Effects of Different Tillage Practices on Soil Stability and Erodibility for Red Soil Sloping Farmland in Southern China
Tillage practices significantly influence soil nutrient retention, soil structure, and stability. However, the impact of tillage practices on soil stability and erosion resistance through the perturbation approach of soil structure remains unclear. This study aimed to establish universal principles...
Ausführliche Beschreibung
Autor*in: |
Huifang Jin [verfasserIn] Shangshu Huang [verfasserIn] Dongmei Shi [verfasserIn] Junkai Li [verfasserIn] Jifu Li [verfasserIn] Yanli Li [verfasserIn] Hai Zhu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Agronomy - MDPI AG, 2012, 13(2023), 5, p 1310 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:5, p 1310 |
Links: |
---|
DOI / URN: |
10.3390/agronomy13051310 |
---|
Katalog-ID: |
DOAJ094433585 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ094433585 | ||
003 | DE-627 | ||
005 | 20240413034926.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/agronomy13051310 |2 doi | |
035 | |a (DE-627)DOAJ094433585 | ||
035 | |a (DE-599)DOAJd7379d6b059f44e7a854c20c64c6ec70 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Huifang Jin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effects of Different Tillage Practices on Soil Stability and Erodibility for Red Soil Sloping Farmland in Southern China |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Tillage practices significantly influence soil nutrient retention, soil structure, and stability. However, the impact of tillage practices on soil stability and erosion resistance through the perturbation approach of soil structure remains unclear. This study aimed to establish universal principles across slope surface and soil profile scales. We evaluated the effects of various tillage practices, including conventional tillage (CT), soil compaction (CM), subsoil tillage (ST), no tillage (NT), and subsoil tillage and soil compaction (SCM) on soil stability and erosion resistance in China’s red soil hilly region. Soil stability, erosion resistance, and other soil properties were quantified using field surveys and laboratory experiments. We discovered significant variations in soil aggregate stability (SAS), wet aggregate stability (WAS), soil mechanical stability (SMS), and soil erodibility (SE) among the five tillage methods. The K factor’s average value indicated that the 0–40 cm soil layer was more erodible for CT (0.472) than for other methods, with NT (0.26) being the least erodible. NT (0.43) was the most effective treatment for reducing SE, while SCM (0.41) enhanced soil fertility, controlled SE, and mitigated machinery-induced soil compaction risks. CM (0.38) maintained soil stability without improving the soil nutrient storage, while ST (0.33) improved the soil stability such as alleviating the soil hardening caused by CM. The results provide reference parameter values for selecting appropriate tillage methods to decrease soil degradation and erosion while enhancing the soil productivity in a red soil hilly region. | ||
650 | 4 | |a tillage method | |
650 | 4 | |a soil aggregate stability | |
650 | 4 | |a wet aggregate stability | |
650 | 4 | |a mechanical soil stability | |
650 | 4 | |a soil erodibility | |
650 | 4 | |a red soil hilly region | |
653 | 0 | |a Agriculture | |
653 | 0 | |a S | |
700 | 0 | |a Shangshu Huang |e verfasserin |4 aut | |
700 | 0 | |a Dongmei Shi |e verfasserin |4 aut | |
700 | 0 | |a Junkai Li |e verfasserin |4 aut | |
700 | 0 | |a Jifu Li |e verfasserin |4 aut | |
700 | 0 | |a Yanli Li |e verfasserin |4 aut | |
700 | 0 | |a Hai Zhu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Agronomy |d MDPI AG, 2012 |g 13(2023), 5, p 1310 |w (DE-627)658000543 |w (DE-600)2607043-1 |x 20734395 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:5, p 1310 |
856 | 4 | 0 | |u https://doi.org/10.3390/agronomy13051310 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/d7379d6b059f44e7a854c20c64c6ec70 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4395/13/5/1310 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4395 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 5, p 1310 |
author_variant |
h j hj s h sh d s ds j l jl j l jl y l yl h z hz |
---|---|
matchkey_str |
