Petrogenesis of high heat producing granites and their contribution to geothermal resource in the Huangshadong geothermal field, South China
The Huangshadong geothermal field (HGF), situated in the contact zone between Mesozoic granites and NE-striking dominant faults in South China, has great geothermal potential. Petrogenesis of reservoir rock plays an important role in understandings its genetic mechanism and assessing geothermal pote...
Ausführliche Beschreibung
Autor*in: |
Yuzhong Liao [verfasserIn] Guiling Wang [verfasserIn] Yufei Xi [verfasserIn] Haonan Gan [verfasserIn] Xiaoxue Yan [verfasserIn] Mingxiao Yu [verfasserIn] Wei Zhang [verfasserIn] Zirui Zhao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Earth Science - Frontiers Media S.A., 2014, 12(2024) |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2024 |
Links: |
---|
DOI / URN: |
10.3389/feart.2024.1342969 |
---|
Katalog-ID: |
DOAJ094752893 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ094752893 | ||
003 | DE-627 | ||
005 | 20240413074800.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/feart.2024.1342969 |2 doi | |
035 | |a (DE-627)DOAJ094752893 | ||
035 | |a (DE-599)DOAJ6419eb47499e463891d0b32e016a684d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Yuzhong Liao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Petrogenesis of high heat producing granites and their contribution to geothermal resource in the Huangshadong geothermal field, South China |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The Huangshadong geothermal field (HGF), situated in the contact zone between Mesozoic granites and NE-striking dominant faults in South China, has great geothermal potential. Petrogenesis of reservoir rock plays an important role in understandings its genetic mechanism and assessing geothermal potential. However, due to the lack of rock sample at depth collected from the geothermal reservoir, the petrogenesis of granites in the geothermal reservoirs of the HGF, remains an enigma. This study elucidated the petrogenetic characteristics of these granites sampled directly from geothermal reservoir at the depth of ∼3,000 km and their geothermal implications through zircon U-Pb dating, geochemical analysis, and Hf isotopic analysis. The zircon U-Pb ages indicate that the magmatism evolution of HGF contains three eras, namely, Cretaceous (135 ± 4 to 143.6 ± 2.8 Ma), Jurassic (152.7 ± 2.7 to 176.7 ± 1.8 Ma), and Permian granites (251 ± 9.1 to 251 ± 5 Ma) from the youngest to oldest. The reservoir granites were emplaced during the latest stage of Cretaceous intrusion, as indicated by the zircon U-Pb ages (135 ± 4 Ma and 135.3 ± 2.4 Ma) of rock samples from the deep part of well HR-1. These Cretaceous rocks are highly fractionated I-type granites, featuring high SiO2, K2O, and Na2O contents, high Rb/Sr ratios, low Zr/Hf, Nb/Ta, and Th/U ratios, and A/CNK values of 1.05–1.13. Compared to other Cretaceous granites outcropping on the margin of the HGF, these granites have undergone the strongest fractional differentiation. The Cretaceous granites in the HGF are high-heat-producing rocks (>5 μW/m3), with an average heat production rate of 6.63 μW/m3. Notably, the Cretaceous reservoir granites (as reservoir rocks) serve as an important heat source for the formation of geothermal resources in the HGF. In addition, the zircon Hf isotopic composition indicates that the reservoir Cretaceous granites originated from Meso-to Paleo-Proterozoic lower crustal materials (TDM2: 1,385 to 1907 Ma). | ||
650 | 4 | |a high-heat-producing granite | |
650 | 4 | |a Huangshadong geothermal field | |
650 | 4 | |a cretaceous granite | |
650 | 4 | |a highly fractionated granite | |
650 | 4 | |a heat source | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Yuzhong Liao |e verfasserin |4 aut | |
700 | 0 | |a Guiling Wang |e verfasserin |4 aut | |
700 | 0 | |a Guiling Wang |e verfasserin |4 aut | |
700 | 0 | |a Yufei Xi |e verfasserin |4 aut | |
700 | 0 | |a Yufei Xi |e verfasserin |4 aut | |
700 | 0 | |a Haonan Gan |e verfasserin |4 aut | |
700 | 0 | |a Haonan Gan |e verfasserin |4 aut | |
700 | 0 | |a Xiaoxue Yan |e verfasserin |4 aut | |
700 | 0 | |a Xiaoxue Yan |e verfasserin |4 aut | |
700 | 0 | |a Mingxiao Yu |e verfasserin |4 aut | |
700 | 0 | |a Mingxiao Yu |e verfasserin |4 aut | |
700 | 0 | |a Wei Zhang |e verfasserin |4 aut | |
700 | 0 | |a Wei Zhang |e verfasserin |4 aut | |
700 | 0 | |a Zirui Zhao |e verfasserin |4 aut | |
700 | 0 | |a Zirui Zhao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Earth Science |d Frontiers Media S.A., 2014 |g 12(2024) |w (DE-627)771399731 |w (DE-600)2741235-0 |x 22966463 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2024 |
856 | 4 | 0 | |u https://doi.org/10.3389/feart.2024.1342969 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6419eb47499e463891d0b32e016a684d |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/feart.2024.1342969/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2296-6463 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2024 |
author_variant |
