Edge Effects in Amazon Forests: Integrating Remote Sensing and Modelling to Assess Changes in Biomass and Productivity
The tropical forests in the Amazon store large amounts of carbon and are still considered a carbon sink. There is evidence that deforestation can turn a forest landscape into a carbon source due to land use and forest degradation. Deforestation causes fragmented forest landscapes. It is known from f...
Ausführliche Beschreibung
Autor*in: |
Luise Bauer [verfasserIn] Andreas Huth [verfasserIn] André Bogdanowski [verfasserIn] Michael Müller [verfasserIn] Rico Fischer [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 16(2024), 3, p 501 |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2024 ; number:3, p 501 |
Links: |
---|
DOI / URN: |
10.3390/rs16030501 |
---|
Katalog-ID: |
DOAJ094475814 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ094475814 | ||
003 | DE-627 | ||
005 | 20240413044915.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs16030501 |2 doi | |
035 | |a (DE-627)DOAJ094475814 | ||
035 | |a (DE-599)DOAJ2a0c8e51d54543c3b851c882744eac9b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Luise Bauer |e verfasserin |4 aut | |
245 | 1 | 0 | |a Edge Effects in Amazon Forests: Integrating Remote Sensing and Modelling to Assess Changes in Biomass and Productivity |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The tropical forests in the Amazon store large amounts of carbon and are still considered a carbon sink. There is evidence that deforestation can turn a forest landscape into a carbon source due to land use and forest degradation. Deforestation causes fragmented forest landscapes. It is known from field experiments that forest dynamics at the edge of forest fragments are altered by changes in the microclimate and increased tree mortality (“edge effects”). However, it is unclear how this will affect large fragmented forest landscapes, and thus the entire Amazon region. The aim of this study is to investigate different forest attributes in edge and core forest areas at high resolution, and thus to identify the large-scale impacts of small-scale edge effects. Therefore, a well-established framework combining forest modelling and lidar-generated forest structure information was combined with radar-based forest cover data. Furthermore, forests were also analyzed at the landscape level to investigate changes between highly fragmented and less-fragmented landscapes. This study found that the aboveground biomass in forest edge areas is 27% lower than in forest core areas. In contrast, the net primary productivity is 13% higher in forest edge areas than in forest core areas. In the second step, whole fragmented landscapes were analyzed. Nearly 30% of all forest landscapes are highly fragmented, particularly in the regions of the Arc of Deforestation, on the edge of the Andes and on the Amazon river banks. Less-fragmented landscapes are mainly located in the central Amazon rainforest. The aboveground biomass is 28% lower in highly fragmented forest landscapes than in less-fragmented landscapes. The net primary productivity is 13% higher in highly fragmented forest landscapes than in less-fragmented forest landscapes. In summary, fragmentation of the Amazon rainforest has an impact on forest attributes such as biomass and productivity, with mostly negative effects on forest dynamics. If deforestation continues and the proportion of highly fragmented forest landscapes increase, the effect may be even more intense. By combining lidar, radar and forest modelling, this study shows that it is possible to map forest structure, and thus the degree of forest degradation, over a large area and derive more detailed information about the carbon dynamics of the Amazon region. | ||
650 | 4 | |a GEDI | |
650 | 4 | |a lidar | |
650 | 4 | |a fragmentation | |
650 | 4 | |a radar | |
650 | 4 | |a forest model | |
650 | 4 | |a tropical forest | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Andreas Huth |e verfasserin |4 aut | |
700 | 0 | |a André Bogdanowski |e verfasserin |4 aut | |
700 | 0 | |a Michael Müller |e verfasserin |4 aut | |
700 | 0 | |a Rico Fischer |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 16(2024), 3, p 501 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2024 |g number:3, p 501 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs16030501 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/2a0c8e51d54543c3b851c882744eac9b |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-4292/16/3/501 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2024 |e 3, p 501 |
author_variant |
l b lb a h ah a b ab m m mm r f rf |
---|---|
matchkey_str |
