Clinical Hematochemical Parameters in Differential Diagnosis between Pediatric SARS-CoV-2 and Influenza Virus Infection: An Automated Machine Learning Approach
Background: The influenza virus and the novel beta coronavirus (SARS-CoV-2) have similar transmission characteristics, and it is very difficult to distinguish them clinically. With the development of information technologies, novel opportunities have arisen for the application of intelligent softwar...
Ausführliche Beschreibung
Autor*in: |
Dejan Dobrijević [verfasserIn] Jelena Antić [verfasserIn] Goran Rakić [verfasserIn] Jasmina Katanić [verfasserIn] Ljiljana Andrijević [verfasserIn] Kristian Pastor [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Children - MDPI AG, 2014, 10(2023), 5, p 761 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2023 ; number:5, p 761 |
Links: |
---|
DOI / URN: |
10.3390/children10050761 |
---|
Katalog-ID: |
DOAJ094401748 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ094401748 | ||
003 | DE-627 | ||
005 | 20240413034413.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/children10050761 |2 doi | |
035 | |a (DE-627)DOAJ094401748 | ||
035 | |a (DE-599)DOAJ5676640497a54e259a49b014a4991dd7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RJ1-570 | |
100 | 0 | |a Dejan Dobrijević |e verfasserin |4 aut | |
245 | 1 | 0 | |a Clinical Hematochemical Parameters in Differential Diagnosis between Pediatric SARS-CoV-2 and Influenza Virus Infection: An Automated Machine Learning Approach |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background: The influenza virus and the novel beta coronavirus (SARS-CoV-2) have similar transmission characteristics, and it is very difficult to distinguish them clinically. With the development of information technologies, novel opportunities have arisen for the application of intelligent software systems in disease diagnosis and patient triage. Methods: A cross-sectional study was conducted on 268 infants: 133 infants with a SARS-CoV-2 infection and 135 infants with an influenza virus infection. In total, 10 hematochemical variables were used to construct an automated machine learning model. Results: An accuracy range from 53.8% to 60.7% was obtained by applying support vector machine, random forest, k-nearest neighbors, logistic regression, and neural network models. Alternatively, an automated model convincingly outperformed other models with an accuracy of 98.4%. The proposed automated algorithm recommended a random tree model, a randomization-based ensemble method, as the most appropriate for the given dataset. Conclusions: The application of automated machine learning in clinical practice can contribute to more objective, accurate, and rapid diagnosis of SARS-CoV-2 and influenza virus infections in children. | ||
650 | 4 | |a COVID-19 | |
650 | 4 | |a SARS-CoV-2 | |
650 | 4 | |a influenza | |
650 | 4 | |a diagnosis | |
650 | 4 | |a laboratory parameters | |
650 | 4 | |a machine learning | |
653 | 0 | |a Pediatrics | |
700 | 0 | |a Jelena Antić |e verfasserin |4 aut | |
700 | 0 | |a Goran Rakić |e verfasserin |4 aut | |
700 | 0 | |a Jasmina Katanić |e verfasserin |4 aut | |
700 | 0 | |a Ljiljana Andrijević |e verfasserin |4 aut | |
700 | 0 | |a Kristian Pastor |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Children |d MDPI AG, 2014 |g 10(2023), 5, p 761 |w (DE-627)768093007 |w (DE-600)2732685-8 |x 22279067 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2023 |g number:5, p 761 |
856 | 4 | 0 | |u https://doi.org/10.3390/children10050761 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5676640497a54e259a49b014a4991dd7 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2227-9067/10/5/761 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2227-9067 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2023 |e 5, p 761 |
author_variant |
d d dd j a ja g r gr j k jk l a la k p kp |
---|---|
matchkey_str |
article:22279067:2023----::lncleaohmclaaeesnifrniligoibteneitisrcvadnlezvrsnet |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
RJ |
publishDate |
2023 |
allfields |
10.3390/children10050761 doi (DE-627)DOAJ094401748 (DE-599)DOAJ5676640497a54e259a49b014a4991dd7 DE-627 ger DE-627 rakwb eng RJ1-570 Dejan Dobrijević verfasserin aut Clinical Hematochemical Parameters in Differential Diagnosis between Pediatric SARS-CoV-2 and Influenza Virus Infection: An Automated Machine Learning Approach 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: The influenza virus and the novel beta coronavirus (SARS-CoV-2) have similar transmission characteristics, and it is very difficult to distinguish them clinically. With the development of information technologies, novel opportunities have arisen for the application of intelligent software systems in disease diagnosis and patient triage. Methods: A cross-sectional study was conducted on 268 infants: 133 infants with a SARS-CoV-2 infection and 135 infants with an influenza virus infection. In total, 10 hematochemical variables were used to construct an automated