y l yl y l yl g w gw g w gw y x yx y x yx h g hg h g hg x y xy x y xy m y my m y my w z wz w z wz z z zz z z zz |
---|---|
matchkey_str |
article:22966463:2024----::ergnssfihetrdcngaieadhicnrbtotgohrarsuciteuns |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.3389/feart.2024.1342969 doi (DE-627)DOAJ094752893 (DE-599)DOAJ6419eb47499e463891d0b32e016a684d DE-627 ger DE-627 rakwb eng Yuzhong Liao verfasserin aut Petrogenesis of high heat producing granites and their contribution to geothermal resource in the Huangshadong geothermal field, South China 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Huangshadong geothermal field (HGF), situated in the contact zone between Mesozoic granites and NE-striking dominant faults in South China, has great geothermal potential. Petrogenesis of reservoir rock plays an important role in understandings its genetic mechanism and assessing geothermal potential. However, due to the lack of rock sample at depth collected from the geothermal reservoir, the petrogenesis of granites in the geothermal reservoirs of the HGF, remains an enigma. This study elucidated the petrogenetic characteristics of these granites sampled directly from geothermal reservoir at the depth of ∼3,000 km and their geothermal implications through zircon U-Pb dating, geochemical analysis, and Hf isotopic analysis. The zircon U-Pb ages indicate that the magmatism evolution of HGF contains three eras, namely, Cretaceous (135 ± 4 to 143.6 ± 2.8 Ma), Jurassic (152.7 ± 2.7 to 176.7 ± 1.8 Ma), and Permian granites (251 ± 9.1 to 251 ± 5 Ma) from the youngest to oldest. The reservoir granites were emplaced during the latest stage of Cretaceous intrusion, as indicated by the zircon U-Pb ages (135 ± 4 Ma and 135.3 ± 2.4 Ma) of rock samples from the deep part of well HR-1. These Cretaceous rocks are highly fractionated I-type granites, featuring high SiO2, K2O, and Na2O contents, high Rb/Sr ratios, low Zr/Hf, Nb/Ta, and Th/U ratios, and A/CNK values of 1.05–1.13. Compared to other Cretaceous granites outcropping on the margin of the HGF, these granites have undergone the strongest fractional differentiation. The Cretaceous granites in the HGF are high-heat-producing rocks (>5 μW/m3), with an average heat production rate of 6.63 μW/m3. Notably, the Cretaceous reservoir granites (as reservoir rocks) serve as an important heat source for the formation of geothermal resources in the HGF. In addition, the zircon Hf isotopic composition indicates that the reservoir Cretaceous granites originated from Meso-to Paleo-Proterozoic lower crustal materials (TDM2: 1,385 to 1907 Ma). high-heat-producing granite Huangshadong geothermal field cretaceous granite highly fractionated granite heat source Science Q Yuzhong Liao verfasserin aut Guiling Wang verfasserin aut Guiling Wang verfasserin aut Yufei Xi verfasserin aut Yufei Xi verfasserin aut Haonan Gan verfasserin aut Haonan Gan verfasserin aut Xiaoxue Yan verfasserin aut Xiaoxue Yan verfasserin aut Mingxiao Yu verfasserin aut Mingxiao Yu verfasserin aut Wei Zhang verfasserin aut Wei Zhang verfasserin aut Zirui Zhao verfasserin aut Zirui Zhao verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 12(2024) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:12 year:2024 https://doi.org/10.3389/feart.2024.1342969 kostenfrei https://doaj.org/article/6419eb47499e463891d0b32e016a684d kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2024.1342969/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2024 |
spelling |
10.3389/feart.2024.1342969 doi (DE-627)DOAJ094752893 (DE-599)DOAJ6419eb47499e463891d0b32e016a684d DE-627 ger DE-627 rakwb eng Yuzhong Liao verfasserin aut Petrogenesis of high heat producing granites and their contribution to geothermal resource in the Huangshadong geothermal field, South China 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Huangshadong geothermal field (HGF), situated in the contact zone between Mesozoic granites and NE-striking dominant faults in South China, has great geothermal potential. Petrogenesis of reservoir rock plays an important role in understandings its genetic mechanism and assessing geothermal potential. However, due to the lack of rock sample at depth collected from the geothermal reservoir, the petrogenesis of granites in the geothermal reservoirs of the HGF, remains an enigma. This study elucidated the petrogenetic characteristics of these granites sampled directly from geothermal reservoir at the depth of ∼3,000 km and their geothermal implications through zircon U-Pb dating, geochemical analysis, and Hf isotopic analysis. The zircon U-Pb ages indicate that the magmatism evolution of HGF contains three eras, namely, Cretaceous (135 ± 4 to 143.6 ± 2.8 Ma), Jurassic (152.7 ± 2.7 to 176.7 ± 1.8 Ma), and Permian granites (251 ± 9.1 to 251 ± 5 Ma) from the youngest to oldest. The reservoir granites were emplaced during the latest stage of Cretaceous intrusion, as indicated by the zircon U-Pb ages (135 ± 4 Ma and 135.3 ± 2.4 Ma) of rock samples from the deep part of well HR-1. These Cretaceous rocks are highly fractionated I-type granites, featuring high SiO2, K2O, and Na2O contents, high