article:20724292:2024----::defetiaaofrssnertnrmtsnignmdligoseshn |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.3390/rs16030501 doi (DE-627)DOAJ094475814 (DE-599)DOAJ2a0c8e51d54543c3b851c882744eac9b DE-627 ger DE-627 rakwb eng Luise Bauer verfasserin aut Edge Effects in Amazon Forests: Integrating Remote Sensing and Modelling to Assess Changes in Biomass and Productivity 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The tropical forests in the Amazon store large amounts of carbon and are still considered a carbon sink. There is evidence that deforestation can turn a forest landscape into a carbon source due to land use and forest degradation. Deforestation causes fragmented forest landscapes. It is known from field experiments that forest dynamics at the edge of forest fragments are altered by changes in the microclimate and increased tree mortality (“edge effects”). However, it is unclear how this will affect large fragmented forest landscapes, and thus the entire Amazon region. The aim of this study is to investigate different forest attributes in edge and core forest areas at high resolution, and thus to identify the large-scale impacts of small-scale edge effects. Therefore, a well-established framework combining forest modelling and lidar-generated forest structure information was combined with radar-based forest cover data. Furthermore, forests were also analyzed at the landscape level to investigate changes between highly fragmented and less-fragmented landscapes. This study found that the aboveground biomass in forest edge areas is 27% lower than in forest core areas. In contrast, the net primary productivity is 13% higher in forest edge areas than in forest core areas. In the second step, whole fragmented landscapes were analyzed. Nearly 30% of all forest landscapes are highly fragmented, particularly in the regions of the Arc of Deforestation, on the edge of the Andes and on the Amazon river banks. Less-fragmented landscapes are mainly located in the central Amazon rainforest. The aboveground biomass is 28% lower in highly fragmented forest landscapes than in less-fragmented landscapes. The net primary productivity is 13% higher in highly fragmented forest landscapes than in less-fragmented forest landscapes. In summary, fragmentation of the Amazon rainforest has an impact on forest attributes such as biomass and productivity, with mostly negative effects on forest dynamics. If deforestation continues and the proportion of highly fragmented forest landscapes increase, the effect may be even more intense. By combining lidar, radar and forest modelling, this study shows that it is possible to map forest structure, and thus the degree of forest degradation, over a large area and derive more detailed information about the carbon dynamics of the Amazon region. GEDI lidar fragmentation radar forest model tropical forest Science Q Andreas Huth verfasserin aut André Bogdanowski verfasserin aut Michael Müller verfasserin aut Rico Fischer verfasserin aut In Remote Sensing MDPI AG, 2009 16(2024), 3, p 501 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:16 year:2024 number:3, p 501 https://doi.org/10.3390/rs16030501 kostenfrei https://doaj.org/article/2a0c8e51d54543c3b851c882744eac9b kostenfrei https://www.mdpi.com/2072-4292/16/3/501 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 16 2024 3, p 501 |
spelling |
10.3390/rs16030501 doi (DE-627)DOAJ094475814 (DE-599)DOAJ2a0c8e51d54543c3b851c882744eac9b DE-627 ger DE-627 rakwb eng Luise Bauer verfasserin aut Edge Effects in Amazon Forests: Integrating Remote Sensing and Modelling to Assess Changes in Biomass and Productivity 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The tropical forests in the Amazon store large amounts of carbon and are still considered a carbon sink. There is evidence that deforestation can turn a forest landscape into a carbon source due to land use and forest degradation. Deforestation causes fragmented forest landscapes. It is known from field experiments that forest dynamics at the edge of forest fragments are altered by changes in the microclimate and increased tree mortality (“edge effects”). However, it is unclear how this will affect large fragmented forest landscapes, and thus the entire Amazon region. The aim of this study is to investigate different forest attributes in edge and core forest areas at high resolution, and thus to identify the large-scale impacts of small-scale edge effects. Therefore, a well-established framework combining forest modelling and lidar-generated forest structure information was combined with radar-based forest cover data. Furthermore, forests were also analyzed at the landscape level to investigate changes between highly fragmented and less-fragmented landscapes. This study found that the aboveground biomass in forest edge areas is 27% lower than in forest core areas. In contrast, the net primary productivity is 13% higher in forest edge areas than in forest core areas. In the second step, whole fragmented landscapes were analyzed. Nearly 30% of all forest landscapes are highly fragmented, particularly in the regions of the Arc of Deforestation, on the edge of the Andes and on the Amazon river banks. Less-fragmented