article:20734395:2023----::fetodfeetilgpatcsnoltbltadrdbltfresis |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.3390/agronomy13051310 doi (DE-627)DOAJ094433585 (DE-599)DOAJd7379d6b059f44e7a854c20c64c6ec70 DE-627 ger DE-627 rakwb eng Huifang Jin verfasserin aut Effects of Different Tillage Practices on Soil Stability and Erodibility for Red Soil Sloping Farmland in Southern China 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tillage practices significantly influence soil nutrient retention, soil structure, and stability. However, the impact of tillage practices on soil stability and erosion resistance through the perturbation approach of soil structure remains unclear. This study aimed to establish universal principles across slope surface and soil profile scales. We evaluated the effects of various tillage practices, including conventional tillage (CT), soil compaction (CM), subsoil tillage (ST), no tillage (NT), and subsoil tillage and soil compaction (SCM) on soil stability and erosion resistance in China’s red soil hilly region. Soil stability, erosion resistance, and other soil properties were quantified using field surveys and laboratory experiments. We discovered significant variations in soil aggregate stability (SAS), wet aggregate stability (WAS), soil mechanical stability (SMS), and soil erodibility (SE) among the five tillage methods. The K factor’s average value indicated that the 0–40 cm soil layer was more erodible for CT (0.472) than for other methods, with NT (0.26) being the least erodible. NT (0.43) was the most effective treatment for reducing SE, while SCM (0.41) enhanced soil fertility, controlled SE, and mitigated machinery-induced soil compaction risks. CM (0.38) maintained soil stability without improving the soil nutrient storage, while ST (0.33) improved the soil stability such as alleviating the soil hardening caused by CM. The results provide reference parameter values for selecting appropriate tillage methods to decrease soil degradation and erosion while enhancing the soil productivity in a red soil hilly region. tillage method soil aggregate stability wet aggregate stability mechanical soil stability soil erodibility red soil hilly region Agriculture S Shangshu Huang verfasserin aut Dongmei Shi verfasserin aut Junkai Li verfasserin aut Jifu Li verfasserin aut Yanli Li verfasserin aut Hai Zhu verfasserin aut In Agronomy MDPI AG, 2012 13(2023), 5, p 1310 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:13 year:2023 number:5, p 1310 https://doi.org/10.3390/agronomy13051310 kostenfrei https://doaj.org/article/d7379d6b059f44e7a854c20c64c6ec70 kostenfrei https://www.mdpi.com/2073-4395/13/5/1310 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 5, p 1310 |
spelling |
10.3390/agronomy13051310 doi (DE-627)DOAJ094433585 (DE-599)DOAJd7379d6b059f44e7a854c20c64c6ec70 DE-627 ger DE-627 rakwb eng Huifang Jin verfasserin aut Effects of Different Tillage Practices on Soil Stability and Erodibility for Red Soil Sloping Farmland in Southern China 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tillage practices significantly influence soil nutrient retention, soil structure, and stability. However, the impact of tillage practices on soil stability and erosion resistance through the perturbation approach of soil structure remains unclear. This study aimed to establish universal principles across slope surface and soil profile scales. We evaluated the effects of various tillage practices, including conventional tillage (CT), soil compaction (CM), subsoil tillage (ST), no tillage (NT), and subsoil tillage and soil compaction (SCM) on soil stability and erosion resistance in China’s red soil hilly region. Soil stability, erosion resistance, and other soil properties were quantified using field surveys and laboratory experiments. We discovered significant variations in soil aggregate stability (SAS), wet aggregate stability (WAS), soil mechanical stability (SMS), and soil erodibility (SE) among the five tillage methods. The K factor’s average value indicated that the 0–40 cm soil layer was more erodible for CT (0.472) than for other methods, with NT (0.26) being the least erodible. NT (0.43) was the most effective treatment for reducing SE, while SCM (0.41) enhanced soil fertility, controlled SE, and mitigated machinery-induced soil compaction risks. CM (0.38) maintained soil stability without improving the soil nutrient storage, while ST (0.33) improved the soil stability such as alleviating the soil hardening caused by CM. The results provide reference parameter values for selecting appropriate tillage methods to decrease soil degradation and erosion while enhancing the soil productivity in a red soil hilly region. tillage method soil aggregate stability wet aggregate stability mechanical soil stability soil erodibility red soil hilly region Agriculture S Shangshu Huang verfasserin aut Dongmei Shi verfasserin aut Junkai Li verfasserin aut Jifu Li verfasserin aut Yanli Li verfasserin aut Hai Zhu verfasserin aut In Agronomy MDPI AG, 2012 13(2023), 5, p 1310 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:13 year:2023 number:5, p 1310 https://doi.org/10.3390/agronomy13051310 kostenfrei https://doaj.org/article/d7379d6b059f44e7a854c20c64c6ec70 kostenfrei https://www.mdpi.com/2073-4395/13/5/1310 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 5, p 1310 |
allfields_unstemmed |
