, especially in soft tissue-based specialties such as pediatric surgical oncology. This work explores the main innovative imaging reconstruction techniques, 3D modeling technologies (CAD, VR, AR), and 3D printing applications through the analysis of three real cases of the most common and surgically challenging pediatric tumors: abdominal neuroblastoma, thoracic inlet neuroblastoma, and a bilateral Wilms tumor candidate for nephron-sparing surgery. The results demonstrate that these new imaging and modeling techniques offer a promising alternative for planning complex pediatric oncological cases. A comprehensive analysis of the advantages and limitations of each technique has been carried out to assist in choosing the optimal approach. personalized medicine three-dimensional printing virtual reality pediatrics oncology surgery Pediatrics Núria Adell-Gómez verfasserin aut Albert Pasten verfasserin aut Ignasi Barber verfasserin aut Josep Munuera verfasserin aut Lucas Krauel verfasserin aut In Children MDPI AG, 2014 10(2023), 5, p 832 (DE-627)768093007 (DE-600)2732685-8 22279067 nnns volume:10 year:2023 number:5, p 832 https://doi.org/10.3390/children10050832 kostenfrei https://doaj.org/article/18a43a99dcfd49febf291c147599198b kostenfrei https://www.mdpi.com/2227-9067/10/5/832 kostenfrei https://doaj.org/toc/2227-9067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 5, p 832 |
language |
English |
source |
In Children 10(2023), 5, p 832 volume:10 year:2023 number:5, p 832 |
sourceStr |
In Children 10(2023), 5, p 832 volume:10 year:2023 number:5, p 832 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
personalized medicine three-dimensional printing virtual reality pediatrics oncology surgery Pediatrics |
isfreeaccess_bool |
true |
container_title |
Children |
authorswithroles_txt_mv |
Arnau Valls-Esteve @@aut@@ Núria Adell-Gómez @@aut@@ Albert Pasten @@aut@@ Ignasi Barber @@aut@@ Josep Munuera @@aut@@ Lucas Krauel @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
768093007 |
id |
DOAJ094401020 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094401020</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413034406.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/children10050832</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094401020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ18a43a99dcfd49febf291c147599198b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RJ1-570</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Arnau Valls-Esteve</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploring the Potential of Three-Dimensional Imaging, Printing, and Modeling in Pediatric Surgical Oncology: A New Era of Precision Surgery</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Pediatric surgical oncology is a technically challenging field that relies on CT and MRI as the primary imaging tools for surgical planning. However, recent advances in 3D reconstructions, including Cinematic Rendering, Volume Rendering, 3D modeling, Virtual Reality, Augmented Reality, and 3D printing, are increasingly being used to plan complex cases bringing new insights into pediatric tumors to guide therapeutic decisions and prognosis in different pediatric surgical oncology areas and locations including thoracic, brain, urology, and abdominal surgery. Despite this, challenges to their adoption remain, especially in soft tissue-based specialties such as pediatric surgical oncology. This work explores the main innovative imaging reconstruction techniques, 3D modeling technologies (CAD, VR, AR), and 3D printing applications through the analysis of three real cases of the most common and surgically challenging pediatric tumors: abdominal neuroblastoma, thoracic inlet neuroblastoma, and a bilateral Wilms tumor candidate for nephron-sparing surgery. The results demonstrate that these new imaging and modeling techniques offer a promising alternative for planning complex pediatric oncological cases. A comprehensive analysis of the advantages and limitations of each technique has been carried out to assist in choosing the optimal approach.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">personalized medicine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">three-dimensional printing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">virtual reality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pediatrics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oncology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">surgery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Pediatrics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Núria Adell-Gómez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Albert Pasten</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ignasi Barber</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Josep Munuera</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lucas Krauel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Children</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">10(2023), 5, p 832</subfield><subfield code="w">(DE-627)768093007</subfield><subfield code="w">(DE-600)2732685-8</subfield><subfield code="x">22279067</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:5, p 832</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/children10050832</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/18a43a99dcfd49febf291c147599198b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9067/10/5/832</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9067</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2023</subfield><subfield code="e">5, p 832</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Arnau Valls-Esteve |