landscapes are mainly located in the central Amazon rainforest. The aboveground biomass is 28% lower in highly fragmented forest landscapes than in less-fragmented landscapes. The net primary productivity is 13% higher in highly fragmented forest landscapes than in less-fragmented forest landscapes. In summary, fragmentation of the Amazon rainforest has an impact on forest attributes such as biomass and productivity, with mostly negative effects on forest dynamics. If deforestation continues and the proportion of highly fragmented forest landscapes increase, the effect may be even more intense. By combining lidar, radar and forest modelling, this study shows that it is possible to map forest structure, and thus the degree of forest degradation, over a large area and derive more detailed information about the carbon dynamics of the Amazon region. GEDI lidar fragmentation radar forest model tropical forest Science Q Andreas Huth verfasserin aut André Bogdanowski verfasserin aut Michael Müller verfasserin aut Rico Fischer verfasserin aut In Remote Sensing MDPI AG, 2009 16(2024), 3, p 501 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:16 year:2024 number:3, p 501 https://doi.org/10.3390/rs16030501 kostenfrei https://doaj.org/article/2a0c8e51d54543c3b851c882744eac9b kostenfrei https://www.mdpi.com/2072-4292/16/3/501 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 16 2024 3, p 501 |
allfields_unstemmed |
10.3390/rs16030501 doi (DE-627)DOAJ094475814 (DE-599)DOAJ2a0c8e51d54543c3b851c882744eac9b DE-627 ger DE-627 rakwb eng Luise Bauer verfasserin aut Edge Effects in Amazon Forests: Integrating Remote Sensing and Modelling to Assess Changes in Biomass and Productivity 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The tropical forests in the Amazon store large amounts of carbon and are still considered a carbon sink. There is evidence that deforestation can turn a forest landscape into a carbon source due to land use and forest degradation. Deforestation causes fragmented forest landscapes. It is known from field experiments that forest dynamics at the edge of forest fragments are altered by changes in the microclimate and increased tree mortality (“edge effects”). However, it is unclear how this will affect large fragmented forest landscapes, and thus the entire Amazon region. The aim of this study is to investigate different forest attributes in edge and core forest areas at high resolution, and thus to identify the large-scale impacts of small-scale edge effects. Therefore, a well-established framework combining forest modelling and lidar-generated forest structure information was combined with radar-based forest cover data. Furthermore, forests were also analyzed at the landscape level to investigate changes between highly fragmented and less-fragmented landscapes. This study found that the aboveground biomass in forest edge areas is 27% lower than in forest core areas. In contrast, the net primary productivity is 13% higher in forest edge areas than in forest core areas. In the second step, whole fragmented landscapes were analyzed. Nearly 30% of all forest landscapes are highly fragmented, particularly in the regions of the Arc of Deforestation, on the edge of the Andes and on the Amazon river banks. Less-fragmented landscapes are mainly located in the central Amazon rainforest. The aboveground biomass is 28% lower in highly fragmented forest landscapes than in less-fragmented landscapes. The net primary productivity is 13% higher in highly fragmented forest landscapes than in less-fragmented forest landscapes. In summary, fragmentation of the Amazon rainforest has an impact on forest attributes such as biomass and productivity, with mostly negative effects on forest dynamics. If deforestation continues and the proportion of highly fragmented forest landscapes increase, the effect may be even more intense. By combining lidar, radar and forest modelling, this study shows that it is possible to map forest structure, and thus the degree of forest degradation, over a large area and derive more detailed information about the carbon dynamics of the Amazon region. GEDI lidar fragmentation radar forest model tropical forest Science Q Andreas Huth verfasserin aut André Bogdanowski verfasserin aut Michael Müller verfasserin aut Rico Fischer verfasserin aut In Remote Sensing MDPI AG, 2009 16(2024), 3, p 501 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:16 year:2024 number:3, p 501 https://doi.org/10.3390/rs16030501 kostenfrei https://doaj.org/article/2a0c8e51d54543c3b851c882744eac9b kostenfrei https://www.mdpi.com/2072-4292/16/3/501 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 16 2024 3, p 501 |
allfieldsGer |