10.3390/agronomy13051310 doi (DE-627)DOAJ094433585 (DE-599)DOAJd7379d6b059f44e7a854c20c64c6ec70 DE-627 ger DE-627 rakwb eng Huifang Jin verfasserin aut Effects of Different Tillage Practices on Soil Stability and Erodibility for Red Soil Sloping Farmland in Southern China 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tillage practices significantly influence soil nutrient retention, soil structure, and stability. However, the impact of tillage practices on soil stability and erosion resistance through the perturbation approach of soil structure remains unclear. This study aimed to establish universal principles across slope surface and soil profile scales. We evaluated the effects of various tillage practices, including conventional tillage (CT), soil compaction (CM), subsoil tillage (ST), no tillage (NT), and subsoil tillage and soil compaction (SCM) on soil stability and erosion resistance in China’s red soil hilly region. Soil stability, erosion resistance, and other soil properties were quantified using field surveys and laboratory experiments. We discovered significant variations in soil aggregate stability (SAS), wet aggregate stability (WAS), soil mechanical stability (SMS), and soil erodibility (SE) among the five tillage methods. The K factor’s average value indicated that the 0–40 cm soil layer was more erodible for CT (0.472) than for other methods, with NT (0.26) being the least erodible. NT (0.43) was the most effective treatment for reducing SE, while SCM (0.41) enhanced soil fertility, controlled SE, and mitigated machinery-induced soil compaction risks. CM (0.38) maintained soil stability without improving the soil nutrient storage, while ST (0.33) improved the soil stability such as alleviating the soil hardening caused by CM. The results provide reference parameter values for selecting appropriate tillage methods to decrease soil degradation and erosion while enhancing the soil productivity in a red soil hilly region. tillage method soil aggregate stability wet aggregate stability mechanical soil stability soil erodibility red soil hilly region Agriculture S Shangshu Huang verfasserin aut Dongmei Shi verfasserin aut Junkai Li verfasserin aut Jifu Li verfasserin aut Yanli Li verfasserin aut Hai Zhu verfasserin aut In Agronomy MDPI AG, 2012 13(2023), 5, p 1310 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:13 year:2023 number:5, p 1310 https://doi.org/10.3390/agronomy13051310 kostenfrei https://doaj.org/article/d7379d6b059f44e7a854c20c64c6ec70 kostenfrei https://www.mdpi.com/2073-4395/13/5/1310 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 5, p 1310 |
allfieldsGer |
10.3390/agronomy13051310 doi (DE-627)DOAJ094433585 (DE-599)DOAJd7379d6b059f44e7a854c20c64c6ec70 DE-627 ger DE-627 rakwb eng Huifang Jin verfasserin aut Effects of Different Tillage Practices on Soil Stability and Erodibility for Red Soil Sloping Farmland in Southern China 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tillage practices significantly influence soil nutrient retention, soil structure, and stability. However, the impact of tillage practices on soil stability and erosion resistance through the perturbation approach of soil structure remains unclear. This study aimed to establish universal principles across slope surface and soil profile scales. We evaluated the effects of various tillage practices, including conventional tillage (CT), soil compaction (CM), subsoil tillage (ST), no tillage (NT), and subsoil tillage and soil compaction (SCM) on soil stability and erosion resistance in China’s red soil hilly region. Soil stability, erosion resistance, and other soil properties were quantified using field surveys and laboratory experiments. We discovered significant variations in soil aggregate stability (SAS), wet aggregate stability (WAS), soil mechanical stability (SMS), and soil erodibility (SE) among the five tillage methods. The K factor’s average value indicated that the 0–40 cm soil layer was more erodible for CT (0.472) than for other methods, with NT (0.26) being the least erodible. NT (0.43) was the most effective treatment for reducing SE, while SCM (0.41) enhanced soil fertility, controlled SE, and mitigated machinery-induced soil compaction risks. CM (0.38) maintained soil stability without improving the soil nutrient storage, while ST (0.33) improved the soil stability such as alleviating the soil hardening caused by CM. The results provide reference parameter values for selecting appropriate tillage methods to decrease soil degradation and erosion while enhancing the soil productivity in a red soil hilly region. tillage method soil aggregate stability wet aggregate stability mechanical soil stability soil erodibility red soil hilly region Agriculture S Shangshu Huang verfasserin aut Dongmei Shi verfasserin aut Junkai Li verfasserin aut Jifu Li verfasserin aut Yanli Li verfasserin aut Hai Zhu verfasserin aut In Agronomy MDPI AG, 2012 13(2023), 5, p 1310 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:13 year:2023 number:5, p 1310 https://doi.org/10.3390/agronomy13051310 kostenfrei https://doaj.org/article/d7379d6b059f44e7a854c20c64c6ec70 kostenfrei https://www.mdpi.com/2073-4395/13/5/1310 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 5, p 1310 |
