Spinel LiMn<sub<2</sub<O<sub<4</sub< as Electrocatalyst toward Solid-State Zinc–Air Batteries
Efficient oxygen reduction reaction (ORR) electrocatalysts are the key to advancement of solid-state alkaline zinc–air batteries (ZAB). We demonstrate an electrocatalyst, spinel lithium-manganese oxide LiMn<sub<2</sub<O<sub<4</sub< (LMO) by a simple hydrothermal method. Scann...
Ausführliche Beschreibung
Autor*in: |
Guoqing Zhang [verfasserIn] Peng Zhang [verfasserIn] Shuying Kong [verfasserIn] Binbin Jin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Catalysts - MDPI AG, 2012, 13(2023), 5, p 860 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:5, p 860 |
Links: |
---|
DOI / URN: |
10.3390/catal13050860 |
---|
Katalog-ID: |
DOAJ094403856 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ094403856 | ||
003 | DE-627 | ||
005 | 20240413034433.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/catal13050860 |2 doi | |
035 | |a (DE-627)DOAJ094403856 | ||
035 | |a (DE-599)DOAJ25de57e510c344b7bcd6bc4944181131 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Guoqing Zhang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Spinel LiMn<sub<2</sub<O<sub<4</sub< as Electrocatalyst toward Solid-State Zinc–Air Batteries |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Efficient oxygen reduction reaction (ORR) electrocatalysts are the key to advancement of solid-state alkaline zinc–air batteries (ZAB). We demonstrate an electrocatalyst, spinel lithium-manganese oxide LiMn<sub<2</sub<O<sub<4</sub< (LMO) by a simple hydrothermal method. Scanning electron microscope (SEM), X-ray diffraction (XRD), and Raman spectra indicate that the as-synthesized LiMn<sub<2</sub<O<sub<4</sub< presents nanoscale irregular-shaped particles with the well-known spinel structure. The polarization curve, chronoamperometery curve, and linear scanning voltammograms of rotating disk electrode (RDE) results reveal that the as-synthesized LiMn<sub<2</sub<O<sub<4</sub< possesses a higher electrocatalytic activity than that of electrolytic manganese dioxide for the ORR. A solid-state zinc–air cell with LiMn<sub<2</sub<O<sub<4</sub< as the air electrode catalyst has a long voltage plateau of discharge and a discharge capacity of 188.4 mAh at a constant discharge current density of 10 mA·cm<sup<−2</sup<. In summary, spinel LiMn<sub<2</sub<O<sub<4</sub< in which the JT effect enables electron hoping between Mn<sup<3+</sup< and Mn<sup<4+</sup< can be regarded as an effective robust oxygen reduction catalyst. | ||
650 | 4 | |a electrocatalyst | |
650 | 4 | |a oxygen reduction reaction | |
650 | 4 | |a air electrode | |
650 | 4 | |a electrocatalytic activity | |
650 | 4 | |a solid-state zinc–air cell | |
653 | 0 | |a Chemical technology | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Peng Zhang |e verfasserin |4 aut | |
700 | 0 | |a Shuying Kong |e verfasserin |4 aut | |
700 | 0 | |a Binbin Jin |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Catalysts |d MDPI AG, 2012 |g 13(2023), 5, p 860 |w (DE-627)71862646X |w (DE-600)2662126-5 |x 20734344 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:5, p 860 |
856 | 4 | 0 | |u https://doi.org/10.3390/catal13050860 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/25de57e510c344b7bcd6bc4944181131 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4344/13/5/860 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4344 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 5, p 860 |
author_variant |
g z gz p z pz s k sk b j bj |
---|---|
matchkey_str |
article:20734344:2023----::pnlinu2uou4uaeetoaaytoadois |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TP |
publishDate |
2023 |
allfields |
