Utilization of H<sub<2</sub<O/CuO and Syltherm 800/CuO Nanofluids in a Concentrating Solar Collector with Photovoltaic Elements
This study examined the performance of a concentrating solar collector with an asymmetric reflector. Two receivers were investigated, differing in the presence of photovoltaic cells. The first one was equipped with cells on both sides while the other was without cells. The analysis was performed usi...
Ausführliche Beschreibung
Autor*in: |
Theodoros Papingiotis [verfasserIn] Dimitrios N. Korres [verfasserIn] Irene Koronaki [verfasserIn] Christos Tzivanidis [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energies - MDPI AG, 2008, 17(2024), 3, p 576 |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2024 ; number:3, p 576 |
Links: |
---|
DOI / URN: |
10.3390/en17030576 |
---|
Katalog-ID: |
DOAJ094500525 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ094500525 | ||
003 | DE-627 | ||
005 | 20240413045317.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/en17030576 |2 doi | |
035 | |a (DE-627)DOAJ094500525 | ||
035 | |a (DE-599)DOAJ4b18595a160746cf8b39a1b2a5963050 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Theodoros Papingiotis |e verfasserin |4 aut | |
245 | 1 | 0 | |a Utilization of H<sub<2</sub<O/CuO and Syltherm 800/CuO Nanofluids in a Concentrating Solar Collector with Photovoltaic Elements |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This study examined the performance of a concentrating solar collector with an asymmetric reflector. Two receivers were investigated, differing in the presence of photovoltaic cells. The first one was equipped with cells on both sides while the other was without cells. The analysis was performed using a numerical model that integrates a combination of three-dimensional optical and thermal analyses developed in COMSOL. The investigation included studying the influence of CuO/water and CuO/Syltherm 800 nanofluids on the thermal performance for the receiver without photovoltaic elements, as well as on both thermal and electrical efficiencies for the hybrid receiver. Two volumetric concentrations of CuO in water and Syltherm 800, 3% and 5%, were explored with varying inlet temperatures, ranging from 20 °C to 80 °C for the hybrid solar unit and from 20 °C to 140 °C for the thermal solar unit. The outcomes of the examination were compared between the nanofluids and the pure base fluid. Properly pressurized water was considered in the case without photovoltaic elements. | ||
650 | 4 | |a hybrid solar collector | |
650 | 4 | |a concentrating collectors | |
650 | 4 | |a nanofluids | |
650 | 4 | |a optical-thermal simulation | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Dimitrios N. Korres |e verfasserin |4 aut | |
700 | 0 | |a Irene Koronaki |e verfasserin |4 aut | |
700 | 0 | |a Christos Tzivanidis |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energies |d MDPI AG, 2008 |g 17(2024), 3, p 576 |w (DE-627)572083742 |w (DE-600)2437446-5 |x 19961073 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2024 |g number:3, p 576 |
856 | 4 | 0 | |u https://doi.org/10.3390/en17030576 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4b18595a160746cf8b39a1b2a5963050 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1996-1073/17/3/576 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1073 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 17 |j 2024 |e 3, p 576 |
author_variant |
t p tp d n k dnk i k ik c t ct |
---|---|
matchkey_str |
article:19961073:2024----::tlztoohu2uouadytem0coaolisncnetaigoacle |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.3390/en17030576 doi (DE-627)DOAJ094500525 (DE-599)DOAJ4b18595a160746cf8b39a1b2a5963050 DE-627 ger DE-627 rakwb eng Theodoros Papingiotis verfasserin aut Utilization of H<sub<2</sub<O/CuO and Syltherm 800/CuO Nanofluids in a Concentrating Solar Collector with Photovoltaic Elements 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study examined the performance of a concentrating solar collector with an asymmetric reflector. Two receivers were investigated, differing in the presence of photovoltaic cells. The first one was equipped with cells on both sides while the other was without cells. The analysis was performed using a numerical model that integrates a combination of three-dimensional optical and thermal analyses developed in COMSOL. The investigation included studying the influence of CuO/water and CuO/Syltherm 800 nanofluids on the thermal performance for the receiver without photovoltaic elements, as well as on both thermal and electrical efficiencies for the hybrid receiver. Two volumetric concentrations of CuO in water and Syltherm 800, 3% and 5%, were explored with varying inlet temperatures, ranging from 20 °C to 80 °C for the hybrid solar unit and from 20 °C to 140 °C for the thermal solar unit. The outcomes of the examination were compared between the nanofluids and the pure base fluid. Properly pressurized water was considered in the case without photovoltaic elements. hybrid solar collector concentrating collectors nanofluids optical-thermal simulation Technology T Dimitrios N. Korres verfasserin aut Irene Koronaki verfasserin aut Christos Tzivanidis verfasserin aut In Energies MDPI AG, 2008 17(2024), 3, p 576 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:17 year:2024 number:3, p 576 https://doi.org/10.3390/en17030576 kostenfrei https://doaj.org/article/4b18595a160746cf8b39a1b2a5963050 kostenfrei https://www.mdpi.com/1996-1073/17/3/576 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2024 3, p 576 |