allfieldsSound |
10.3390/agronomy13051310 doi (DE-627)DOAJ094433585 (DE-599)DOAJd7379d6b059f44e7a854c20c64c6ec70 DE-627 ger DE-627 rakwb eng Huifang Jin verfasserin aut Effects of Different Tillage Practices on Soil Stability and Erodibility for Red Soil Sloping Farmland in Southern China 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tillage practices significantly influence soil nutrient retention, soil structure, and stability. However, the impact of tillage practices on soil stability and erosion resistance through the perturbation approach of soil structure remains unclear. This study aimed to establish universal principles across slope surface and soil profile scales. We evaluated the effects of various tillage practices, including conventional tillage (CT), soil compaction (CM), subsoil tillage (ST), no tillage (NT), and subsoil tillage and soil compaction (SCM) on soil stability and erosion resistance in China’s red soil hilly region. Soil stability, erosion resistance, and other soil properties were quantified using field surveys and laboratory experiments. We discovered significant variations in soil aggregate stability (SAS), wet aggregate stability (WAS), soil mechanical stability (SMS), and soil erodibility (SE) among the five tillage methods. The K factor’s average value indicated that the 0–40 cm soil layer was more erodible for CT (0.472) than for other methods, with NT (0.26) being the least erodible. NT (0.43) was the most effective treatment for reducing SE, while SCM (0.41) enhanced soil fertility, controlled SE, and mitigated machinery-induced soil compaction risks. CM (0.38) maintained soil stability without improving the soil nutrient storage, while ST (0.33) improved the soil stability such as alleviating the soil hardening caused by CM. The results provide reference parameter values for selecting appropriate tillage methods to decrease soil degradation and erosion while enhancing the soil productivity in a red soil hilly region. tillage method soil aggregate stability wet aggregate stability mechanical soil stability soil erodibility red soil hilly region Agriculture S Shangshu Huang verfasserin aut Dongmei Shi verfasserin aut Junkai Li verfasserin aut Jifu Li verfasserin aut Yanli Li verfasserin aut Hai Zhu verfasserin aut In Agronomy MDPI AG, 2012 13(2023), 5, p 1310 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:13 year:2023 number:5, p 1310 https://doi.org/10.3390/agronomy13051310 kostenfrei https://doaj.org/article/d7379d6b059f44e7a854c20c64c6ec70 kostenfrei https://www.mdpi.com/2073-4395/13/5/1310 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 5, p 1310 |
language |
English |
source |
In Agronomy 13(2023), 5, p 1310 volume:13 year:2023 number:5, p 1310 |
sourceStr |
In Agronomy 13(2023), 5, p 1310 volume:13 year:2023 number:5, p 1310 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
tillage method soil aggregate stability wet aggregate stability mechanical soil stability soil erodibility red soil hilly region Agriculture S |
isfreeaccess_bool |
true |
container_title |
Agronomy |
authorswithroles_txt_mv |
Huifang Jin @@aut@@ Shangshu Huang @@aut@@ Dongmei Shi @@aut@@ Junkai Li @@aut@@ Jifu Li @@aut@@ Yanli Li @@aut@@ Hai Zhu @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
658000543 |
id |
DOAJ094433585 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094433585</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413034926.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/agronomy13051310</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094433585</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd7379d6b059f44e7a854c20c64c6ec70</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Huifang Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of Different Tillage Practices on Soil Stability and Erodibility for Red Soil Sloping Farmland in Southern China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Tillage practices significantly influence soil nutrient retention, soil structure, and stability. However, the impact of tillage practices on soil stability and erosion resistance through the perturbation approach of soil structure remains unclear. This study aimed to establish universal principles across slope surface and soil profile scales. We evaluated the effects of various tillage practices, including conventional tillage (CT), soil compaction (CM), subsoil tillage (ST), no tillage (NT), and subsoil tillage and soil compaction (SCM) on soil stability and erosion