10.3390/catal13050860 doi (DE-627)DOAJ094403856 (DE-599)DOAJ25de57e510c344b7bcd6bc4944181131 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Guoqing Zhang verfasserin aut Spinel LiMn<sub<2</sub<O<sub<4</sub< as Electrocatalyst toward Solid-State Zinc–Air Batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Efficient oxygen reduction reaction (ORR) electrocatalysts are the key to advancement of solid-state alkaline zinc–air batteries (ZAB). We demonstrate an electrocatalyst, spinel lithium-manganese oxide LiMn<sub<2</sub<O<sub<4</sub< (LMO) by a simple hydrothermal method. Scanning electron microscope (SEM), X-ray diffraction (XRD), and Raman spectra indicate that the as-synthesized LiMn<sub<2</sub<O<sub<4</sub< presents nanoscale irregular-shaped particles with the well-known spinel structure. The polarization curve, chronoamperometery curve, and linear scanning voltammograms of rotating disk electrode (RDE) results reveal that the as-synthesized LiMn<sub<2</sub<O<sub<4</sub< possesses a higher electrocatalytic activity than that of electrolytic manganese dioxide for the ORR. A solid-state zinc–air cell with LiMn<sub<2</sub<O<sub<4</sub< as the air electrode catalyst has a long voltage plateau of discharge and a discharge capacity of 188.4 mAh at a constant discharge current density of 10 mA·cm<sup<−2</sup<. In summary, spinel LiMn<sub<2</sub<O<sub<4</sub< in which the JT effect enables electron hoping between Mn<sup<3+</sup< and Mn<sup<4+</sup< can be regarded as an effective robust oxygen reduction catalyst. electrocatalyst oxygen reduction reaction air electrode electrocatalytic activity solid-state zinc–air cell Chemical technology Chemistry Peng Zhang verfasserin aut Shuying Kong verfasserin aut Binbin Jin verfasserin aut In Catalysts MDPI AG, 2012 13(2023), 5, p 860 (DE-627)71862646X (DE-600)2662126-5 20734344 nnns volume:13 year:2023 number:5, p 860 https://doi.org/10.3390/catal13050860 kostenfrei https://doaj.org/article/25de57e510c344b7bcd6bc4944181131 kostenfrei https://www.mdpi.com/2073-4344/13/5/860 kostenfrei https://doaj.org/toc/2073-4344 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 5, p 860 |
spelling |
10.3390/catal13050860 doi (DE-627)DOAJ094403856 (DE-599)DOAJ25de57e510c344b7bcd6bc4944181131 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Guoqing Zhang verfasserin aut Spinel LiMn<sub<2</sub<O<sub<4</sub< as Electrocatalyst toward Solid-State Zinc–Air Batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Efficient oxygen reduction reaction (ORR) electrocatalysts are the key to advancement of solid-state alkaline zinc–air batteries (ZAB). We demonstrate an electrocatalyst, spinel lithium-manganese oxide LiMn<sub<2</sub<O<sub<4</sub< (LMO) by a simple hydrothermal method. Scanning electron microscope (SEM), X-ray diffraction (XRD), and Raman spectra indicate that the as-synthesized LiMn<sub<2</sub<O<sub<4</sub< presents nanoscale irregular-shaped particles with the well-known spinel structure. The polarization curve, chronoamperometery curve, and linear scanning voltammograms of rotating disk electrode (RDE) results reveal that the as-synthesized LiMn<sub<2</sub<O<sub<4</sub< possesses a higher electrocatalytic activity than that of electrolytic manganese dioxide for the ORR. A solid-state zinc–air cell with LiMn<sub<2</sub<O<sub<4</sub< as the air electrode catalyst has a long voltage plateau of discharge and a discharge capacity of 188.4 mAh at a constant discharge current density of 10 mA·cm<sup<−2</sup<. In summary, spinel LiMn<sub<2</sub<O<sub<4</sub< in which the JT effect enables electron hoping between Mn<sup<3+</sup< and Mn<sup<4+</sup< can be regarded as an effective robust oxygen reduction catalyst. electrocatalyst oxygen reduction reaction air electrode electrocatalytic activity solid-state zinc–air cell Chemical technology Chemistry Peng Zhang verfasserin aut Shuying Kong verfasserin aut Binbin Jin verfasserin aut In Catalysts MDPI AG, 2012 13(2023), 5, p 860 (DE-627)71862646X (DE-600)2662126-5 20734344 nnns volume:13 year:2023 number:5, p 860 https://doi.org/10.3390/catal13050860 kostenfrei https://doaj.org/article/25de57e510c344b7bcd6bc4944181131 kostenfrei https://www.mdpi.com/2073-4344/13/5/860 kostenfrei https://doaj.org/toc/2073-4344 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 5, p 860 |
allfields_unstemmed |