spelling |
10.3390/en17030576 doi (DE-627)DOAJ094500525 (DE-599)DOAJ4b18595a160746cf8b39a1b2a5963050 DE-627 ger DE-627 rakwb eng Theodoros Papingiotis verfasserin aut Utilization of H<sub<2</sub<O/CuO and Syltherm 800/CuO Nanofluids in a Concentrating Solar Collector with Photovoltaic Elements 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study examined the performance of a concentrating solar collector with an asymmetric reflector. Two receivers were investigated, differing in the presence of photovoltaic cells. The first one was equipped with cells on both sides while the other was without cells. The analysis was performed using a numerical model that integrates a combination of three-dimensional optical and thermal analyses developed in COMSOL. The investigation included studying the influence of CuO/water and CuO/Syltherm 800 nanofluids on the thermal performance for the receiver without photovoltaic elements, as well as on both thermal and electrical efficiencies for the hybrid receiver. Two volumetric concentrations of CuO in water and Syltherm 800, 3% and 5%, were explored with varying inlet temperatures, ranging from 20 °C to 80 °C for the hybrid solar unit and from 20 °C to 140 °C for the thermal solar unit. The outcomes of the examination were compared between the nanofluids and the pure base fluid. Properly pressurized water was considered in the case without photovoltaic elements. hybrid solar collector concentrating collectors nanofluids optical-thermal simulation Technology T Dimitrios N. Korres verfasserin aut Irene Koronaki verfasserin aut Christos Tzivanidis verfasserin aut In Energies MDPI AG, 2008 17(2024), 3, p 576 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:17 year:2024 number:3, p 576 https://doi.org/10.3390/en17030576 kostenfrei https://doaj.org/article/4b18595a160746cf8b39a1b2a5963050 kostenfrei https://www.mdpi.com/1996-1073/17/3/576 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2024 3, p 576 |
allfields_unstemmed |
10.3390/en17030576 doi (DE-627)DOAJ094500525 (DE-599)DOAJ4b18595a160746cf8b39a1b2a5963050 DE-627 ger DE-627 rakwb eng Theodoros Papingiotis verfasserin aut Utilization of H<sub<2</sub<O/CuO and Syltherm 800/CuO Nanofluids in a Concentrating Solar Collector with Photovoltaic Elements 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study examined the performance of a concentrating solar collector with an asymmetric reflector. Two receivers were investigated, differing in the presence of photovoltaic cells. The first one was equipped with cells on both sides while the other was without cells. The analysis was performed using a numerical model that integrates a combination of three-dimensional optical and thermal analyses developed in COMSOL. The investigation included studying the influence of CuO/water and CuO/Syltherm 800 nanofluids on the thermal performance for the receiver without photovoltaic elements, as well as on both thermal and electrical efficiencies for the hybrid receiver. Two volumetric concentrations of CuO in water and Syltherm 800, 3% and 5%, were explored with varying inlet temperatures, ranging from 20 °C to 80 °C for the hybrid solar unit and from 20 °C to 140 °C for the thermal solar unit. The outcomes of the examination were compared between the nanofluids and the pure base fluid. Properly pressurized water was considered in the case without photovoltaic elements. hybrid solar collector concentrating collectors nanofluids optical-thermal simulation Technology T Dimitrios N. Korres verfasserin aut Irene Koronaki verfasserin aut Christos Tzivanidis verfasserin aut In Energies MDPI AG, 2008 17(2024), 3, p 576 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:17 year:2024 number:3, p 576 https://doi.org/10.3390/en17030576 kostenfrei https://doaj.org/article/4b18595a160746cf8b39a1b2a5963050 kostenfrei https://www.mdpi.com/1996-1073/17/3/576 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2024 3, p 576 |
allfieldsGer |
10.3390/en17030576 doi (DE-627)DOAJ094500525 (DE-599)DOAJ4b18595a160746cf8b39a1b2a5963050 DE-627 ger DE-627 rakwb eng Theodoros Papingiotis verfasserin aut Utilization of H<sub<2</sub<O/CuO and Syltherm 800/CuO Nanofluids in a Concentrating Solar Collector with Photovoltaic Elements 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study examined the performance of a concentrating solar collector with an asymmetric reflector. Two receivers were investigated, differing in the presence of photovoltaic cells. The first one was equipped with cells on both sides while the other was without cells. The analysis was performed using a numerical model that integrates a combination of three-dimensional optical and thermal analyses developed in COMSOL. The investigation included studying the influence of