Rb/Sr ratios, low Zr/Hf, Nb/Ta, and Th/U ratios, and A/CNK values of 1.05–1.13. Compared to other Cretaceous granites outcropping on the margin of the HGF, these granites have undergone the strongest fractional differentiation. The Cretaceous granites in the HGF are high-heat-producing rocks (>5 μW/m3), with an average heat production rate of 6.63 μW/m3. Notably, the Cretaceous reservoir granites (as reservoir rocks) serve as an important heat source for the formation of geothermal resources in the HGF. In addition, the zircon Hf isotopic composition indicates that the reservoir Cretaceous granites originated from Meso-to Paleo-Proterozoic lower crustal materials (TDM2: 1,385 to 1907 Ma). high-heat-producing granite Huangshadong geothermal field cretaceous granite highly fractionated granite heat source Science Q Yuzhong Liao verfasserin aut Guiling Wang verfasserin aut Guiling Wang verfasserin aut Yufei Xi verfasserin aut Yufei Xi verfasserin aut Haonan Gan verfasserin aut Haonan Gan verfasserin aut Xiaoxue Yan verfasserin aut Xiaoxue Yan verfasserin aut Mingxiao Yu verfasserin aut Mingxiao Yu verfasserin aut Wei Zhang verfasserin aut Wei Zhang verfasserin aut Zirui Zhao verfasserin aut Zirui Zhao verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 12(2024) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:12 year:2024 https://doi.org/10.3389/feart.2024.1342969 kostenfrei https://doaj.org/article/6419eb47499e463891d0b32e016a684d kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2024.1342969/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2024 |
allfields_unstemmed |
10.3389/feart.2024.1342969 doi (DE-627)DOAJ094752893 (DE-599)DOAJ6419eb47499e463891d0b32e016a684d DE-627 ger DE-627 rakwb eng Yuzhong Liao verfasserin aut Petrogenesis of high heat producing granites and their contribution to geothermal resource in the Huangshadong geothermal field, South China 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Huangshadong geothermal field (HGF), situated in the contact zone between Mesozoic granites and NE-striking dominant faults in South China, has great geothermal potential. Petrogenesis of reservoir rock plays an important role in understandings its genetic mechanism and assessing geothermal potential. However, due to the lack of rock sample at depth collected from the geothermal reservoir, the petrogenesis of granites in the geothermal reservoirs of the HGF, remains an enigma. This study elucidated the petrogenetic characteristics of these granites sampled directly from geothermal reservoir at the depth of ∼3,000 km and their geothermal implications through zircon U-Pb dating, geochemical analysis, and Hf isotopic analysis. The zircon U-Pb ages indicate that the magmatism evolution of HGF contains three eras, namely, Cretaceous (135 ± 4 to 143.6 ± 2.8 Ma), Jurassic (152.7 ± 2.7 to 176.7 ± 1.8 Ma), and Permian granites (251 ± 9.1 to 251 ± 5 Ma) from the youngest to oldest. The reservoir granites were emplaced during the latest stage of Cretaceous intrusion, as indicated by the zircon U-Pb ages (135 ± 4 Ma and 135.3 ± 2.4 Ma) of rock samples from the deep part of well HR-1. These Cretaceous rocks are highly fractionated I-type granites, featuring high SiO2, K2O, and Na2O contents, high Rb/Sr ratios, low Zr/Hf, Nb/Ta, and Th/U ratios, and A/CNK values of 1.05–1.13. Compared to other Cretaceous granites outcropping on the margin of the HGF, these granites have undergone the strongest fractional differentiation. The Cretaceous granites in the HGF are high-heat-producing rocks (>5 μW/m3), with an average heat production rate of 6.63 μW/m3. Notably, the Cretaceous reservoir granites (as reservoir rocks) serve as an important heat source for the formation of geothermal resources in the HGF. In addition, the zircon Hf isotopic composition indicates that the reservoir Cretaceous granites originated from Meso-to Paleo-Proterozoic lower crustal materials (TDM2: 1,385 to 1907 Ma). high-heat-producing granite Huangshadong geothermal field cretaceous granite highly fractionated granite heat source Science Q Yuzhong Liao verfasserin aut Guiling Wang verfasserin aut Guiling Wang verfasserin aut Yufei Xi verfasserin aut Yufei Xi verfasserin aut Haonan Gan verfasserin aut Haonan Gan verfasserin aut Xiaoxue Yan verfasserin aut Xiaoxue Yan verfasserin aut Mingxiao Yu verfasserin aut Mingxiao Yu verfasserin aut Wei Zhang verfasserin aut Wei Zhang verfasserin aut Zirui Zhao verfasserin aut Zirui Zhao verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 12(2024) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:12 year:2024 https://doi.org/10.3389/feart.2024.1342969 kostenfrei https://doaj.org/article/6419eb47499e463891d0b32e016a684d kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2024.1342969/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2024 |
allfieldsGer |