10.3390/rs16030501 doi (DE-627)DOAJ094475814 (DE-599)DOAJ2a0c8e51d54543c3b851c882744eac9b DE-627 ger DE-627 rakwb eng Luise Bauer verfasserin aut Edge Effects in Amazon Forests: Integrating Remote Sensing and Modelling to Assess Changes in Biomass and Productivity 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The tropical forests in the Amazon store large amounts of carbon and are still considered a carbon sink. There is evidence that deforestation can turn a forest landscape into a carbon source due to land use and forest degradation. Deforestation causes fragmented forest landscapes. It is known from field experiments that forest dynamics at the edge of forest fragments are altered by changes in the microclimate and increased tree mortality (“edge effects”). However, it is unclear how this will affect large fragmented forest landscapes, and thus the entire Amazon region. The aim of this study is to investigate different forest attributes in edge and core forest areas at high resolution, and thus to identify the large-scale impacts of small-scale edge effects. Therefore, a well-established framework combining forest modelling and lidar-generated forest structure information was combined with radar-based forest cover data. Furthermore, forests were also analyzed at the landscape level to investigate changes between highly fragmented and less-fragmented landscapes. This study found that the aboveground biomass in forest edge areas is 27% lower than in forest core areas. In contrast, the net primary productivity is 13% higher in forest edge areas than in forest core areas. In the second step, whole fragmented landscapes were analyzed. Nearly 30% of all forest landscapes are highly fragmented, particularly in the regions of the Arc of Deforestation, on the edge of the Andes and on the Amazon river banks. Less-fragmented landscapes are mainly located in the central Amazon rainforest. The aboveground biomass is 28% lower in highly fragmented forest landscapes than in less-fragmented landscapes. The net primary productivity is 13% higher in highly fragmented forest landscapes than in less-fragmented forest landscapes. In summary, fragmentation of the Amazon rainforest has an impact on forest attributes such as biomass and productivity, with mostly negative effects on forest dynamics. If deforestation continues and the proportion of highly fragmented forest landscapes increase, the effect may be even more intense. By combining lidar, radar and forest modelling, this study shows that it is possible to map forest structure, and thus the degree of forest degradation, over a large area and derive more detailed information about the carbon dynamics of the Amazon region. GEDI lidar fragmentation radar forest model tropical forest Science Q Andreas Huth verfasserin aut André Bogdanowski verfasserin aut Michael Müller verfasserin aut Rico Fischer verfasserin aut In Remote Sensing MDPI AG, 2009 16(2024), 3, p 501 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:16 year:2024 number:3, p 501 https://doi.org/10.3390/rs16030501 kostenfrei https://doaj.org/article/2a0c8e51d54543c3b851c882744eac9b kostenfrei https://www.mdpi.com/2072-4292/16/3/501 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 16 2024 3, p 501 |
allfieldsSound |
10.3390/rs16030501 doi (DE-627)DOAJ094475814 (DE-599)DOAJ2a0c8e51d54543c3b851c882744eac9b DE-627 ger DE-627 rakwb eng Luise Bauer verfasserin aut Edge Effects in Amazon Forests: Integrating Remote Sensing and Modelling to Assess Changes in Biomass and Productivity 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The tropical forests in the Amazon store large amounts of carbon and are still considered a carbon sink. There is evidence that deforestation can turn a forest landscape into a carbon source due to land use and forest degradation. Deforestation causes fragmented forest landscapes. It is known from field experiments that forest dynamics at the edge of forest fragments are altered by changes in the microclimate and increased tree mortality (“edge effects”). However, it is unclear how this will affect large fragmented forest landscapes, and thus the entire Amazon region. The aim of this study is to investigate different forest attributes in edge and core forest areas at high resolution, and thus to identify the large-scale impacts of small-scale edge effects. Therefore, a well-established framework combining forest modelling and lidar-generated forest structure information was combined with radar-based forest cover data. Furthermore, forests were also analyzed at the landscape level to investigate changes between highly fragmented and less-fragmented landscapes. This study found that the aboveground biomass in forest edge areas is 27% lower than in forest core areas. In contrast, the net primary productivity is 13% higher in forest edge areas than in forest core areas. In the second step, whole fragmented landscapes were analyzed. Nearly 30% of all forest landscapes are highly fragmented, particularly in the regions of the Arc of Deforestation, on the edge of the Andes and on the Amazon river banks. Less-fragmented landscapes are mainly located in the central Amazon rainforest. The