spellingShingle |
Arnau Valls-Esteve misc RJ1-570 misc personalized medicine misc three-dimensional printing misc virtual reality misc pediatrics misc oncology misc surgery misc Pediatrics Exploring the Potential of Three-Dimensional Imaging, Printing, and Modeling in Pediatric Surgical Oncology: A New Era of Precision Surgery |
authorStr |
Arnau Valls-Esteve |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)768093007 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RJ1-570 |
illustrated |
Not Illustrated |
issn |
22279067 |
topic_title |
RJ1-570 Exploring the Potential of Three-Dimensional Imaging, Printing, and Modeling in Pediatric Surgical Oncology: A New Era of Precision Surgery personalized medicine three-dimensional printing virtual reality pediatrics oncology surgery |
topic |
misc RJ1-570 misc personalized medicine misc three-dimensional printing misc virtual reality misc pediatrics misc oncology misc surgery misc Pediatrics |
topic_unstemmed |
misc RJ1-570 misc personalized medicine misc three-dimensional printing misc virtual reality misc pediatrics misc oncology misc surgery misc Pediatrics |
topic_browse |
misc RJ1-570 misc personalized medicine misc three-dimensional printing misc virtual reality misc pediatrics misc oncology misc surgery misc Pediatrics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Children |
hierarchy_parent_id |
768093007 |
hierarchy_top_title |
Children |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)768093007 (DE-600)2732685-8 |
title |
Exploring the Potential of Three-Dimensional Imaging, Printing, and Modeling in Pediatric Surgical Oncology: A New Era of Precision Surgery |
ctrlnum |
(DE-627)DOAJ094401020 (DE-599)DOAJ18a43a99dcfd49febf291c147599198b |
title_full |
Exploring the Potential of Three-Dimensional Imaging, Printing, and Modeling in Pediatric Surgical Oncology: A New Era of Precision Surgery |
author_sort |
Arnau Valls-Esteve |
journal |
Children |
journalStr |
Children |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Arnau Valls-Esteve Núria Adell-Gómez Albert Pasten Ignasi Barber Josep Munuera Lucas Krauel |
container_volume |
10 |
class |
RJ1-570 |
format_se |
Elektronische Aufsätze |
author-letter |
Arnau Valls-Esteve |
doi_str_mv |
10.3390/children10050832 |
author2-role |
verfasserin |
title_sort |
exploring the potential of three-dimensional imaging, printing, and modeling in pediatric surgical oncology: a new era of precision surgery |
callnumber |
RJ1-570 |
title_auth |
Exploring the Potential of Three-Dimensional Imaging, Printing, and Modeling in Pediatric Surgical Oncology: A New Era of Precision Surgery |
abstract |
Pediatric surgical oncology is a technically challenging field that relies on CT and MRI as the primary imaging tools for surgical planning. However, recent advances in 3D reconstructions, including Cinematic Rendering, Volume Rendering, 3D modeling, Virtual Reality, Augmented Reality, and 3D printing, are increasingly being used to plan complex cases bringing new insights into pediatric tumors to guide therapeutic decisions and prognosis in different pediatric surgical oncology areas and locations including thoracic, brain, urology, and abdominal surgery. Despite this, challenges to their adoption remain, especially in soft tissue-based specialties such as pediatric surgical oncology. This work explores the main innovative imaging reconstruction techniques, 3D modeling technologies (CAD, VR, AR), and 3D printing applications through the analysis of three real cases of the most common and surgically challenging pediatric tumors: abdominal neuroblastoma, thoracic inlet neuroblastoma, and a bilateral Wilms tumor candidate for nephron-sparing surgery. The results demonstrate that these new imaging and modeling techniques offer a promising alternative for planning complex pediatric oncological cases. A comprehensive analysis of the advantages and limitations of each technique has been carried out to assist in choosing the optimal approach. |
abstractGer |
Pediatric surgical oncology is a technically challenging field that relies on CT and MRI as the primary imaging tools for surgical planning. However, recent advances in 3D reconstructions, including Cinematic Rendering, Volume Rendering, 3D modeling, Virtual Reality, Augmented Reality, and 3D printing, are increasingly being used to plan complex cases bringing new insights into pediatric tumors to guide therapeutic decisions and prognosis in different pediatric surgical oncology areas and locations including thoracic, brain, urology, and abdominal surgery. Despite this, challenges to their adoption remain, especially in soft tissue-based specialties such as pediatric surgical oncology. This work explores the main innovative imaging reconstruction techniques, 3D modeling technologies (CAD, VR, AR), and 3D printing applications through the analysis of three real cases of the most common and surgically challenging pediatric tumors: abdominal neuroblastoma, thoracic inlet neuroblastoma, and a bilateral Wilms tumor candidate for nephron-sparing surgery. The results demonstrate that these new imaging and modeling techniques offer a promising alternative for planning complex pediatric oncological cases. A comprehensive analysis of the advantages and limitations of each technique has been carried out to assist in choosing the optimal approach. |
abstract_unstemmed |