10.3389/feart.2024.1342969 doi (DE-627)DOAJ094752893 (DE-599)DOAJ6419eb47499e463891d0b32e016a684d DE-627 ger DE-627 rakwb eng Yuzhong Liao verfasserin aut Petrogenesis of high heat producing granites and their contribution to geothermal resource in the Huangshadong geothermal field, South China 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Huangshadong geothermal field (HGF), situated in the contact zone between Mesozoic granites and NE-striking dominant faults in South China, has great geothermal potential. Petrogenesis of reservoir rock plays an important role in understandings its genetic mechanism and assessing geothermal potential. However, due to the lack of rock sample at depth collected from the geothermal reservoir, the petrogenesis of granites in the geothermal reservoirs of the HGF, remains an enigma. This study elucidated the petrogenetic characteristics of these granites sampled directly from geothermal reservoir at the depth of ∼3,000 km and their geothermal implications through zircon U-Pb dating, geochemical analysis, and Hf isotopic analysis. The zircon U-Pb ages indicate that the magmatism evolution of HGF contains three eras, namely, Cretaceous (135 ± 4 to 143.6 ± 2.8 Ma), Jurassic (152.7 ± 2.7 to 176.7 ± 1.8 Ma), and Permian granites (251 ± 9.1 to 251 ± 5 Ma) from the youngest to oldest. The reservoir granites were emplaced during the latest stage of Cretaceous intrusion, as indicated by the zircon U-Pb ages (135 ± 4 Ma and 135.3 ± 2.4 Ma) of rock samples from the deep part of well HR-1. These Cretaceous rocks are highly fractionated I-type granites, featuring high SiO2, K2O, and Na2O contents, high Rb/Sr ratios, low Zr/Hf, Nb/Ta, and Th/U ratios, and A/CNK values of 1.05–1.13. Compared to other Cretaceous granites outcropping on the margin of the HGF, these granites have undergone the strongest fractional differentiation. The Cretaceous granites in the HGF are high-heat-producing rocks (>5 μW/m3), with an average heat production rate of 6.63 μW/m3. Notably, the Cretaceous reservoir granites (as reservoir rocks) serve as an important heat source for the formation of geothermal resources in the HGF. In addition, the zircon Hf isotopic composition indicates that the reservoir Cretaceous granites originated from Meso-to Paleo-Proterozoic lower crustal materials (TDM2: 1,385 to 1907 Ma). high-heat-producing granite Huangshadong geothermal field cretaceous granite highly fractionated granite heat source Science Q Yuzhong Liao verfasserin aut Guiling Wang verfasserin aut Guiling Wang verfasserin aut Yufei Xi verfasserin aut Yufei Xi verfasserin aut Haonan Gan verfasserin aut Haonan Gan verfasserin aut Xiaoxue Yan verfasserin aut Xiaoxue Yan verfasserin aut Mingxiao Yu verfasserin aut Mingxiao Yu verfasserin aut Wei Zhang verfasserin aut Wei Zhang verfasserin aut Zirui Zhao verfasserin aut Zirui Zhao verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 12(2024) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:12 year:2024 https://doi.org/10.3389/feart.2024.1342969 kostenfrei https://doaj.org/article/6419eb47499e463891d0b32e016a684d kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2024.1342969/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2024 |
allfieldsSound |
10.3389/feart.2024.1342969 doi (DE-627)DOAJ094752893 (DE-599)DOAJ6419eb47499e463891d0b32e016a684d DE-627 ger DE-627 rakwb eng Yuzhong Liao verfasserin aut Petrogenesis of high heat producing granites and their contribution to geothermal resource in the Huangshadong geothermal field, South China 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Huangshadong geothermal field (HGF), situated in the contact zone between Mesozoic granites and NE-striking dominant faults in South China, has great geothermal potential. Petrogenesis of reservoir rock plays an important role in understandings its genetic mechanism and assessing geothermal potential. However, due to the lack of rock sample at depth collected from the geothermal reservoir, the petrogenesis of granites in the geothermal reservoirs of the HGF, remains an enigma. This study elucidated the petrogenetic characteristics of these granites sampled directly from geothermal reservoir at the depth of ∼3,000 km and their geothermal implications through zircon U-Pb dating, geochemical analysis, and Hf isotopic analysis. The zircon U-Pb ages indicate that the magmatism evolution of HGF contains three eras, namely, Cretaceous (135 ± 4 to 143.6 ± 2.8 Ma), Jurassic (152.7 ± 2.7 to 176.7 ± 1.8 Ma), and Permian granites (251 ± 9.1 to 251 ± 5 Ma) from the youngest to oldest. The reservoir granites were emplaced during the latest stage of Cretaceous intrusion, as indicated by the zircon U-Pb ages (135 ± 4 Ma and 135.3 ± 2.4 Ma) of rock samples from the deep part of well HR-1. These Cretaceous rocks are highly fractionated I-type granites, featuring high SiO2, K2O, and Na2O contents, high Rb/Sr ratios, low Zr/Hf, Nb/Ta, and Th/U ratios, and A/CNK values of 1.05–1.13. Compared to other Cretaceous granites outcropping on the margin of the HGF, these granites have undergone the strongest fractional differentiation. The Cretaceous granites in the HGF are high-heat-producing rocks (>5 μW/m3), with an average heat production rate of 6.63 μW/m3. Notably, the Cretaceous reservoir granites (as reservoir rocks) serve as an important heat source for