aboveground biomass is 28% lower in highly fragmented forest landscapes than in less-fragmented landscapes. The net primary productivity is 13% higher in highly fragmented forest landscapes than in less-fragmented forest landscapes. In summary, fragmentation of the Amazon rainforest has an impact on forest attributes such as biomass and productivity, with mostly negative effects on forest dynamics. If deforestation continues and the proportion of highly fragmented forest landscapes increase, the effect may be even more intense. By combining lidar, radar and forest modelling, this study shows that it is possible to map forest structure, and thus the degree of forest degradation, over a large area and derive more detailed information about the carbon dynamics of the Amazon region. GEDI lidar fragmentation radar forest model tropical forest Science Q Andreas Huth verfasserin aut André Bogdanowski verfasserin aut Michael Müller verfasserin aut Rico Fischer verfasserin aut In Remote Sensing MDPI AG, 2009 16(2024), 3, p 501 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:16 year:2024 number:3, p 501 https://doi.org/10.3390/rs16030501 kostenfrei https://doaj.org/article/2a0c8e51d54543c3b851c882744eac9b kostenfrei https://www.mdpi.com/2072-4292/16/3/501 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 16 2024 3, p 501 |
language |
English |
source |
In Remote Sensing 16(2024), 3, p 501 volume:16 year:2024 number:3, p 501 |
sourceStr |
In Remote Sensing 16(2024), 3, p 501 volume:16 year:2024 number:3, p 501 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
GEDI lidar fragmentation radar forest model tropical forest Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
Luise Bauer @@aut@@ Andreas Huth @@aut@@ André Bogdanowski @@aut@@ Michael Müller @@aut@@ Rico Fischer @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ094475814 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094475814</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413044915.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs16030501</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094475814</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2a0c8e51d54543c3b851c882744eac9b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Luise Bauer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Edge Effects in Amazon Forests: Integrating Remote Sensing and Modelling to Assess Changes in Biomass and Productivity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The tropical forests in the Amazon store large amounts of carbon and are still considered a carbon sink. There is evidence that deforestation can turn a forest landscape into a carbon source due to land use and forest degradation. Deforestation causes fragmented forest landscapes. It is known from field experiments that forest dynamics at the edge of forest fragments are altered by changes in the microclimate and increased tree mortality (“edge effects”). However, it is unclear how this will affect large fragmented forest landscapes, and thus the entire Amazon region. The aim of this study is to investigate different forest attributes in edge and core forest areas at high resolution, and thus to identify the large-scale impacts of small-scale edge effects. Therefore, a well-established framework combining forest modelling and lidar-generated forest structure information was combined with radar-based forest cover data. Furthermore, forests were also analyzed at the landscape level to investigate changes between highly fragmented and less-fragmented landscapes. This study found that the aboveground biomass in forest edge areas is 27% lower than in forest core areas. In contrast, the net primary productivity is 13% higher in forest edge areas than in forest core areas. In the second step, whole fragmented landscapes were analyzed. Nearly 30% of all forest landscapes are highly fragmented, particularly in the regions of the Arc of Deforestation, on the edge of the Andes and on the Amazon river banks. Less-fragmented landscapes are mainly located in the central Amazon rainforest. The aboveground biomass is 28% lower in highly fragmented forest landscapes than in less-fragmented landscapes. The net primary productivity is 13% higher in highly fragmented forest landscapes than in less-fragmented forest landscapes. In summary, fragmentation of the Amazon rainforest has an impact on forest attributes such as biomass and productivity, with mostly negative effects on forest dynamics. If deforestation continues and the proportion of highly fragmented forest landscapes increase, the effect may be even more intense. By combining lidar, radar and forest modelling, this study shows that it is possible to map forest structure, and thus the degree of forest degradation, over a large area and derive more detailed information about the carbon dynamics of the Amazon region.