Pediatric surgical oncology is a technically challenging field that relies on CT and MRI as the primary imaging tools for surgical planning. However, recent advances in 3D reconstructions, including Cinematic Rendering, Volume Rendering, 3D modeling, Virtual Reality, Augmented Reality, and 3D printing, are increasingly being used to plan complex cases bringing new insights into pediatric tumors to guide therapeutic decisions and prognosis in different pediatric surgical oncology areas and locations including thoracic, brain, urology, and abdominal surgery. Despite this, challenges to their adoption remain, especially in soft tissue-based specialties such as pediatric surgical oncology. This work explores the main innovative imaging reconstruction techniques, 3D modeling technologies (CAD, VR, AR), and 3D printing applications through the analysis of three real cases of the most common and surgically challenging pediatric tumors: abdominal neuroblastoma, thoracic inlet neuroblastoma, and a bilateral Wilms tumor candidate for nephron-sparing surgery. The results demonstrate that these new imaging and modeling techniques offer a promising alternative for planning complex pediatric oncological cases. A comprehensive analysis of the advantages and limitations of each technique has been carried out to assist in choosing the optimal approach. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5, p 832 |
title_short |
Exploring the Potential of Three-Dimensional Imaging, Printing, and Modeling in Pediatric Surgical Oncology: A New Era of Precision Surgery |
url |
https://doi.org/10.3390/children10050832 https://doaj.org/article/18a43a99dcfd49febf291c147599198b https://www.mdpi.com/2227-9067/10/5/832 https://doaj.org/toc/2227-9067 |
remote_bool |
true |
author2 |
Núria Adell-Gómez Albert Pasten Ignasi Barber Josep Munuera Lucas Krauel |
author2Str |
Núria Adell-Gómez Albert Pasten Ignasi Barber Josep Munuera Lucas Krauel |
ppnlink |
768093007 |
callnumber-subject |
RJ - Pediatrics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/children10050832 |
callnumber-a |
RJ1-570 |
up_date |
2024-07-03T22:57:22.598Z |
_version_ |
1803600467170689024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094401020</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413034406.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/children10050832</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094401020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ18a43a99dcfd49febf291c147599198b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RJ1-570</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Arnau Valls-Esteve</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploring the Potential of Three-Dimensional Imaging, Printing, and Modeling in Pediatric Surgical Oncology: A New Era of Precision Surgery</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Pediatric surgical oncology is a technically challenging field that relies on CT and MRI as the primary imaging tools for surgical planning. However, recent advances in 3D reconstructions, including Cinematic Rendering, Volume Rendering, 3D modeling, Virtual Reality, Augmented Reality, and 3D printing, are increasingly being used to plan complex cases bringing new insights into pediatric tumors to guide therapeutic decisions and prognosis in different pediatric surgical oncology areas and locations including thoracic, brain, urology, and abdominal surgery. Despite this, challenges to their adoption remain, especially in soft tissue-based specialties such as pediatric surgical oncology. This work explores the main innovative imaging reconstruction techniques, 3D modeling technologies (CAD, VR, AR), and 3D printing applications through the analysis of three real cases of the most common and surgically challenging pediatric tumors: abdominal neuroblastoma, thoracic inlet neuroblastoma, and a bilateral Wilms tumor candidate for nephron-sparing surgery. The results demonstrate that these new imaging and modeling techniques offer a promising alternative for planning complex pediatric oncological cases. A comprehensive analysis of the advantages and limitations of each technique has been carried out to assist in choosing the optimal approach.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">personalized medicine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">three-dimensional printing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">virtual reality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pediatrics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oncology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">surgery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Pediatrics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Núria Adell-Gómez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Albert Pasten</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ignasi Barber</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Josep Munuera</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lucas Krauel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Children</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">10(2023), 5, p 832</subfield><subfield code="w">(DE-627)768093007</subfield><subfield code="w">(DE-600)2732685-8</subfield><subfield code="x">22279067</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:5, p 832</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/children10050832</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/18a43a99dcfd49febf291c147599198b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9067/10/5/832</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9067</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2023</subfield><subfield code="e">5, p 832</subfield></datafield></record></collection>
|
score |
7.4017677 |