CuO/water and CuO/Syltherm 800 nanofluids on the thermal performance for the receiver without photovoltaic elements, as well as on both thermal and electrical efficiencies for the hybrid receiver. Two volumetric concentrations of CuO in water and Syltherm 800, 3% and 5%, were explored with varying inlet temperatures, ranging from 20 °C to 80 °C for the hybrid solar unit and from 20 °C to 140 °C for the thermal solar unit. The outcomes of the examination were compared between the nanofluids and the pure base fluid. Properly pressurized water was considered in the case without photovoltaic elements. hybrid solar collector concentrating collectors nanofluids optical-thermal simulation Technology T Dimitrios N. Korres verfasserin aut Irene Koronaki verfasserin aut Christos Tzivanidis verfasserin aut In Energies MDPI AG, 2008 17(2024), 3, p 576 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:17 year:2024 number:3, p 576 https://doi.org/10.3390/en17030576 kostenfrei https://doaj.org/article/4b18595a160746cf8b39a1b2a5963050 kostenfrei https://www.mdpi.com/1996-1073/17/3/576 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2024 3, p 576 |
allfieldsSound |
10.3390/en17030576 doi (DE-627)DOAJ094500525 (DE-599)DOAJ4b18595a160746cf8b39a1b2a5963050 DE-627 ger DE-627 rakwb eng Theodoros Papingiotis verfasserin aut Utilization of H<sub<2</sub<O/CuO and Syltherm 800/CuO Nanofluids in a Concentrating Solar Collector with Photovoltaic Elements 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study examined the performance of a concentrating solar collector with an asymmetric reflector. Two receivers were investigated, differing in the presence of photovoltaic cells. The first one was equipped with cells on both sides while the other was without cells. The analysis was performed using a numerical model that integrates a combination of three-dimensional optical and thermal analyses developed in COMSOL. The investigation included studying the influence of CuO/water and CuO/Syltherm 800 nanofluids on the thermal performance for the receiver without photovoltaic elements, as well as on both thermal and electrical efficiencies for the hybrid receiver. Two volumetric concentrations of CuO in water and Syltherm 800, 3% and 5%, were explored with varying inlet temperatures, ranging from 20 °C to 80 °C for the hybrid solar unit and from 20 °C to 140 °C for the thermal solar unit. The outcomes of the examination were compared between the nanofluids and the pure base fluid. Properly pressurized water was considered in the case without photovoltaic elements. hybrid solar collector concentrating collectors nanofluids optical-thermal simulation Technology T Dimitrios N. Korres verfasserin aut Irene Koronaki verfasserin aut Christos Tzivanidis verfasserin aut In Energies MDPI AG, 2008 17(2024), 3, p 576 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:17 year:2024 number:3, p 576 https://doi.org/10.3390/en17030576 kostenfrei https://doaj.org/article/4b18595a160746cf8b39a1b2a5963050 kostenfrei https://www.mdpi.com/1996-1073/17/3/576 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2024 3, p 576 |
language |
English |
source |
In Energies 17(2024), 3, p 576 volume:17 year:2024 number:3, p 576 |
sourceStr |
In Energies 17(2024), 3, p 576 volume:17 year:2024 number:3, p 576 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
hybrid solar collector concentrating collectors nanofluids optical-thermal simulation Technology T |
isfreeaccess_bool |
true |
container_title |
Energies |
authorswithroles_txt_mv |
Theodoros Papingiotis @@aut@@ Dimitrios N. Korres @@aut@@ Irene Koronaki @@aut@@ Christos Tzivanidis @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
572083742 |
id |
DOAJ094500525 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094500525</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413045317.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en17030576</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094500525</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4b18595a160746cf8b39a1b2a5963050</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Theodoros Papingiotis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Utilization of H<sub<2</sub<O/CuO and Syltherm 800/CuO Nanofluids in a Concentrating Solar Collector with Photovoltaic Elements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study examined the performance of a concentrating solar collector with an asymmetric reflector. Two receivers were investigated, differing in the presence of photovoltaic cells. The first one was equipped with cells on both sides while the other was without cells. The analysis was performed using a numerical model that integrates a combination of three-dimensional optical and thermal analyses developed in COMSOL. The investigation included studying the influence of CuO/water and CuO/Syltherm 800 nanofluids on the thermal performance for the receiver without photovoltaic elements, as well as on both thermal and electrical efficiencies for the hybrid receiver. Two volumetric concentrations of CuO in water and Syltherm 800, 3% and 5%, were explored with varying inlet temperatures, ranging