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GEDI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lidar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fragmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">forest model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tropical forest</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andreas Huth</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">André Bogdanowski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michael Müller</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rico Fischer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">16(2024), 3, p 501</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:3, p 501</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs16030501</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2a0c8e51d54543c3b851c882744eac9b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/16/3/501</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2024</subfield><subfield code="e">3, p 501</subfield></datafield></record></collection>
|
author |
Luise Bauer |
spellingShingle |
Luise Bauer misc GEDI misc lidar misc fragmentation misc radar misc forest model misc tropical forest misc Science misc Q Edge Effects in Amazon Forests: Integrating Remote Sensing and Modelling to Assess Changes in Biomass and Productivity |
authorStr |
Luise Bauer |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
Edge Effects in Amazon Forests: Integrating Remote Sensing and Modelling to Assess Changes in Biomass and Productivity GEDI lidar fragmentation radar forest model tropical forest |
topic |
misc GEDI misc lidar misc fragmentation misc radar misc forest model misc tropical forest misc Science misc Q |
topic_unstemmed |
misc GEDI misc lidar misc fragmentation misc radar misc forest model misc tropical forest misc Science misc Q |
topic_browse |
misc GEDI misc lidar misc fragmentation misc radar misc forest model misc tropical forest misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
Edge Effects in Amazon Forests: Integrating Remote Sensing and Modelling to Assess Changes in Biomass and Productivity |
ctrlnum |
(DE-627)DOAJ094475814 (DE-599)DOAJ2a0c8e51d54543c3b851c882744eac9b |
title_full |
Edge Effects in Amazon Forests: Integrating Remote Sensing and Modelling to Assess Changes in Biomass and Productivity |
author_sort |
Luise Bauer |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Luise Bauer Andreas Huth André Bogdanowski Michael Müller Rico Fischer |
container_volume |
16 |
format_se |
Elektronische Aufsätze |
author-letter |
Luise Bauer |
doi_str_mv |
10.3390/rs16030501 |
author2-role |
verfasserin |
title_sort |
edge effects in amazon forests: integrating remote sensing and modelling to assess changes in biomass and productivity |
title_auth |
Edge Effects in Amazon Forests: Integrating Remote Sensing and Modelling to Assess Changes in Biomass and Productivity |
abstract |
The tropical forests in the Amazon store large amounts of carbon and are still considered a carbon sink. There is evidence that deforestation can turn a forest landscape into a carbon source due to land use and forest degradation. Deforestation causes fragmented forest landscapes. It is known from field experiments that forest dynamics at the edge of forest fragments are altered by changes in the microclimate and increased tree mortality (“edge effects”). However, it is unclear how this will affect large fragmented forest landscapes, and thus the entire Amazon region. The aim of this study is to investigate different forest attributes in edge and core forest areas at high resolution, and thus to identify the large-scale impacts of small-scale edge effects. Therefore, a well-established framework combining forest modelling and lidar-generated forest structure information was combined with radar-based forest cover data. Furthermore, forests were also analyzed at the landscape level to investigate changes between highly fragmented and less-fragmented landscapes. This study found that the aboveground biomass in forest edge areas is 27% lower than in forest core areas. In contrast, the net primary productivity is 13% higher in forest edge areas than in forest core areas. In the second step, whole fragmented landscapes were analyzed. Nearly 30% of all forest landscapes are highly fragmented, particularly in the regions of the Arc of Deforestation, on the edge of the Andes and on the Amazon river banks. Less-fragmented landscapes are mainly located in the central Amazon rainforest. The aboveground biomass is 28% lower in highly fragmented forest landscapes than in less-fragmented landscapes. The net primary productivity is 13% higher in highly fragmented forest landscapes than in less-fragmented forest landscapes. In summary, fragmentation of the Amazon rainforest has an impact on forest attributes such as biomass and productivity, with mostly negative effects on forest dynamics. If deforestation continues and the proportion of highly fragmented forest landscapes increase, the effect may be even more intense. By combining lidar, radar and forest modelling, this study shows that it is possible to map forest structure, and thus the degree of forest degradation, over a large area and derive more detailed information about the carbon dynamics of the Amazon region. |