10.3390/catal13050860 doi (DE-627)DOAJ094403856 (DE-599)DOAJ25de57e510c344b7bcd6bc4944181131 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Guoqing Zhang verfasserin aut Spinel LiMn<sub<2</sub<O<sub<4</sub< as Electrocatalyst toward Solid-State Zinc–Air Batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Efficient oxygen reduction reaction (ORR) electrocatalysts are the key to advancement of solid-state alkaline zinc–air batteries (ZAB). We demonstrate an electrocatalyst, spinel lithium-manganese oxide LiMn<sub<2</sub<O<sub<4</sub< (LMO) by a simple hydrothermal method. Scanning electron microscope (SEM), X-ray diffraction (XRD), and Raman spectra indicate that the as-synthesized LiMn<sub<2</sub<O<sub<4</sub< presents nanoscale irregular-shaped particles with the well-known spinel structure. The polarization curve, chronoamperometery curve, and linear scanning voltammograms of rotating disk electrode (RDE) results reveal that the as-synthesized LiMn<sub<2</sub<O<sub<4</sub< possesses a higher electrocatalytic activity than that of electrolytic manganese dioxide for the ORR. A solid-state zinc–air cell with LiMn<sub<2</sub<O<sub<4</sub< as the air electrode catalyst has a long voltage plateau of discharge and a discharge capacity of 188.4 mAh at a constant discharge current density of 10 mA·cm<sup<−2</sup<. In summary, spinel LiMn<sub<2</sub<O<sub<4</sub< in which the JT effect enables electron hoping between Mn<sup<3+</sup< and Mn<sup<4+</sup< can be regarded as an effective robust oxygen reduction catalyst. electrocatalyst oxygen reduction reaction air electrode electrocatalytic activity solid-state zinc–air cell Chemical technology Chemistry Peng Zhang verfasserin aut Shuying Kong verfasserin aut Binbin Jin verfasserin aut In Catalysts MDPI AG, 2012 13(2023), 5, p 860 (DE-627)71862646X (DE-600)2662126-5 20734344 nnns volume:13 year:2023 number:5, p 860 https://doi.org/10.3390/catal13050860 kostenfrei https://doaj.org/article/25de57e510c344b7bcd6bc4944181131 kostenfrei https://www.mdpi.com/2073-4344/13/5/860 kostenfrei https://doaj.org/toc/2073-4344 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 5, p 860 |
allfieldsGer |
10.3390/catal13050860 doi (DE-627)DOAJ094403856 (DE-599)DOAJ25de57e510c344b7bcd6bc4944181131 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Guoqing Zhang verfasserin aut Spinel LiMn<sub<2</sub<O<sub<4</sub< as Electrocatalyst toward Solid-State Zinc–Air Batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Efficient oxygen reduction reaction (ORR) electrocatalysts are the key to advancement of solid-state alkaline zinc–air batteries (ZAB). We demonstrate an electrocatalyst, spinel lithium-manganese oxide LiMn<sub<2</sub<O<sub<4</sub< (LMO) by a simple hydrothermal method. Scanning electron microscope (SEM), X-ray diffraction (XRD), and Raman spectra indicate that the as-synthesized LiMn<sub<2</sub<O<sub<4</sub< presents nanoscale irregular-shaped particles with the well-known spinel structure. The polarization curve, chronoamperometery curve, and linear scanning voltammograms of rotating disk electrode (RDE) results reveal that the as-synthesized LiMn<sub<2</sub<O<sub<4</sub< possesses a higher electrocatalytic activity than that of electrolytic manganese dioxide for the ORR. A solid-state zinc–air cell with LiMn<sub<2</sub<O<sub<4</sub< as the air electrode catalyst has a long voltage plateau of discharge and a discharge capacity of 188.4 mAh at a constant discharge current density of 10 mA·cm<sup<−2</sup<. In summary, spinel LiMn<sub<2</sub<O<sub<4</sub< in which the JT effect enables electron hoping between Mn<sup<3+</sup< and Mn<sup<4+</sup< can be regarded as an effective robust oxygen reduction catalyst. electrocatalyst oxygen reduction reaction air electrode electrocatalytic activity solid-state zinc–air cell Chemical technology Chemistry Peng Zhang verfasserin aut Shuying Kong verfasserin aut Binbin Jin verfasserin aut In Catalysts MDPI AG, 2012 13(2023), 5, p 860 (DE-627)71862646X (DE-600)2662126-5 20734344 nnns volume:13 year:2023 number:5, p 860 https://doi.org/10.3390/catal13050860 kostenfrei https://doaj.org/article/25de57e510c344b7bcd6bc4944181131 kostenfrei https://www.mdpi.com/2073-4344/13/5/860 kostenfrei https://doaj.org/toc/2073-4344 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 5, p 860 |
