EMPRESS. XIII. Chemical Enrichment of Young Galaxies Near and Far at z ∼ 0 and 4–10: Fe/O, Ar/O, S/O, and N/O Measurements with a Comparison of Chemical Evolution Models
We present gas-phase elemental abundance ratios of thirteen local extremely metal-poor galaxies (EMPGs), including our new Keck/LRIS spectroscopy determinations together with 33 James Webb Space Telescope z ∼ 4–10 star-forming galaxies in the literature, and compare chemical evolution models. We dev...
Ausführliche Beschreibung
Autor*in: |
Kuria Watanabe [verfasserIn] Masami Ouchi [verfasserIn] Kimihiko Nakajima [verfasserIn] Yuki Isobe [verfasserIn] Nozomu Tominaga [verfasserIn] Akihiro Suzuki [verfasserIn] Miho N. Ishigaki [verfasserIn] Ken’ichi Nomoto [verfasserIn] Koh Takahashi [verfasserIn] Yuichi Harikane [verfasserIn] Shun Hatano [verfasserIn] Haruka Kusakabe [verfasserIn] Takashi J. Moriya [verfasserIn] Moka Nishigaki [verfasserIn] Yoshiaki Ono [verfasserIn] Masato Onodera [verfasserIn] Yuma Sugahara [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: The Astrophysical Journal - IOP Publishing, 2022, 962(2024), 1, p 50 |
---|---|
Übergeordnetes Werk: |
volume:962 ; year:2024 ; number:1, p 50 |
Links: |
---|
DOI / URN: |
10.3847/1538-4357/ad13ff |
---|
Katalog-ID: |
DOAJ094813574 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ094813574 | ||
003 | DE-627 | ||
005 | 20240413080609.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3847/1538-4357/ad13ff |2 doi | |
035 | |a (DE-627)DOAJ094813574 | ||
035 | |a (DE-599)DOAJ6635069359c34b39a702013d4d0143f9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB460-466 | |
100 | 0 | |a Kuria Watanabe |e verfasserin |4 aut | |
245 | 1 | 0 | |a EMPRESS. XIII. Chemical Enrichment of Young Galaxies Near and Far at z ∼ 0 and 4–10: Fe/O, Ar/O, S/O, and N/O Measurements with a Comparison of Chemical Evolution Models |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We present gas-phase elemental abundance ratios of thirteen local extremely metal-poor galaxies (EMPGs), including our new Keck/LRIS spectroscopy determinations together with 33 James Webb Space Telescope z ∼ 4–10 star-forming galaxies in the literature, and compare chemical evolution models. We develop chemical evolution models with the yields of core-collapse supernovae (CCSNe), Type Ia SNe, hypernovae (HNe), and pair-instability supernovae (PISNe), and compare the EMPGs and high- z galaxies in conjunction with dust depletion contributions. We find that high Fe/O values of EMPGs can (cannot) be explained by PISN metal enrichments (CCSN/HN enrichments even with the mixing-and-fallback mechanism enhancing iron abundance), while the observed Ar/O and S/O values are much smaller than the predictions of the PISN models. The abundance ratios of EMPGs can be explained by the combination of Type Ia SNe and CCSNe/HNe whose inner layers of argon and sulfur mostly fallback, which are comparable to the Sculptor stellar chemical abundance distribution, suggesting that early chemical enrichment has taken place in the EMPGs. Comparing our chemical evolution models with the star-forming galaxies at z ∼ 4–10, we find that the Ar/O and S/O ratios of the high- z galaxies are comparable to those of the CCSN/HN models, while the majority of high- z galaxies do not have constraints good enough to rule out contributions from PISNe. The high N/O ratio recently reported in GN-z11 cannot be explained even by rotating PISNe, but could be reproduced by the winds of rotating Wolf–Rayet stars that end up as a direct collapse. | ||
650 | 4 | |a Galaxy chemical evolution | |
650 | 4 | |a Galaxy evolution | |
650 | 4 | |a Chemical enrichment | |
650 | 4 | |a Chemical abundances | |
650 | 4 | |a Galaxy formation | |