the formation of geothermal resources in the HGF. In addition, the zircon Hf isotopic composition indicates that the reservoir Cretaceous granites originated from Meso-to Paleo-Proterozoic lower crustal materials (TDM2: 1,385 to 1907 Ma). high-heat-producing granite Huangshadong geothermal field cretaceous granite highly fractionated granite heat source Science Q Yuzhong Liao verfasserin aut Guiling Wang verfasserin aut Guiling Wang verfasserin aut Yufei Xi verfasserin aut Yufei Xi verfasserin aut Haonan Gan verfasserin aut Haonan Gan verfasserin aut Xiaoxue Yan verfasserin aut Xiaoxue Yan verfasserin aut Mingxiao Yu verfasserin aut Mingxiao Yu verfasserin aut Wei Zhang verfasserin aut Wei Zhang verfasserin aut Zirui Zhao verfasserin aut Zirui Zhao verfasserin aut In Frontiers in Earth Science Frontiers Media S.A., 2014 12(2024) (DE-627)771399731 (DE-600)2741235-0 22966463 nnns volume:12 year:2024 https://doi.org/10.3389/feart.2024.1342969 kostenfrei https://doaj.org/article/6419eb47499e463891d0b32e016a684d kostenfrei https://www.frontiersin.org/articles/10.3389/feart.2024.1342969/full kostenfrei https://doaj.org/toc/2296-6463 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2024 |
language |
English |
source |
In Frontiers in Earth Science 12(2024) volume:12 year:2024 |
sourceStr |
In Frontiers in Earth Science 12(2024) volume:12 year:2024 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
high-heat-producing granite Huangshadong geothermal field cretaceous granite highly fractionated granite heat source Science Q |
isfreeaccess_bool |
true |
container_title |
Frontiers in Earth Science |
authorswithroles_txt_mv |
Yuzhong Liao @@aut@@ Guiling Wang @@aut@@ Yufei Xi @@aut@@ Haonan Gan @@aut@@ Xiaoxue Yan @@aut@@ Mingxiao Yu @@aut@@ Wei Zhang @@aut@@ Zirui Zhao @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
771399731 |
id |
DOAJ094752893 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094752893</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413074800.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/feart.2024.1342969</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094752893</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6419eb47499e463891d0b32e016a684d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yuzhong Liao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Petrogenesis of high heat producing granites and their contribution to geothermal resource in the Huangshadong geothermal field, South China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Huangshadong geothermal field (HGF), situated in the contact zone between Mesozoic granites and NE-striking dominant faults in South China, has great geothermal potential. Petrogenesis of reservoir rock plays an important role in understandings its genetic mechanism and assessing geothermal potential. However, due to the lack of rock sample at depth collected from the geothermal reservoir, the petrogenesis of granites in the geothermal reservoirs of the HGF, remains an enigma. This study elucidated the petrogenetic characteristics of these granites sampled directly from geothermal reservoir at the depth of ∼3,000 km and their geothermal implications through zircon U-Pb dating, geochemical analysis, and Hf isotopic analysis. The zircon U-Pb ages indicate that the magmatism evolution of HGF contains three eras, namely, Cretaceous (135 ± 4 to 143.6 ± 2.8 Ma), Jurassic (152.7 ± 2.7 to 176.7 ± 1.8 Ma), and Permian granites (251 ± 9.1 to 251 ± 5 Ma) from the youngest to oldest. The reservoir granites were emplaced during the latest stage of Cretaceous intrusion, as indicated by the zircon U-Pb ages (135 ± 4 Ma and 135.3 ± 2.4 Ma) of rock samples from the deep part of well HR-1. These Cretaceous rocks are highly fractionated I-type granites, featuring high SiO2, K2O, and Na2O contents, high Rb/Sr ratios, low Zr/Hf, Nb/Ta, and Th/U ratios, and A/CNK values of 1.05–1.13. Compared to other Cretaceous granites outcropping on the margin of the HGF, these granites have undergone the strongest fractional differentiation. The Cretaceous granites in the HGF are high-heat-producing rocks (&gt;5 μW/m3), with an average heat production rate of 6.63 μW/m3. Notably, the Cretaceous reservoir granites (as reservoir rocks) serve as an important heat source for the formation of geothermal resources in the HGF. In addition, the zircon Hf isotopic composition indicates that the reservoir Cretaceous granites originated from Meso-to Paleo-Proterozoic lower crustal materials (TDM2: 1,385 to 1907 Ma).