allfieldsSound |
10.3390/catal13050860 doi (DE-627)DOAJ094403856 (DE-599)DOAJ25de57e510c344b7bcd6bc4944181131 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Guoqing Zhang verfasserin aut Spinel LiMn<sub<2</sub<O<sub<4</sub< as Electrocatalyst toward Solid-State Zinc–Air Batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Efficient oxygen reduction reaction (ORR) electrocatalysts are the key to advancement of solid-state alkaline zinc–air batteries (ZAB). We demonstrate an electrocatalyst, spinel lithium-manganese oxide LiMn<sub<2</sub<O<sub<4</sub< (LMO) by a simple hydrothermal method. Scanning electron microscope (SEM), X-ray diffraction (XRD), and Raman spectra indicate that the as-synthesized LiMn<sub<2</sub<O<sub<4</sub< presents nanoscale irregular-shaped particles with the well-known spinel structure. The polarization curve, chronoamperometery curve, and linear scanning voltammograms of rotating disk electrode (RDE) results reveal that the as-synthesized LiMn<sub<2</sub<O<sub<4</sub< possesses a higher electrocatalytic activity than that of electrolytic manganese dioxide for the ORR. A solid-state zinc–air cell with LiMn<sub<2</sub<O<sub<4</sub< as the air electrode catalyst has a long voltage plateau of discharge and a discharge capacity of 188.4 mAh at a constant discharge current density of 10 mA·cm<sup<−2</sup<. In summary, spinel LiMn<sub<2</sub<O<sub<4</sub< in which the JT effect enables electron hoping between Mn<sup<3+</sup< and Mn<sup<4+</sup< can be regarded as an effective robust oxygen reduction catalyst. electrocatalyst oxygen reduction reaction air electrode electrocatalytic activity solid-state zinc–air cell Chemical technology Chemistry Peng Zhang verfasserin aut Shuying Kong verfasserin aut Binbin Jin verfasserin aut In Catalysts MDPI AG, 2012 13(2023), 5, p 860 (DE-627)71862646X (DE-600)2662126-5 20734344 nnns volume:13 year:2023 number:5, p 860 https://doi.org/10.3390/catal13050860 kostenfrei https://doaj.org/article/25de57e510c344b7bcd6bc4944181131 kostenfrei https://www.mdpi.com/2073-4344/13/5/860 kostenfrei https://doaj.org/toc/2073-4344 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 5, p 860 |
language |
English |
source |
In Catalysts 13(2023), 5, p 860 volume:13 year:2023 number:5, p 860 |
sourceStr |
In Catalysts 13(2023), 5, p 860 volume:13 year:2023 number:5, p 860 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
electrocatalyst oxygen reduction reaction air electrode electrocatalytic activity solid-state zinc–air cell Chemical technology Chemistry |
isfreeaccess_bool |
true |
container_title |
Catalysts |
authorswithroles_txt_mv |
Guoqing Zhang @@aut@@ Peng Zhang @@aut@@ Shuying Kong @@aut@@ Binbin Jin @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
71862646X |
id |
DOAJ094403856 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094403856</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413034433.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/catal13050860</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094403856</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ25de57e510c344b7bcd6bc4944181131</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Guoqing Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spinel LiMn<sub<2</sub<O<sub<4</sub< as Electrocatalyst toward Solid-State Zinc–Air Batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Efficient oxygen reduction reaction (ORR) electrocatalysts are the key to advancement of solid-state alkaline zinc–air batteries (ZAB). We demonstrate an electrocatalyst, spinel lithium-manganese oxide LiMn<sub<2</sub<O<sub<4</sub< (LMO) by a simple hydrothermal method. Scanning electron microscope (SEM), X-ray diffraction (XRD), and Raman spectra