resistance in China’s red soil hilly region. Soil stability, erosion resistance, and other soil properties were quantified using field surveys and laboratory experiments. We discovered significant variations in soil aggregate stability (SAS), wet aggregate stability (WAS), soil mechanical stability (SMS), and soil erodibility (SE) among the five tillage methods. The K factor’s average value indicated that the 0–40 cm soil layer was more erodible for CT (0.472) than for other methods, with NT (0.26) being the least erodible. NT (0.43) was the most effective treatment for reducing SE, while SCM (0.41) enhanced soil fertility, controlled SE, and mitigated machinery-induced soil compaction risks. CM (0.38) maintained soil stability without improving the soil nutrient storage, while ST (0.33) improved the soil stability such as alleviating the soil hardening caused by CM. The results provide reference parameter values for selecting appropriate tillage methods to decrease soil degradation and erosion while enhancing the soil productivity in a red soil hilly region.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tillage method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soil aggregate stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wet aggregate stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mechanical soil stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soil erodibility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">red soil hilly region</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shangshu Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dongmei Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junkai Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jifu Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanli Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hai Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Agronomy</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 5, p 1310</subfield><subfield code="w">(DE-627)658000543</subfield><subfield code="w">(DE-600)2607043-1</subfield><subfield code="x">20734395</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:5, p 1310</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/agronomy13051310</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d7379d6b059f44e7a854c20c64c6ec70</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4395/13/5/1310</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4395</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">5, p 1310</subfield></datafield></record></collection>
|
author |
Huifang Jin |
spellingShingle |
Huifang Jin misc tillage method misc soil aggregate stability misc wet aggregate stability misc mechanical soil stability misc soil erodibility misc red soil hilly region misc Agriculture misc S Effects of Different Tillage Practices on Soil Stability and Erodibility for Red Soil Sloping Farmland in Southern China |
authorStr |
Huifang Jin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)658000543 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20734395 |
topic_title |
Effects of Different Tillage Practices on Soil Stability and Erodibility for Red Soil Sloping Farmland in Southern China tillage method soil aggregate stability wet aggregate stability mechanical soil stability soil erodibility red soil hilly region |
topic |
misc tillage method misc soil aggregate stability misc wet aggregate stability misc mechanical soil stability misc soil erodibility misc red soil hilly region misc Agriculture misc S |
topic_unstemmed |
misc tillage method misc soil aggregate stability misc wet aggregate stability misc mechanical soil stability misc soil erodibility misc red soil hilly region misc Agriculture misc S |
topic_browse |
misc tillage method misc soil aggregate stability misc wet aggregate stability misc mechanical soil stability misc soil erodibility misc red soil hilly region misc Agriculture misc S |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Agronomy |
hierarchy_parent_id |
658000543 |
hierarchy_top_title |
Agronomy |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)658000543 (DE-600)2607043-1 |
title |
Effects of Different Tillage Practices on Soil Stability and Erodibility for Red Soil Sloping Farmland in Southern China |
ctrlnum |
(DE-627)DOAJ094433585 (DE-599)DOAJd7379d6b059f44e7a854c20c64c6ec70 |
title_full |
Effects of Different Tillage Practices on Soil Stability and Erodibility for Red Soil Sloping Farmland in Southern China |
author_sort |
Huifang Jin |
journal |
Agronomy |
journalStr |
Agronomy |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Huifang Jin Shangshu Huang Dongmei Shi Junkai Li Jifu Li Yanli Li Hai Zhu |
container_volume |
13 |
format_se |
Elektronische Aufsätze |
author-letter |
Huifang Jin |
doi_str_mv |
10.3390/agronomy13051310 |
author2-role |
verfasserin |
title_sort |