machine learning model. Results: An accuracy range from 53.8% to 60.7% was obtained by applying support vector machine, random forest, k-nearest neighbors, logistic regression, and neural network models. Alternatively, an automated model convincingly outperformed other models with an accuracy of 98.4%. The proposed automated algorithm recommended a random tree model, a randomization-based ensemble method, as the most appropriate for the given dataset. Conclusions: The application of automated machine learning in clinical practice can contribute to more objective, accurate, and rapid diagnosis of SARS-CoV-2 and influenza virus infections in children. COVID-19 SARS-CoV-2 influenza diagnosis laboratory parameters machine learning Pediatrics Jelena Antić verfasserin aut Goran Rakić verfasserin aut Jasmina Katanić verfasserin aut Ljiljana Andrijević verfasserin aut Kristian Pastor verfasserin aut In Children MDPI AG, 2014 10(2023), 5, p 761 (DE-627)768093007 (DE-600)2732685-8 22279067 nnns volume:10 year:2023 number:5, p 761 https://doi.org/10.3390/children10050761 kostenfrei https://doaj.org/article/5676640497a54e259a49b014a4991dd7 kostenfrei https://www.mdpi.com/2227-9067/10/5/761 kostenfrei https://doaj.org/toc/2227-9067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 5, p 761 |
spelling |
10.3390/children10050761 doi (DE-627)DOAJ094401748 (DE-599)DOAJ5676640497a54e259a49b014a4991dd7 DE-627 ger DE-627 rakwb eng RJ1-570 Dejan Dobrijević verfasserin aut Clinical Hematochemical Parameters in Differential Diagnosis between Pediatric SARS-CoV-2 and Influenza Virus Infection: An Automated Machine Learning Approach 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: The influenza virus and the novel beta coronavirus (SARS-CoV-2) have similar transmission characteristics, and it is very difficult to distinguish them clinically. With the development of information technologies, novel opportunities have arisen for the application of intelligent software systems in disease diagnosis and patient triage. Methods: A cross-sectional study was conducted on 268 infants: 133 infants with a SARS-CoV-2 infection and 135 infants with an influenza virus infection. In total, 10 hematochemical variables were used to construct an automated machine learning model. Results: An accuracy range from 53.8% to 60.7% was obtained by applying support vector machine, random forest, k-nearest neighbors, logistic regression, and neural network models. Alternatively, an automated model convincingly outperformed other models with an accuracy of 98.4%. The proposed automated algorithm recommended a random tree model, a randomization-based ensemble method, as the most appropriate for the given dataset. Conclusions: The application of automated machine learning in clinical practice can contribute to more objective, accurate, and rapid diagnosis of SARS-CoV-2 and influenza virus infections in children. COVID-19 SARS-CoV-2 influenza diagnosis laboratory parameters machine learning Pediatrics Jelena Antić verfasserin aut Goran Rakić verfasserin aut Jasmina Katanić verfasserin aut Ljiljana Andrijević verfasserin aut Kristian Pastor verfasserin aut In Children MDPI AG, 2014 10(2023), 5, p 761 (DE-627)768093007 (DE-600)2732685-8 22279067 nnns volume:10 year:2023 number:5, p 761 https://doi.org/10.3390/children10050761 kostenfrei https://doaj.org/article/5676640497a54e259a49b014a4991dd7 kostenfrei https://www.mdpi.com/2227-9067/10/5/761 kostenfrei https://doaj.org/toc/2227-9067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 5, p 761 |
allfields_unstemmed |
10.3390/children10050761 doi (DE-627)DOAJ094401748 (DE-599)DOAJ5676640497a54e259a49b014a4991dd7 DE-627 ger DE-627 rakwb eng RJ1-570 Dejan Dobrijević verfasserin aut Clinical Hematochemical Parameters in Differential Diagnosis between Pediatric SARS-CoV-2 and Influenza Virus Infection: An Automated Machine Learning Approach 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: The influenza virus and the novel beta coronavirus (SARS-CoV-2) have similar transmission characteristics, and it is very difficult to distinguish them clinically. With the development of information technologies, novel opportunities have arisen for the application of intelligent software systems in disease diagnosis and patient triage. Methods: A cross-sectional study was conducted on 268 infants: 133 infants with a SARS-CoV-2 infection and 135 infants with an influenza virus infection. In total, 10 hematochemical variables were used to construct an automated machine learning model. Results: An accuracy range from 53.8% to 60.7% was obtained by applying support vector machine, random forest, k-nearest neighbors, logistic regression, and neural network models. Alternatively, an automated model convincingly outperformed other models with an accuracy of 98.4%. The proposed automated algorithm recommended a random tree model, a randomization-based ensemble method, as the most appropriate for the given dataset. Conclusions: The application of automated machine learning in