indicate that the as-synthesized LiMn<sub<2</sub<O<sub<4</sub< presents nanoscale irregular-shaped particles with the well-known spinel structure. The polarization curve, chronoamperometery curve, and linear scanning voltammograms of rotating disk electrode (RDE) results reveal that the as-synthesized LiMn<sub<2</sub<O<sub<4</sub< possesses a higher electrocatalytic activity than that of electrolytic manganese dioxide for the ORR. A solid-state zinc–air cell with LiMn<sub<2</sub<O<sub<4</sub< as the air electrode catalyst has a long voltage plateau of discharge and a discharge capacity of 188.4 mAh at a constant discharge current density of 10 mA·cm<sup<−2</sup<. In summary, spinel LiMn<sub<2</sub<O<sub<4</sub< in which the JT effect enables electron hoping between Mn<sup<3+</sup< and Mn<sup<4+</sup< can be regarded as an effective robust oxygen reduction catalyst.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrocatalyst</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oxygen reduction reaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">air electrode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrocatalytic activity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">solid-state zinc–air cell</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peng Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuying Kong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Binbin Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Catalysts</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 5, p 860</subfield><subfield code="w">(DE-627)71862646X</subfield><subfield code="w">(DE-600)2662126-5</subfield><subfield code="x">20734344</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:5, p 860</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/catal13050860</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/25de57e510c344b7bcd6bc4944181131</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4344/13/5/860</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4344</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">5, p 860</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Guoqing Zhang |
spellingShingle |
Guoqing Zhang misc TP1-1185 misc QD1-999 misc electrocatalyst misc oxygen reduction reaction misc air electrode misc electrocatalytic activity misc solid-state zinc–air cell misc Chemical technology misc Chemistry Spinel LiMn<sub<2</sub<O<sub<4</sub< as Electrocatalyst toward Solid-State Zinc–Air Batteries |
authorStr |
Guoqing Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)71862646X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
20734344 |
topic_title |
TP1-1185 QD1-999 Spinel LiMn<sub<2</sub<O<sub<4</sub< as Electrocatalyst toward Solid-State Zinc–Air Batteries electrocatalyst oxygen reduction reaction air electrode electrocatalytic activity solid-state zinc–air cell |
topic |
misc TP1-1185 misc QD1-999 misc electrocatalyst misc oxygen reduction reaction misc air electrode misc electrocatalytic activity misc solid-state zinc–air cell misc Chemical technology misc Chemistry |
topic_unstemmed |
misc TP1-1185 misc QD1-999 misc electrocatalyst misc oxygen reduction reaction misc air electrode misc electrocatalytic activity misc solid-state zinc–air cell misc Chemical technology misc Chemistry |
topic_browse |
misc TP1-1185 misc QD1-999 misc electrocatalyst misc oxygen reduction reaction misc air electrode misc electrocatalytic activity misc solid-state zinc–air cell misc Chemical technology misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Catalysts |
hierarchy_parent_id |
71862646X |
hierarchy_top_title |
Catalysts |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)71862646X (DE-600)2662126-5 |
title |
Spinel LiMn<sub<2</sub<O<sub<4</sub< as Electrocatalyst toward Solid-State Zinc–Air Batteries |
ctrlnum |
(DE-627)DOAJ094403856 (DE-599)DOAJ25de57e510c344b7bcd6bc4944181131 |
title_full |
Spinel LiMn<sub<2</sub<O<sub<4</sub< as Electrocatalyst toward Solid-State Zinc–Air Batteries |
author_sort |
Guoqing Zhang |