from 20 °C to 80 °C for the hybrid solar unit and from 20 °C to 140 °C for the thermal solar unit. The outcomes of the examination were compared between the nanofluids and the pure base fluid. Properly pressurized water was considered in the case without photovoltaic elements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hybrid solar collector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">concentrating collectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanofluids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical-thermal simulation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dimitrios N. Korres</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Irene Koronaki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christos Tzivanidis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">17(2024), 3, p 576</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:3, p 576</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en17030576</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4b18595a160746cf8b39a1b2a5963050</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/17/3/576</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2024</subfield><subfield code="e">3, p 576</subfield></datafield></record></collection>
|
author |
Theodoros Papingiotis |
spellingShingle |
Theodoros Papingiotis misc hybrid solar collector misc concentrating collectors misc nanofluids misc optical-thermal simulation misc Technology misc T Utilization of H<sub<2</sub<O/CuO and Syltherm 800/CuO Nanofluids in a Concentrating Solar Collector with Photovoltaic Elements |
authorStr |
Theodoros Papingiotis |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)572083742 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19961073 |
topic_title |
Utilization of H<sub<2</sub<O/CuO and Syltherm 800/CuO Nanofluids in a Concentrating Solar Collector with Photovoltaic Elements hybrid solar collector concentrating collectors nanofluids optical-thermal simulation |
topic |
misc hybrid solar collector misc concentrating collectors misc nanofluids misc optical-thermal simulation misc Technology misc T |
topic_unstemmed |
misc hybrid solar collector misc concentrating collectors misc nanofluids misc optical-thermal simulation misc Technology misc T |
topic_browse |
misc hybrid solar collector misc concentrating collectors misc nanofluids misc optical-thermal simulation misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energies |
hierarchy_parent_id |
572083742 |
hierarchy_top_title |
Energies |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)572083742 (DE-600)2437446-5 |
title |
Utilization of H<sub<2</sub<O/CuO and Syltherm 800/CuO Nanofluids in a Concentrating Solar Collector with Photovoltaic Elements |
ctrlnum |
(DE-627)DOAJ094500525 (DE-599)DOAJ4b18595a160746cf8b39a1b2a5963050 |
title_full |
Utilization of H<sub<2</sub<O/CuO and Syltherm 800/CuO Nanofluids in a Concentrating Solar Collector with Photovoltaic Elements |
author_sort |
Theodoros Papingiotis |
journal |
Energies |
journalStr |
Energies |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Theodoros Papingiotis Dimitrios N. Korres Irene Koronaki Christos Tzivanidis |
container_volume |
17 |
format_se |
Elektronische Aufsätze |
author-letter |
Theodoros Papingiotis |
doi_str_mv |
10.3390/en17030576 |
author2-role |
verfasserin |
title_sort |
utilization of h<sub<2</sub<o/cuo and syltherm 800/cuo nanofluids in a concentrating solar collector with photovoltaic elements |
title_auth |
Utilization of H<sub<2</sub<O/CuO and Syltherm 800/CuO Nanofluids in a Concentrating Solar Collector with Photovoltaic Elements |
abstract |
This study examined the performance of a concentrating solar collector with an asymmetric reflector. Two receivers were investigated, differing in the presence of photovoltaic cells. The first one was equipped with cells on both sides while the other was without cells. The analysis was performed using a numerical model that integrates a combination of three-dimensional optical and thermal analyses developed in COMSOL. The investigation included studying the influence of CuO/water and CuO/Syltherm 800 nanofluids on the thermal performance for the receiver without photovoltaic elements, as well as on both thermal and electrical efficiencies for the hybrid receiver. Two volumetric concentrations of CuO in water and Syltherm 800, 3% and 5%, were explored with varying inlet temperatures, ranging from 20 °C to 80 °C for the hybrid solar unit and from 20 °C to 140 °C for the thermal solar unit. The outcomes of the examination were compared between the nanofluids and the pure base fluid. Properly pressurized water was considered in the case without photovoltaic elements. |
abstractGer |