abstractGer |
The tropical forests in the Amazon store large amounts of carbon and are still considered a carbon sink. There is evidence that deforestation can turn a forest landscape into a carbon source due to land use and forest degradation. Deforestation causes fragmented forest landscapes. It is known from field experiments that forest dynamics at the edge of forest fragments are altered by changes in the microclimate and increased tree mortality (“edge effects”). However, it is unclear how this will affect large fragmented forest landscapes, and thus the entire Amazon region. The aim of this study is to investigate different forest attributes in edge and core forest areas at high resolution, and thus to identify the large-scale impacts of small-scale edge effects. Therefore, a well-established framework combining forest modelling and lidar-generated forest structure information was combined with radar-based forest cover data. Furthermore, forests were also analyzed at the landscape level to investigate changes between highly fragmented and less-fragmented landscapes. This study found that the aboveground biomass in forest edge areas is 27% lower than in forest core areas. In contrast, the net primary productivity is 13% higher in forest edge areas than in forest core areas. In the second step, whole fragmented landscapes were analyzed. Nearly 30% of all forest landscapes are highly fragmented, particularly in the regions of the Arc of Deforestation, on the edge of the Andes and on the Amazon river banks. Less-fragmented landscapes are mainly located in the central Amazon rainforest. The aboveground biomass is 28% lower in highly fragmented forest landscapes than in less-fragmented landscapes. The net primary productivity is 13% higher in highly fragmented forest landscapes than in less-fragmented forest landscapes. In summary, fragmentation of the Amazon rainforest has an impact on forest attributes such as biomass and productivity, with mostly negative effects on forest dynamics. If deforestation continues and the proportion of highly fragmented forest landscapes increase, the effect may be even more intense. By combining lidar, radar and forest modelling, this study shows that it is possible to map forest structure, and thus the degree of forest degradation, over a large area and derive more detailed information about the carbon dynamics of the Amazon region. |
abstract_unstemmed |
The tropical forests in the Amazon store large amounts of carbon and are still considered a carbon sink. There is evidence that deforestation can turn a forest landscape into a carbon source due to land use and forest degradation. Deforestation causes fragmented forest landscapes. It is known from field experiments that forest dynamics at the edge of forest fragments are altered by changes in the microclimate and increased tree mortality (“edge effects”). However, it is unclear how this will affect large fragmented forest landscapes, and thus the entire Amazon region. The aim of this study is to investigate different forest attributes in edge and core forest areas at high resolution, and thus to identify the large-scale impacts of small-scale edge effects. Therefore, a well-established framework combining forest modelling and lidar-generated forest structure information was combined with radar-based forest cover data. Furthermore, forests were also analyzed at the landscape level to investigate changes between highly fragmented and less-fragmented landscapes. This study found that the aboveground biomass in forest edge areas is 27% lower than in forest core areas. In contrast, the net primary productivity is 13% higher in forest edge areas than in forest core areas. In the second step, whole fragmented landscapes were analyzed. Nearly 30% of all forest landscapes are highly fragmented, particularly in the regions of the Arc of Deforestation, on the edge of the Andes and on the Amazon river banks. Less-fragmented landscapes are mainly located in the central Amazon rainforest. The aboveground biomass is 28% lower in highly fragmented forest landscapes than in less-fragmented landscapes. The net primary productivity is 13% higher in highly fragmented forest landscapes than in less-fragmented forest landscapes. In summary, fragmentation of the Amazon rainforest has an impact on forest attributes such as biomass and productivity, with mostly negative effects on forest dynamics. If deforestation continues and the proportion of highly fragmented forest landscapes increase, the effect may be even more intense. By combining lidar, radar and forest modelling, this study shows that it is possible to map forest structure, and thus the degree of forest degradation, over a large area and derive more detailed information about the carbon dynamics of the Amazon region. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