clinical practice can contribute to more objective, accurate, and rapid diagnosis of SARS-CoV-2 and influenza virus infections in children. COVID-19 SARS-CoV-2 influenza diagnosis laboratory parameters machine learning Pediatrics Jelena Antić verfasserin aut Goran Rakić verfasserin aut Jasmina Katanić verfasserin aut Ljiljana Andrijević verfasserin aut Kristian Pastor verfasserin aut In Children MDPI AG, 2014 10(2023), 5, p 761 (DE-627)768093007 (DE-600)2732685-8 22279067 nnns volume:10 year:2023 number:5, p 761 https://doi.org/10.3390/children10050761 kostenfrei https://doaj.org/article/5676640497a54e259a49b014a4991dd7 kostenfrei https://www.mdpi.com/2227-9067/10/5/761 kostenfrei https://doaj.org/toc/2227-9067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 5, p 761 |
allfieldsGer |
10.3390/children10050761 doi (DE-627)DOAJ094401748 (DE-599)DOAJ5676640497a54e259a49b014a4991dd7 DE-627 ger DE-627 rakwb eng RJ1-570 Dejan Dobrijević verfasserin aut Clinical Hematochemical Parameters in Differential Diagnosis between Pediatric SARS-CoV-2 and Influenza Virus Infection: An Automated Machine Learning Approach 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: The influenza virus and the novel beta coronavirus (SARS-CoV-2) have similar transmission characteristics, and it is very difficult to distinguish them clinically. With the development of information technologies, novel opportunities have arisen for the application of intelligent software systems in disease diagnosis and patient triage. Methods: A cross-sectional study was conducted on 268 infants: 133 infants with a SARS-CoV-2 infection and 135 infants with an influenza virus infection. In total, 10 hematochemical variables were used to construct an automated machine learning model. Results: An accuracy range from 53.8% to 60.7% was obtained by applying support vector machine, random forest, k-nearest neighbors, logistic regression, and neural network models. Alternatively, an automated model convincingly outperformed other models with an accuracy of 98.4%. The proposed automated algorithm recommended a random tree model, a randomization-based ensemble method, as the most appropriate for the given dataset. Conclusions: The application of automated machine learning in clinical practice can contribute to more objective, accurate, and rapid diagnosis of SARS-CoV-2 and influenza virus infections in children. COVID-19 SARS-CoV-2 influenza diagnosis laboratory parameters machine learning Pediatrics Jelena Antić verfasserin aut Goran Rakić verfasserin aut Jasmina Katanić verfasserin aut Ljiljana Andrijević verfasserin aut Kristian Pastor verfasserin aut In Children MDPI AG, 2014 10(2023), 5, p 761 (DE-627)768093007 (DE-600)2732685-8 22279067 nnns volume:10 year:2023 number:5, p 761 https://doi.org/10.3390/children10050761 kostenfrei https://doaj.org/article/5676640497a54e259a49b014a4991dd7 kostenfrei https://www.mdpi.com/2227-9067/10/5/761 kostenfrei https://doaj.org/toc/2227-9067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 5, p 761 |
allfieldsSound |
10.3390/children10050761 doi (DE-627)DOAJ094401748 (DE-599)DOAJ5676640497a54e259a49b014a4991dd7 DE-627 ger DE-627 rakwb eng RJ1-570 Dejan Dobrijević verfasserin aut Clinical Hematochemical Parameters in Differential Diagnosis between Pediatric SARS-CoV-2 and Influenza Virus Infection: An Automated Machine Learning Approach 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: The influenza virus and the novel beta coronavirus (SARS-CoV-2) have similar transmission characteristics, and it is very difficult to distinguish them clinically. With the development of information technologies, novel opportunities have arisen for the application of intelligent software systems in disease diagnosis and patient triage. Methods: A cross-sectional study was conducted on 268 infants: 133 infants with a SARS-CoV-2 infection and 135 infants with an influenza virus infection. In total, 10 hematochemical variables were used to construct an automated machine learning model. Results: An accuracy range from 53.8% to 60.7% was obtained by applying support vector machine, random forest, k-nearest neighbors, logistic regression, and neural network models. Alternatively, an automated model convincingly outperformed other models with an accuracy of 98.4%. The proposed automated algorithm recommended a random tree model, a randomization-based ensemble method, as the most appropriate for the given dataset. Conclusions: The application of automated machine learning in clinical practice can contribute to more objective, accurate, and rapid diagnosis of SARS-CoV-2 and influenza virus infections in children. COVID-19 SARS-CoV-2 influenza diagnosis laboratory parameters machine learning Pediatrics Jelena Antić verfasserin aut Goran Rakić verfasserin aut Jasmina Katanić verfasserin aut Ljiljana Andrijević verfasserin aut Kristian Pastor verfasserin aut In Children MDPI AG, 2014 10(2023), 5, p 761 (DE-627)768093007 (DE-600)2732685-8 22279067 nnns volume:10 year:2023 number:5, p 761 https://doi.org/10.3390/children10050761 kostenfrei https://doaj.org/article/5676640497a54e259a49b014a4991dd7 kostenfrei https://www.mdpi.com/2227-9067/10/5/761 kostenfrei https://doaj.org/toc/2227-9067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 5, p 761 |