This study examined the performance of a concentrating solar collector with an asymmetric reflector. Two receivers were investigated, differing in the presence of photovoltaic cells. The first one was equipped with cells on both sides while the other was without cells. The analysis was performed using a numerical model that integrates a combination of three-dimensional optical and thermal analyses developed in COMSOL. The investigation included studying the influence of CuO/water and CuO/Syltherm 800 nanofluids on the thermal performance for the receiver without photovoltaic elements, as well as on both thermal and electrical efficiencies for the hybrid receiver. Two volumetric concentrations of CuO in water and Syltherm 800, 3% and 5%, were explored with varying inlet temperatures, ranging from 20 °C to 80 °C for the hybrid solar unit and from 20 °C to 140 °C for the thermal solar unit. The outcomes of the examination were compared between the nanofluids and the pure base fluid. Properly pressurized water was considered in the case without photovoltaic elements. |
abstract_unstemmed |
This study examined the performance of a concentrating solar collector with an asymmetric reflector. Two receivers were investigated, differing in the presence of photovoltaic cells. The first one was equipped with cells on both sides while the other was without cells. The analysis was performed using a numerical model that integrates a combination of three-dimensional optical and thermal analyses developed in COMSOL. The investigation included studying the influence of CuO/water and CuO/Syltherm 800 nanofluids on the thermal performance for the receiver without photovoltaic elements, as well as on both thermal and electrical efficiencies for the hybrid receiver. Two volumetric concentrations of CuO in water and Syltherm 800, 3% and 5%, were explored with varying inlet temperatures, ranging from 20 °C to 80 °C for the hybrid solar unit and from 20 °C to 140 °C for the thermal solar unit. The outcomes of the examination were compared between the nanofluids and the pure base fluid. Properly pressurized water was considered in the case without photovoltaic elements. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 576 |
title_short |
Utilization of H<sub<2</sub<O/CuO and Syltherm 800/CuO Nanofluids in a Concentrating Solar Collector with Photovoltaic Elements |
url |
https://doi.org/10.3390/en17030576 https://doaj.org/article/4b18595a160746cf8b39a1b2a5963050 https://www.mdpi.com/1996-1073/17/3/576 https://doaj.org/toc/1996-1073 |
remote_bool |
true |
author2 |
Dimitrios N. Korres Irene Koronaki Christos Tzivanidis |
author2Str |
Dimitrios N. Korres Irene Koronaki Christos Tzivanidis |
ppnlink |
572083742 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/en17030576 |
up_date |
2024-07-03T23:26:09.701Z |
_version_ |
1803602278169444352 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094500525</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413045317.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en17030576</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094500525</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4b18595a160746cf8b39a1b2a5963050</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Theodoros Papingiotis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Utilization of H<sub<2</sub<O/CuO and Syltherm 800/CuO Nanofluids in a Concentrating Solar Collector with Photovoltaic Elements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study examined the performance of a concentrating solar collector with an asymmetric reflector. Two receivers were investigated, differing in the presence of photovoltaic cells. The first one was equipped with cells on both sides while the other was without cells. The analysis was performed using a numerical model that integrates a combination of three-dimensional optical and thermal analyses developed in COMSOL. The investigation included studying the influence of CuO/water and CuO/Syltherm 800 nanofluids on the thermal performance for the receiver without photovoltaic elements, as well as on both thermal and electrical efficiencies for the hybrid receiver. Two volumetric concentrations of CuO in water and Syltherm 800, 3% and 5%, were explored with varying inlet temperatures, ranging from 20 °C to 80 °C for the hybrid solar unit and from 20 °C to 140 °C for the thermal solar unit. The outcomes of the examination were compared between the nanofluids and the pure base fluid. Properly pressurized water was considered in the case without photovoltaic elements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hybrid solar collector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">concentrating collectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanofluids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical-thermal simulation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dimitrios N. Korres</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Irene Koronaki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christos Tzivanidis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">17(2024), 3, p 576</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:3, p 576</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en17030576</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4b18595a160746cf8b39a1b2a5963050</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/17/3/576</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2024</subfield><subfield code="e">3, p 576</subfield></datafield></record></collection>
|
score |
7.4003897 |