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high-heat-producing granite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Huangshadong geothermal field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cretaceous granite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">highly fractionated granite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heat source</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuzhong Liao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guiling Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guiling Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yufei Xi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yufei Xi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haonan Gan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haonan Gan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoxue Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoxue Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mingxiao Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mingxiao Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zirui Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zirui Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Earth Science</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">12(2024)</subfield><subfield code="w">(DE-627)771399731</subfield><subfield code="w">(DE-600)2741235-0</subfield><subfield code="x">22966463</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2024</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/feart.2024.1342969</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6419eb47499e463891d0b32e016a684d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/feart.2024.1342969/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-6463</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2024</subfield></datafield></record></collection>
|
author |
Yuzhong Liao |
spellingShingle |
Yuzhong Liao misc high-heat-producing granite misc Huangshadong geothermal field misc cretaceous granite misc highly fractionated granite misc heat source misc Science misc Q Petrogenesis of high heat producing granites and their contribution to geothermal resource in the Huangshadong geothermal field, South China |
authorStr |
Yuzhong Liao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)771399731 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
22966463 |
topic_title |
Petrogenesis of high heat producing granites and their contribution to geothermal resource in the Huangshadong geothermal field, South China high-heat-producing granite Huangshadong geothermal field cretaceous granite highly fractionated granite heat source |
topic |
misc high-heat-producing granite misc Huangshadong geothermal field misc cretaceous granite misc highly fractionated granite misc heat source misc Science misc Q |
topic_unstemmed |
misc high-heat-producing granite misc Huangshadong geothermal field misc cretaceous granite misc highly fractionated granite misc heat source misc Science misc Q |
topic_browse |
misc high-heat-producing granite misc Huangshadong geothermal field misc cretaceous granite misc highly fractionated granite misc heat source misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Earth Science |
hierarchy_parent_id |
771399731 |
hierarchy_top_title |
Frontiers in Earth Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)771399731 (DE-600)2741235-0 |
title |
Petrogenesis of high heat producing granites and their contribution to geothermal resource in the Huangshadong geothermal field, South China |
ctrlnum |
(DE-627)DOAJ094752893 (DE-599)DOAJ6419eb47499e463891d0b32e016a684d |
title_full |
Petrogenesis of high heat producing granites and their contribution to geothermal resource in the Huangshadong geothermal field, South China |
author_sort |
Yuzhong Liao |
journal |
Frontiers in Earth Science |
journalStr |
Frontiers in Earth Science |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Yuzhong Liao Guiling Wang Yufei Xi Haonan Gan Xiaoxue Yan Mingxiao Yu Wei Zhang Zirui Zhao |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Yuzhong Liao |
doi_str_mv |
10.3389/feart.2024.1342969 |
author2-role |
verfasserin |
title_sort |
petrogenesis of high heat producing granites and their contribution to geothermal resource in the huangshadong geothermal field, south china |
title_auth |
Petrogenesis of high heat producing granites and their contribution to geothermal resource in the Huangshadong geothermal field, South China |
abstract |
The Huangshadong geothermal field (HGF), situated in the contact zone between Mesozoic granites and NE-striking dominant faults in South China, has great geothermal potential. Petrogenesis of reservoir rock plays an important role in understandings its genetic mechanism and assessing geothermal potential. However, due to the lack of rock sample at depth collected from the geothermal reservoir, the petrogenesis of granites in the geothermal reservoirs of the HGF, remains an enigma. This study elucidated the petrogenetic characteristics of these granites sampled directly from geothermal reservoir at the depth of ∼3,000 km and their geothermal implications through zircon U-Pb dating, geochemical analysis, and Hf isotopic analysis. The zircon U-Pb ages indicate that the magmatism evolution of HGF contains three eras, namely, Cretaceous (135 ± 4 to 143.6 ± 2.8 Ma), Jurassic (152.7 ± 2.7 to 176.7 ± 1.8 Ma), and Permian granites (251 ± 9.1 to 251 ± 5 Ma) from the youngest to oldest. The reservoir granites were emplaced during the latest stage of Cretaceous intrusion, as indicated by the zircon U-Pb ages (135 ± 4 Ma and 135.3 ± 2.4 Ma) of rock samples from the deep part of