language |
English |
source |
In Children 10(2023), 5, p 761 volume:10 year:2023 number:5, p 761 |
sourceStr |
In Children 10(2023), 5, p 761 volume:10 year:2023 number:5, p 761 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
COVID-19 SARS-CoV-2 influenza diagnosis laboratory parameters machine learning Pediatrics |
isfreeaccess_bool |
true |
container_title |
Children |
authorswithroles_txt_mv |
Dejan Dobrijević @@aut@@ Jelena Antić @@aut@@ Goran Rakić @@aut@@ Jasmina Katanić @@aut@@ Ljiljana Andrijević @@aut@@ Kristian Pastor @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
768093007 |
id |
DOAJ094401748 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094401748</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413034413.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/children10050761</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094401748</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5676640497a54e259a49b014a4991dd7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RJ1-570</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dejan Dobrijević</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Clinical Hematochemical Parameters in Differential Diagnosis between Pediatric SARS-CoV-2 and Influenza Virus Infection: An Automated Machine Learning Approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: The influenza virus and the novel beta coronavirus (SARS-CoV-2) have similar transmission characteristics, and it is very difficult to distinguish them clinically. With the development of information technologies, novel opportunities have arisen for the application of intelligent software systems in disease diagnosis and patient triage. Methods: A cross-sectional study was conducted on 268 infants: 133 infants with a SARS-CoV-2 infection and 135 infants with an influenza virus infection. In total, 10 hematochemical variables were used to construct an automated machine learning model. Results: An accuracy range from 53.8% to 60.7% was obtained by applying support vector machine, random forest, k-nearest neighbors, logistic regression, and neural network models. Alternatively, an automated model convincingly outperformed other models with an accuracy of 98.4%. The proposed automated algorithm recommended a random tree model, a randomization-based ensemble method, as the most appropriate for the given dataset. Conclusions: The application of automated machine learning in clinical practice can contribute to more objective, accurate, and rapid diagnosis of SARS-CoV-2 and influenza virus infections in children.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COVID-19</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SARS-CoV-2</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">influenza</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">diagnosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">laboratory parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Pediatrics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jelena Antić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Goran Rakić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jasmina Katanić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ljiljana Andrijević</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kristian Pastor</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Children</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">10(2023), 5, p 761</subfield><subfield code="w">(DE-627)768093007</subfield><subfield code="w">(DE-600)2732685-8</subfield><subfield code="x">22279067</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:5, p 761</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/children10050761</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5676640497a54e259a49b014a4991dd7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9067/10/5/761</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9067</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2023</subfield><subfield code="e">5, p 761</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Dejan Dobrijević |
spellingShingle |
Dejan Dobrijević misc RJ1-570 misc COVID-19 misc SARS-CoV-2 misc influenza misc diagnosis misc laboratory parameters misc machine learning misc Pediatrics Clinical Hematochemical Parameters in Differential Diagnosis between Pediatric SARS-CoV-2 and Influenza Virus Infection: An Automated Machine Learning Approach |
authorStr |
Dejan Dobrijević |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)768093007 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RJ1-570 |
illustrated |
Not Illustrated |
issn |
22279067 |
topic_title |