effects of different tillage practices on soil stability and erodibility for red soil sloping farmland in southern china |
title_auth |
Effects of Different Tillage Practices on Soil Stability and Erodibility for Red Soil Sloping Farmland in Southern China |
abstract |
Tillage practices significantly influence soil nutrient retention, soil structure, and stability. However, the impact of tillage practices on soil stability and erosion resistance through the perturbation approach of soil structure remains unclear. This study aimed to establish universal principles across slope surface and soil profile scales. We evaluated the effects of various tillage practices, including conventional tillage (CT), soil compaction (CM), subsoil tillage (ST), no tillage (NT), and subsoil tillage and soil compaction (SCM) on soil stability and erosion resistance in China’s red soil hilly region. Soil stability, erosion resistance, and other soil properties were quantified using field surveys and laboratory experiments. We discovered significant variations in soil aggregate stability (SAS), wet aggregate stability (WAS), soil mechanical stability (SMS), and soil erodibility (SE) among the five tillage methods. The K factor’s average value indicated that the 0–40 cm soil layer was more erodible for CT (0.472) than for other methods, with NT (0.26) being the least erodible. NT (0.43) was the most effective treatment for reducing SE, while SCM (0.41) enhanced soil fertility, controlled SE, and mitigated machinery-induced soil compaction risks. CM (0.38) maintained soil stability without improving the soil nutrient storage, while ST (0.33) improved the soil stability such as alleviating the soil hardening caused by CM. The results provide reference parameter values for selecting appropriate tillage methods to decrease soil degradation and erosion while enhancing the soil productivity in a red soil hilly region. |
abstractGer |
Tillage practices significantly influence soil nutrient retention, soil structure, and stability. However, the impact of tillage practices on soil stability and erosion resistance through the perturbation approach of soil structure remains unclear. This study aimed to establish universal principles across slope surface and soil profile scales. We evaluated the effects of various tillage practices, including conventional tillage (CT), soil compaction (CM), subsoil tillage (ST), no tillage (NT), and subsoil tillage and soil compaction (SCM) on soil stability and erosion resistance in China’s red soil hilly region. Soil stability, erosion resistance, and other soil properties were quantified using field surveys and laboratory experiments. We discovered significant variations in soil aggregate stability (SAS), wet aggregate stability (WAS), soil mechanical stability (SMS), and soil erodibility (SE) among the five tillage methods. The K factor’s average value indicated that the 0–40 cm soil layer was more erodible for CT (0.472) than for other methods, with NT (0.26) being the least erodible. NT (0.43) was the most effective treatment for reducing SE, while SCM (0.41) enhanced soil fertility, controlled SE, and mitigated machinery-induced soil compaction risks. CM (0.38) maintained soil stability without improving the soil nutrient storage, while ST (0.33) improved the soil stability such as alleviating the soil hardening caused by CM. The results provide reference parameter values for selecting appropriate tillage methods to decrease soil degradation and erosion while enhancing the soil productivity in a red soil hilly region. |
abstract_unstemmed |
Tillage practices significantly influence soil nutrient retention, soil structure, and stability. However, the impact of tillage practices on soil stability and erosion resistance through the perturbation approach of soil structure remains unclear. This study aimed to establish universal principles across slope surface and soil profile scales. We evaluated the effects of various tillage practices, including conventional tillage (CT), soil compaction (CM), subsoil tillage (ST), no tillage (NT), and subsoil tillage and soil compaction (SCM) on soil stability and erosion resistance in China’s red soil hilly region. Soil stability, erosion resistance, and other soil properties were quantified using field surveys and laboratory experiments. We discovered significant variations in soil aggregate stability (SAS), wet aggregate stability (WAS), soil mechanical stability (SMS), and soil erodibility (SE) among the five tillage methods. The K factor’s average value indicated that the 0–40 cm soil layer was more erodible for CT (0.472) than for other methods, with NT (0.26) being the least erodible. NT (0.43) was the most effective treatment for reducing SE, while SCM (0.41) enhanced soil fertility, controlled SE, and mitigated machinery-induced soil compaction risks. CM (0.38) maintained soil stability without improving the soil nutrient storage, while ST (0.33) improved the soil stability such as alleviating the soil hardening caused by CM. The results provide reference parameter values for selecting appropriate tillage methods to decrease soil degradation and erosion while enhancing the soil productivity in a red soil hilly region. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5, p 1310 |