journal |
Catalysts |
journalStr |
Catalysts |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Guoqing Zhang Peng Zhang Shuying Kong Binbin Jin |
container_volume |
13 |
class |
TP1-1185 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Guoqing Zhang |
doi_str_mv |
10.3390/catal13050860 |
author2-role |
verfasserin |
title_sort |
spinel limn<sub<2</sub<o<sub<4</sub< as electrocatalyst toward solid-state zinc–air batteries |
callnumber |
TP1-1185 |
title_auth |
Spinel LiMn<sub<2</sub<O<sub<4</sub< as Electrocatalyst toward Solid-State Zinc–Air Batteries |
abstract |
Efficient oxygen reduction reaction (ORR) electrocatalysts are the key to advancement of solid-state alkaline zinc–air batteries (ZAB). We demonstrate an electrocatalyst, spinel lithium-manganese oxide LiMn<sub<2</sub<O<sub<4</sub< (LMO) by a simple hydrothermal method. Scanning electron microscope (SEM), X-ray diffraction (XRD), and Raman spectra indicate that the as-synthesized LiMn<sub<2</sub<O<sub<4</sub< presents nanoscale irregular-shaped particles with the well-known spinel structure. The polarization curve, chronoamperometery curve, and linear scanning voltammograms of rotating disk electrode (RDE) results reveal that the as-synthesized LiMn<sub<2</sub<O<sub<4</sub< possesses a higher electrocatalytic activity than that of electrolytic manganese dioxide for the ORR. A solid-state zinc–air cell with LiMn<sub<2</sub<O<sub<4</sub< as the air electrode catalyst has a long voltage plateau of discharge and a discharge capacity of 188.4 mAh at a constant discharge current density of 10 mA·cm<sup<−2</sup<. In summary, spinel LiMn<sub<2</sub<O<sub<4</sub< in which the JT effect enables electron hoping between Mn<sup<3+</sup< and Mn<sup<4+</sup< can be regarded as an effective robust oxygen reduction catalyst. |
abstractGer |
Efficient oxygen reduction reaction (ORR) electrocatalysts are the key to advancement of solid-state alkaline zinc–air batteries (ZAB). We demonstrate an electrocatalyst, spinel lithium-manganese oxide LiMn<sub<2</sub<O<sub<4</sub< (LMO) by a simple hydrothermal method. Scanning electron microscope (SEM), X-ray diffraction (XRD), and Raman spectra indicate that the as-synthesized LiMn<sub<2</sub<O<sub<4</sub< presents nanoscale irregular-shaped particles with the well-known spinel structure. The polarization curve, chronoamperometery curve, and linear scanning voltammograms of rotating disk electrode (RDE) results reveal that the as-synthesized LiMn<sub<2</sub<O<sub<4</sub< possesses a higher electrocatalytic activity than that of electrolytic manganese dioxide for the ORR. A solid-state zinc–air cell with LiMn<sub<2</sub<O<sub<4</sub< as the air electrode catalyst has a long voltage plateau of discharge and a discharge capacity of 188.4 mAh at a constant discharge current density of 10 mA·cm<sup<−2</sup<. In summary, spinel LiMn<sub<2</sub<O<sub<4</sub< in which the JT effect enables electron hoping between Mn<sup<3+</sup< and Mn<sup<4+</sup< can be regarded as an effective robust oxygen reduction catalyst. |
abstract_unstemmed |
Efficient oxygen reduction reaction (ORR) electrocatalysts are the key to advancement of solid-state alkaline zinc–air batteries (ZAB). We demonstrate an electrocatalyst, spinel lithium-manganese oxide LiMn<sub<2</sub<O<sub<4</sub< (LMO) by a simple hydrothermal method. Scanning electron microscope (SEM), X-ray diffraction (XRD), and Raman spectra indicate that the as-synthesized LiMn<sub<2</sub<O<sub<4</sub< presents nanoscale irregular-shaped particles with the well-known spinel structure. The polarization curve, chronoamperometery curve, and linear scanning voltammograms of rotating disk electrode (RDE) results reveal that the as-synthesized LiMn<sub<2</sub<O<sub<4</sub< possesses a higher electrocatalytic activity than that of electrolytic manganese dioxide for the ORR. A solid-state zinc–air cell with LiMn<sub<2</sub<O<sub<4</sub< as the air electrode catalyst has a long voltage plateau of discharge and a discharge capacity of 188.4 mAh at a constant discharge current density of 10 mA·cm<sup<−2</sup<. In summary, spinel LiMn<sub<2</sub<O<sub<4</sub< in which the JT effect enables electron hoping between Mn<sup<3+</sup< and Mn<sup<4+</sup< can be regarded as an effective robust oxygen reduction catalyst. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5, p 860 |