650 | 4 | |a Sculptor dwarf elliptical galaxy | |
653 | 0 | |a Astrophysics | |
700 | 0 | |a Masami Ouchi |e verfasserin |4 aut | |
700 | 0 | |a Kimihiko Nakajima |e verfasserin |4 aut | |
700 | 0 | |a Yuki Isobe |e verfasserin |4 aut | |
700 | 0 | |a Nozomu Tominaga |e verfasserin |4 aut | |
700 | 0 | |a Akihiro Suzuki |e verfasserin |4 aut | |
700 | 0 | |a Miho N. Ishigaki |e verfasserin |4 aut | |
700 | 0 | |a Ken’ichi Nomoto |e verfasserin |4 aut | |
700 | 0 | |a Koh Takahashi |e verfasserin |4 aut | |
700 | 0 | |a Yuichi Harikane |e verfasserin |4 aut | |
700 | 0 | |a Shun Hatano |e verfasserin |4 aut | |
700 | 0 | |a Haruka Kusakabe |e verfasserin |4 aut | |
700 | 0 | |a Takashi J. Moriya |e verfasserin |4 aut | |
700 | 0 | |a Moka Nishigaki |e verfasserin |4 aut | |
700 | 0 | |a Yoshiaki Ono |e verfasserin |4 aut | |
700 | 0 | |a Masato Onodera |e verfasserin |4 aut | |
700 | 0 | |a Yuma Sugahara |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t The Astrophysical Journal |d IOP Publishing, 2022 |g 962(2024), 1, p 50 |w (DE-627)269019219 |w (DE-600)1473835-1 |x 15384357 |7 nnns |
773 | 1 | 8 | |g volume:962 |g year:2024 |g number:1, p 50 |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/ad13ff |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6635069359c34b39a702013d4d0143f9 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/ad13ff |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1538-4357 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 962 |j 2024 |e 1, p 50 |
author_variant |
k w kw m o mo k n kn y i yi n t nt a s as m n i mni k n kn k t kt y h yh s h sh h k hk t j m tjm m n mn y o yo m o mo y s ys |
---|---|
matchkey_str |
article:15384357:2024----::mrsxiceiaercmnoyugaaisernfrt0n40eaoonnmaueetwtao |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
QB |
publishDate |
2024 |
allfields |
10.3847/1538-4357/ad13ff doi (DE-627)DOAJ094813574 (DE-599)DOAJ6635069359c34b39a702013d4d0143f9 DE-627 ger DE-627 rakwb eng QB460-466 Kuria Watanabe verfasserin aut EMPRESS. XIII. Chemical Enrichment of Young Galaxies Near and Far at z ∼ 0 and 4–10: Fe/O, Ar/O, S/O, and N/O Measurements with a Comparison of Chemical Evolution Models 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present gas-phase elemental abundance ratios of thirteen local extremely metal-poor galaxies (EMPGs), including our new Keck/LRIS spectroscopy determinations together with 33 James Webb Space Telescope z ∼ 4–10 star-forming galaxies in the literature, and compare chemical evolution models. We develop chemical evolution models with the yields of core-collapse supernovae (CCSNe), Type Ia SNe, hypernovae (HNe), and pair-instability supernovae (PISNe), and compare the EMPGs and high- z galaxies in conjunction with dust depletion contributions. We find that high Fe/O values of EMPGs can (cannot) be explained by PISN metal enrichments (CCSN/HN enrichments even with the mixing-and-fallback mechanism enhancing iron abundance), while the observed Ar/O and S/O values are much smaller than the predictions of the PISN models. The abundance ratios of EMPGs can be explained by the combination of Type Ia SNe and CCSNe/HNe whose inner layers of argon and sulfur mostly fallback, which are comparable to the Sculptor stellar chemical abundance distribution, suggesting that early chemical enrichment has taken place in the EMPGs. Comparing our chemical evolution models with the star-forming galaxies at z ∼ 4–10, we find that the Ar/O and S/O ratios of the high- z galaxies are comparable to those of the CCSN/HN models, while the majority of high- z galaxies do not have constraints good enough to rule out contributions from PISNe. The high N/O ratio recently