RJ1-570 Clinical Hematochemical Parameters in Differential Diagnosis between Pediatric SARS-CoV-2 and Influenza Virus Infection: An Automated Machine Learning Approach COVID-19 SARS-CoV-2 influenza diagnosis laboratory parameters machine learning |
topic |
misc RJ1-570 misc COVID-19 misc SARS-CoV-2 misc influenza misc diagnosis misc laboratory parameters misc machine learning misc Pediatrics |
topic_unstemmed |
misc RJ1-570 misc COVID-19 misc SARS-CoV-2 misc influenza misc diagnosis misc laboratory parameters misc machine learning misc Pediatrics |
topic_browse |
misc RJ1-570 misc COVID-19 misc SARS-CoV-2 misc influenza misc diagnosis misc laboratory parameters misc machine learning misc Pediatrics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Children |
hierarchy_parent_id |
768093007 |
hierarchy_top_title |
Children |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)768093007 (DE-600)2732685-8 |
title |
Clinical Hematochemical Parameters in Differential Diagnosis between Pediatric SARS-CoV-2 and Influenza Virus Infection: An Automated Machine Learning Approach |
ctrlnum |
(DE-627)DOAJ094401748 (DE-599)DOAJ5676640497a54e259a49b014a4991dd7 |
title_full |
Clinical Hematochemical Parameters in Differential Diagnosis between Pediatric SARS-CoV-2 and Influenza Virus Infection: An Automated Machine Learning Approach |
author_sort |
Dejan Dobrijević |
journal |
Children |
journalStr |
Children |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Dejan Dobrijević Jelena Antić Goran Rakić Jasmina Katanić Ljiljana Andrijević Kristian Pastor |
container_volume |
10 |
class |
RJ1-570 |
format_se |
Elektronische Aufsätze |
author-letter |
Dejan Dobrijević |
doi_str_mv |
10.3390/children10050761 |
author2-role |
verfasserin |
title_sort |
clinical hematochemical parameters in differential diagnosis between pediatric sars-cov-2 and influenza virus infection: an automated machine learning approach |
callnumber |
RJ1-570 |
title_auth |
Clinical Hematochemical Parameters in Differential Diagnosis between Pediatric SARS-CoV-2 and Influenza Virus Infection: An Automated Machine Learning Approach |
abstract |
Background: The influenza virus and the novel beta coronavirus (SARS-CoV-2) have similar transmission characteristics, and it is very difficult to distinguish them clinically. With the development of information technologies, novel opportunities have arisen for the application of intelligent software systems in disease diagnosis and patient triage. Methods: A cross-sectional study was conducted on 268 infants: 133 infants with a SARS-CoV-2 infection and 135 infants with an influenza virus infection. In total, 10 hematochemical variables were used to construct an automated machine learning model. Results: An accuracy range from 53.8% to 60.7% was obtained by applying support vector machine, random forest, k-nearest neighbors, logistic regression, and neural network models. Alternatively, an automated model convincingly outperformed other models with an accuracy of 98.4%. The proposed automated algorithm recommended a random tree model, a randomization-based ensemble method, as the most appropriate for the given dataset. Conclusions: The application of automated machine learning in clinical practice can contribute to more objective, accurate, and rapid diagnosis of SARS-CoV-2 and influenza virus infections in children. |
abstractGer |
Background: The influenza virus and the novel beta coronavirus (SARS-CoV-2) have similar transmission characteristics, and it is very difficult to distinguish them clinically. With the development of information technologies, novel opportunities have arisen for the application of intelligent software systems in disease diagnosis and patient triage. Methods: A cross-sectional study was conducted on 268 infants: 133 infants with a SARS-CoV-2 infection and 135 infants with an influenza virus infection. In total, 10 hematochemical variables were used to construct an automated machine learning model. Results: An accuracy range from 53.8% to 60.7% was obtained by applying support vector machine, random forest, k-nearest neighbors, logistic regression, and neural network models. Alternatively, an automated model convincingly outperformed other models with an accuracy of 98.4%. The proposed automated algorithm recommended a random tree model, a randomization-based ensemble method, as the most appropriate for the given dataset. Conclusions: The application of automated machine learning in clinical practice can contribute to more objective, accurate, and rapid diagnosis of SARS-CoV-2 and influenza virus infections in children. |
abstract_unstemmed |