well HR-1. These Cretaceous rocks are highly fractionated I-type granites, featuring high SiO2, K2O, and Na2O contents, high Rb/Sr ratios, low Zr/Hf, Nb/Ta, and Th/U ratios, and A/CNK values of 1.05–1.13. Compared to other Cretaceous granites outcropping on the margin of the HGF, these granites have undergone the strongest fractional differentiation. The Cretaceous granites in the HGF are high-heat-producing rocks (>5 μW/m3), with an average heat production rate of 6.63 μW/m3. Notably, the Cretaceous reservoir granites (as reservoir rocks) serve as an important heat source for the formation of geothermal resources in the HGF. In addition, the zircon Hf isotopic composition indicates that the reservoir Cretaceous granites originated from Meso-to Paleo-Proterozoic lower crustal materials (TDM2: 1,385 to 1907 Ma). |
abstractGer |
The Huangshadong geothermal field (HGF), situated in the contact zone between Mesozoic granites and NE-striking dominant faults in South China, has great geothermal potential. Petrogenesis of reservoir rock plays an important role in understandings its genetic mechanism and assessing geothermal potential. However, due to the lack of rock sample at depth collected from the geothermal reservoir, the petrogenesis of granites in the geothermal reservoirs of the HGF, remains an enigma. This study elucidated the petrogenetic characteristics of these granites sampled directly from geothermal reservoir at the depth of ∼3,000 km and their geothermal implications through zircon U-Pb dating, geochemical analysis, and Hf isotopic analysis. The zircon U-Pb ages indicate that the magmatism evolution of HGF contains three eras, namely, Cretaceous (135 ± 4 to 143.6 ± 2.8 Ma), Jurassic (152.7 ± 2.7 to 176.7 ± 1.8 Ma), and Permian granites (251 ± 9.1 to 251 ± 5 Ma) from the youngest to oldest. The reservoir granites were emplaced during the latest stage of Cretaceous intrusion, as indicated by the zircon U-Pb ages (135 ± 4 Ma and 135.3 ± 2.4 Ma) of rock samples from the deep part of well HR-1. These Cretaceous rocks are highly fractionated I-type granites, featuring high SiO2, K2O, and Na2O contents, high Rb/Sr ratios, low Zr/Hf, Nb/Ta, and Th/U ratios, and A/CNK values of 1.05–1.13. Compared to other Cretaceous granites outcropping on the margin of the HGF, these granites have undergone the strongest fractional differentiation. The Cretaceous granites in the HGF are high-heat-producing rocks (>5 μW/m3), with an average heat production rate of 6.63 μW/m3. Notably, the Cretaceous reservoir granites (as reservoir rocks) serve as an important heat source for the formation of geothermal resources in the HGF. In addition, the zircon Hf isotopic composition indicates that the reservoir Cretaceous granites originated from Meso-to Paleo-Proterozoic lower crustal materials (TDM2: 1,385 to 1907 Ma). |
abstract_unstemmed |
The Huangshadong geothermal field (HGF), situated in the contact zone between Mesozoic granites and NE-striking dominant faults in South China, has great geothermal potential. Petrogenesis of reservoir rock plays an important role in understandings its genetic mechanism and assessing geothermal potential. However, due to the lack of rock sample at depth collected from the geothermal reservoir, the petrogenesis of granites in the geothermal reservoirs of the HGF, remains an enigma. This study elucidated the petrogenetic characteristics of these granites sampled directly from geothermal reservoir at the depth of ∼3,000 km and their geothermal implications through zircon U-Pb dating, geochemical analysis, and Hf isotopic analysis. The zircon U-Pb ages indicate that the magmatism evolution of HGF contains three eras, namely, Cretaceous (135 ± 4 to 143.6 ± 2.8 Ma), Jurassic (152.7 ± 2.7 to 176.7 ± 1.8 Ma), and Permian granites (251 ± 9.1 to 251 ± 5 Ma) from the youngest to oldest. The reservoir granites were emplaced during the latest stage of Cretaceous intrusion, as indicated by the zircon U-Pb ages (135 ± 4 Ma and 135.3 ± 2.4 Ma) of rock samples from the deep part of well HR-1. These Cretaceous rocks are highly fractionated I-type granites, featuring high SiO2, K2O, and Na2O contents, high Rb/Sr ratios, low Zr/Hf, Nb/Ta, and Th/U ratios, and A/CNK values of 1.05–1.13. Compared to other Cretaceous granites outcropping on the margin of the HGF, these granites have undergone the strongest fractional differentiation. The Cretaceous granites in the HGF are high-heat-producing rocks (>5 μW/m3), with an average heat production rate of 6.63 μW/m3. Notably, the Cretaceous reservoir granites (as reservoir rocks) serve as an important heat source for the formation of geothermal resources in the HGF. In addition, the zircon Hf isotopic composition indicates that the reservoir Cretaceous granites originated from Meso-to Paleo-Proterozoic lower crustal materials (TDM2: 1,385 to 1907 Ma). |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Petrogenesis of high heat producing granites and their contribution to geothermal resource in the Huangshadong geothermal field, South China |
url |