3, p 501 |
title_short |
Edge Effects in Amazon Forests: Integrating Remote Sensing and Modelling to Assess Changes in Biomass and Productivity |
url |
https://doi.org/10.3390/rs16030501 https://doaj.org/article/2a0c8e51d54543c3b851c882744eac9b https://www.mdpi.com/2072-4292/16/3/501 https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Andreas Huth André Bogdanowski Michael Müller Rico Fischer |
author2Str |
Andreas Huth André Bogdanowski Michael Müller Rico Fischer |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs16030501 |
up_date |
2024-07-03T23:18:31.094Z |
_version_ |
1803601797285150720 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094475814</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413044915.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs16030501</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094475814</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2a0c8e51d54543c3b851c882744eac9b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Luise Bauer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Edge Effects in Amazon Forests: Integrating Remote Sensing and Modelling to Assess Changes in Biomass and Productivity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The tropical forests in the Amazon store large amounts of carbon and are still considered a carbon sink. There is evidence that deforestation can turn a forest landscape into a carbon source due to land use and forest degradation. Deforestation causes fragmented forest landscapes. It is known from field experiments that forest dynamics at the edge of forest fragments are altered by changes in the microclimate and increased tree mortality (“edge effects”). However, it is unclear how this will affect large fragmented forest landscapes, and thus the entire Amazon region. The aim of this study is to investigate different forest attributes in edge and core forest areas at high resolution, and thus to identify the large-scale impacts of small-scale edge effects. Therefore, a well-established framework combining forest modelling and lidar-generated forest structure information was combined with radar-based forest cover data. Furthermore, forests were also analyzed at the landscape level to investigate changes between highly fragmented and less-fragmented landscapes. This study found that the aboveground biomass in forest edge areas is 27% lower than in forest core areas. In contrast, the net primary productivity is 13% higher in forest edge areas than in forest core areas. In the second step, whole fragmented landscapes were analyzed. Nearly 30% of all forest landscapes are highly fragmented, particularly in the regions of the Arc of Deforestation, on the edge of the Andes and on the Amazon river banks. Less-fragmented landscapes are mainly located in the central Amazon rainforest. The aboveground biomass is 28% lower in highly fragmented forest landscapes than in less-fragmented landscapes. The net primary productivity is 13% higher in highly fragmented forest landscapes than in less-fragmented forest landscapes. In summary, fragmentation of the Amazon rainforest has an impact on forest attributes such as biomass and productivity, with mostly negative effects on forest dynamics. If deforestation continues and the proportion of highly fragmented forest landscapes increase, the effect may be even more intense. By combining lidar, radar and forest modelling, this study shows that it is possible to map forest structure, and thus the degree of forest degradation, over a large area and derive more detailed information about the carbon dynamics of the Amazon region.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GEDI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lidar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fragmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">forest model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tropical forest</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andreas Huth</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">André Bogdanowski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michael Müller</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rico Fischer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">16(2024), 3, p 501</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:3, p 501</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs16030501</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2a0c8e51d54543c3b851c882744eac9b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/16/3/501</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2024</subfield><subfield code="e">3, p 501</subfield></datafield></record></collection>
|
score |
7.4010077 |