Background: The influenza virus and the novel beta coronavirus (SARS-CoV-2) have similar transmission characteristics, and it is very difficult to distinguish them clinically. With the development of information technologies, novel opportunities have arisen for the application of intelligent software systems in disease diagnosis and patient triage. Methods: A cross-sectional study was conducted on 268 infants: 133 infants with a SARS-CoV-2 infection and 135 infants with an influenza virus infection. In total, 10 hematochemical variables were used to construct an automated machine learning model. Results: An accuracy range from 53.8% to 60.7% was obtained by applying support vector machine, random forest, k-nearest neighbors, logistic regression, and neural network models. Alternatively, an automated model convincingly outperformed other models with an accuracy of 98.4%. The proposed automated algorithm recommended a random tree model, a randomization-based ensemble method, as the most appropriate for the given dataset. Conclusions: The application of automated machine learning in clinical practice can contribute to more objective, accurate, and rapid diagnosis of SARS-CoV-2 and influenza virus infections in children. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5, p 761 |
title_short |
Clinical Hematochemical Parameters in Differential Diagnosis between Pediatric SARS-CoV-2 and Influenza Virus Infection: An Automated Machine Learning Approach |
url |
https://doi.org/10.3390/children10050761 https://doaj.org/article/5676640497a54e259a49b014a4991dd7 https://www.mdpi.com/2227-9067/10/5/761 https://doaj.org/toc/2227-9067 |
remote_bool |
true |
author2 |
Jelena Antić Goran Rakić Jasmina Katanić Ljiljana Andrijević Kristian Pastor |
author2Str |
Jelena Antić Goran Rakić Jasmina Katanić Ljiljana Andrijević Kristian Pastor |
ppnlink |
768093007 |
callnumber-subject |
RJ - Pediatrics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/children10050761 |
callnumber-a |
RJ1-570 |
up_date |
2024-07-03T22:57:35.387Z |
_version_ |
1803600480584073216 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094401748</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413034413.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/children10050761</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094401748</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5676640497a54e259a49b014a4991dd7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RJ1-570</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dejan Dobrijević</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Clinical Hematochemical Parameters in Differential Diagnosis between Pediatric SARS-CoV-2 and Influenza Virus Infection: An Automated Machine Learning Approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: The influenza virus and the novel beta coronavirus (SARS-CoV-2) have similar transmission characteristics, and it is very difficult to distinguish them clinically. With the development of information technologies, novel opportunities have arisen for the application of intelligent software systems in disease diagnosis and patient triage. Methods: A cross-sectional study was conducted on 268 infants: 133 infants with a SARS-CoV-2 infection and 135 infants with an influenza virus infection. In total, 10 hematochemical variables were used to construct an automated machine learning model. Results: An accuracy range from 53.8% to 60.7% was obtained by applying support vector machine, random forest, k-nearest neighbors, logistic regression, and neural network models. Alternatively, an automated model convincingly outperformed other models with an accuracy of 98.4%. The proposed automated algorithm recommended a random tree model, a randomization-based ensemble method, as the most appropriate for the given dataset. Conclusions: The application of automated machine learning in clinical practice can contribute to more objective, accurate, and rapid diagnosis of SARS-CoV-2 and influenza virus infections in children.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COVID-19</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SARS-CoV-2</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">influenza</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">diagnosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">laboratory parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Pediatrics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jelena Antić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Goran Rakić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jasmina Katanić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ljiljana Andrijević</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kristian Pastor</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Children</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">10(2023), 5, p 761</subfield><subfield code="w">(DE-627)768093007</subfield><subfield code="w">(DE-600)2732685-8</subfield><subfield code="x">22279067</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:5, p 761</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/children10050761</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5676640497a54e259a49b014a4991dd7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9067/10/5/761</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9067</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2023</subfield><subfield code="e">5, p 761</subfield></datafield></record></collection>
|
score |
7.400132 |