title_short |
Effects of Different Tillage Practices on Soil Stability and Erodibility for Red Soil Sloping Farmland in Southern China |
url |
https://doi.org/10.3390/agronomy13051310 https://doaj.org/article/d7379d6b059f44e7a854c20c64c6ec70 https://www.mdpi.com/2073-4395/13/5/1310 https://doaj.org/toc/2073-4395 |
remote_bool |
true |
author2 |
Shangshu Huang Dongmei Shi Junkai Li Jifu Li Yanli Li Hai Zhu |
author2Str |
Shangshu Huang Dongmei Shi Junkai Li Jifu Li Yanli Li Hai Zhu |
ppnlink |
658000543 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/agronomy13051310 |
up_date |
2024-07-03T23:07:37.610Z |
_version_ |
1803601112057511936 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094433585</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413034926.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/agronomy13051310</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094433585</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd7379d6b059f44e7a854c20c64c6ec70</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Huifang Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of Different Tillage Practices on Soil Stability and Erodibility for Red Soil Sloping Farmland in Southern China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Tillage practices significantly influence soil nutrient retention, soil structure, and stability. However, the impact of tillage practices on soil stability and erosion resistance through the perturbation approach of soil structure remains unclear. This study aimed to establish universal principles across slope surface and soil profile scales. We evaluated the effects of various tillage practices, including conventional tillage (CT), soil compaction (CM), subsoil tillage (ST), no tillage (NT), and subsoil tillage and soil compaction (SCM) on soil stability and erosion resistance in China’s red soil hilly region. Soil stability, erosion resistance, and other soil properties were quantified using field surveys and laboratory experiments. We discovered significant variations in soil aggregate stability (SAS), wet aggregate stability (WAS), soil mechanical stability (SMS), and soil erodibility (SE) among the five tillage methods. The K factor’s average value indicated that the 0–40 cm soil layer was more erodible for CT (0.472) than for other methods, with NT (0.26) being the least erodible. NT (0.43) was the most effective treatment for reducing SE, while SCM (0.41) enhanced soil fertility, controlled SE, and mitigated machinery-induced soil compaction risks. CM (0.38) maintained soil stability without improving the soil nutrient storage, while ST (0.33) improved the soil stability such as alleviating the soil hardening caused by CM. The results provide reference parameter values for selecting appropriate tillage methods to decrease soil degradation and erosion while enhancing the soil productivity in a red soil hilly region.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tillage method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soil aggregate stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wet aggregate stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mechanical soil stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soil erodibility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">red soil hilly region</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shangshu Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dongmei Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junkai Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jifu Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanli Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hai Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Agronomy</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 5, p 1310</subfield><subfield code="w">(DE-627)658000543</subfield><subfield code="w">(DE-600)2607043-1</subfield><subfield code="x">20734395</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:5, p 1310</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/agronomy13051310</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d7379d6b059f44e7a854c20c64c6ec70</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4395/13/5/1310</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4395</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">5, p 1310</subfield></datafield></record></collection>
|
score |
7.4021015 |