https://doi.org/10.3389/feart.2024.1342969 https://doaj.org/article/6419eb47499e463891d0b32e016a684d https://www.frontiersin.org/articles/10.3389/feart.2024.1342969/full https://doaj.org/toc/2296-6463 |
remote_bool |
true |
author2 |
Yuzhong Liao Guiling Wang Yufei Xi Haonan Gan Xiaoxue Yan Mingxiao Yu Wei Zhang Zirui Zhao |
author2Str |
Yuzhong Liao Guiling Wang Yufei Xi Haonan Gan Xiaoxue Yan Mingxiao Yu Wei Zhang Zirui Zhao |
ppnlink |
771399731 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/feart.2024.1342969 |
up_date |
2024-07-04T00:32:10.172Z |
_version_ |
1803606431024283649 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094752893</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413074800.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/feart.2024.1342969</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094752893</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6419eb47499e463891d0b32e016a684d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yuzhong Liao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Petrogenesis of high heat producing granites and their contribution to geothermal resource in the Huangshadong geothermal field, South China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Huangshadong geothermal field (HGF), situated in the contact zone between Mesozoic granites and NE-striking dominant faults in South China, has great geothermal potential. Petrogenesis of reservoir rock plays an important role in understandings its genetic mechanism and assessing geothermal potential. However, due to the lack of rock sample at depth collected from the geothermal reservoir, the petrogenesis of granites in the geothermal reservoirs of the HGF, remains an enigma. This study elucidated the petrogenetic characteristics of these granites sampled directly from geothermal reservoir at the depth of ∼3,000 km and their geothermal implications through zircon U-Pb dating, geochemical analysis, and Hf isotopic analysis. The zircon U-Pb ages indicate that the magmatism evolution of HGF contains three eras, namely, Cretaceous (135 ± 4 to 143.6 ± 2.8 Ma), Jurassic (152.7 ± 2.7 to 176.7 ± 1.8 Ma), and Permian granites (251 ± 9.1 to 251 ± 5 Ma) from the youngest to oldest. The reservoir granites were emplaced during the latest stage of Cretaceous intrusion, as indicated by the zircon U-Pb ages (135 ± 4 Ma and 135.3 ± 2.4 Ma) of rock samples from the deep part of well HR-1. These Cretaceous rocks are highly fractionated I-type granites, featuring high SiO2, K2O, and Na2O contents, high Rb/Sr ratios, low Zr/Hf, Nb/Ta, and Th/U ratios, and A/CNK values of 1.05–1.13. Compared to other Cretaceous granites outcropping on the margin of the HGF, these granites have undergone the strongest fractional differentiation. The Cretaceous granites in the HGF are high-heat-producing rocks (&gt;5 μW/m3), with an average heat production rate of 6.63 μW/m3. Notably, the Cretaceous reservoir granites (as reservoir rocks) serve as an important heat source for the formation of geothermal resources in the HGF. In addition, the zircon Hf isotopic composition indicates that the reservoir Cretaceous granites originated from Meso-to Paleo-Proterozoic lower crustal materials (TDM2: 1,385 to 1907 Ma).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high-heat-producing granite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Huangshadong geothermal field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cretaceous granite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">highly fractionated granite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heat source</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuzhong Liao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guiling Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guiling Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yufei Xi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yufei Xi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haonan Gan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haonan Gan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoxue Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoxue Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mingxiao Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mingxiao Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zirui Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zirui Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Earth Science</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">12(2024)</subfield><subfield code="w">(DE-627)771399731</subfield><subfield code="w">(DE-600)2741235-0</subfield><subfield code="x">22966463</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2024</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/feart.2024.1342969</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6419eb47499e463891d0b32e016a684d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/feart.2024.1342969/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-6463</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2024</subfield></datafield></record></collection>
|
score |
7.400943 |