title_short |
Spinel LiMn<sub<2</sub<O<sub<4</sub< as Electrocatalyst toward Solid-State Zinc–Air Batteries |
url |
https://doi.org/10.3390/catal13050860 https://doaj.org/article/25de57e510c344b7bcd6bc4944181131 https://www.mdpi.com/2073-4344/13/5/860 https://doaj.org/toc/2073-4344 |
remote_bool |
true |
author2 |
Peng Zhang Shuying Kong Binbin Jin |
author2Str |
Peng Zhang Shuying Kong Binbin Jin |
ppnlink |
71862646X |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/catal13050860 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T22:58:18.293Z |
_version_ |
1803600525573226496 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094403856</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413034433.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/catal13050860</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094403856</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ25de57e510c344b7bcd6bc4944181131</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Guoqing Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spinel LiMn<sub<2</sub<O<sub<4</sub< as Electrocatalyst toward Solid-State Zinc–Air Batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Efficient oxygen reduction reaction (ORR) electrocatalysts are the key to advancement of solid-state alkaline zinc–air batteries (ZAB). We demonstrate an electrocatalyst, spinel lithium-manganese oxide LiMn<sub<2</sub<O<sub<4</sub< (LMO) by a simple hydrothermal method. Scanning electron microscope (SEM), X-ray diffraction (XRD), and Raman spectra indicate that the as-synthesized LiMn<sub<2</sub<O<sub<4</sub< presents nanoscale irregular-shaped particles with the well-known spinel structure. The polarization curve, chronoamperometery curve, and linear scanning voltammograms of rotating disk electrode (RDE) results reveal that the as-synthesized LiMn<sub<2</sub<O<sub<4</sub< possesses a higher electrocatalytic activity than that of electrolytic manganese dioxide for the ORR. A solid-state zinc–air cell with LiMn<sub<2</sub<O<sub<4</sub< as the air electrode catalyst has a long voltage plateau of discharge and a discharge capacity of 188.4 mAh at a constant discharge current density of 10 mA·cm<sup<−2</sup<. In summary, spinel LiMn<sub<2</sub<O<sub<4</sub< in which the JT effect enables electron hoping between Mn<sup<3+</sup< and Mn<sup<4+</sup< can be regarded as an effective robust oxygen reduction catalyst.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrocatalyst</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oxygen reduction reaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">air electrode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrocatalytic activity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">solid-state zinc–air cell</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peng Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuying Kong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Binbin Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Catalysts</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 5, p 860</subfield><subfield code="w">(DE-627)71862646X</subfield><subfield code="w">(DE-600)2662126-5</subfield><subfield code="x">20734344</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:5, p 860</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/catal13050860</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/25de57e510c344b7bcd6bc4944181131</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4344/13/5/860</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4344</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">5, p 860</subfield></datafield></record></collection>
|
score |
7.401457 |