reported in GN-z11 cannot be explained even by rotating PISNe, but could be reproduced by the winds of rotating Wolf–Rayet stars that end up as a direct collapse. Galaxy chemical evolution Galaxy evolution Chemical enrichment Chemical abundances Galaxy formation Sculptor dwarf elliptical galaxy Astrophysics Masami Ouchi verfasserin aut Kimihiko Nakajima verfasserin aut Yuki Isobe verfasserin aut Nozomu Tominaga verfasserin aut Akihiro Suzuki verfasserin aut Miho N. Ishigaki verfasserin aut Ken’ichi Nomoto verfasserin aut Koh Takahashi verfasserin aut Yuichi Harikane verfasserin aut Shun Hatano verfasserin aut Haruka Kusakabe verfasserin aut Takashi J. Moriya verfasserin aut Moka Nishigaki verfasserin aut Yoshiaki Ono verfasserin aut Masato Onodera verfasserin aut Yuma Sugahara verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 962(2024), 1, p 50 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:962 year:2024 number:1, p 50 https://doi.org/10.3847/1538-4357/ad13ff kostenfrei https://doaj.org/article/6635069359c34b39a702013d4d0143f9 kostenfrei https://doi.org/10.3847/1538-4357/ad13ff kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 962 2024 1, p 50 |
spelling |
10.3847/1538-4357/ad13ff doi (DE-627)DOAJ094813574 (DE-599)DOAJ6635069359c34b39a702013d4d0143f9 DE-627 ger DE-627 rakwb eng QB460-466 Kuria Watanabe verfasserin aut EMPRESS. XIII. Chemical Enrichment of Young Galaxies Near and Far at z ∼ 0 and 4–10: Fe/O, Ar/O, S/O, and N/O Measurements with a Comparison of Chemical Evolution Models 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present gas-phase elemental abundance ratios of thirteen local extremely metal-poor galaxies (EMPGs), including our new Keck/LRIS spectroscopy determinations together with 33 James Webb Space Telescope z ∼ 4–10 star-forming galaxies in the literature, and compare chemical evolution models. We develop chemical evolution models with the yields of core-collapse supernovae (CCSNe), Type Ia SNe, hypernovae (HNe), and pair-instability supernovae (PISNe), and compare the EMPGs and high- z galaxies in conjunction with dust depletion contributions. We find that high Fe/O values of EMPGs can (cannot) be explained by PISN metal enrichments (CCSN/HN enrichments even with the mixing-and-fallback mechanism enhancing iron abundance), while the observed Ar/O and S/O values are much smaller than the predictions of the PISN models. The abundance ratios of EMPGs can be explained by the combination of Type Ia SNe and CCSNe/HNe whose inner layers of argon and sulfur mostly fallback, which are comparable to the Sculptor stellar chemical abundance distribution, suggesting that early chemical enrichment has taken place in the EMPGs. Comparing our chemical evolution models with the star-forming galaxies at z ∼ 4–10, we find that the Ar/O and S/O ratios of the high- z galaxies are comparable to those of the CCSN/HN models, while the majority of high- z galaxies do not have constraints good enough to rule out contributions from PISNe. The high N/O ratio recently reported in GN-z11 cannot be explained even by rotating PISNe, but could be reproduced by the winds of rotating Wolf–Rayet stars that end up as a direct collapse. Galaxy chemical evolution Galaxy evolution Chemical enrichment Chemical abundances Galaxy formation Sculptor dwarf elliptical galaxy Astrophysics Masami Ouchi verfasserin aut Kimihiko Nakajima verfasserin aut Yuki Isobe verfasserin aut Nozomu Tominaga verfasserin aut Akihiro Suzuki verfasserin aut Miho N. Ishigaki verfasserin aut Ken’ichi Nomoto verfasserin aut Koh Takahashi verfasserin aut Yuichi Harikane verfasserin aut Shun Hatano verfasserin aut Haruka Kusakabe verfasserin aut Takashi J. Moriya verfasserin aut Moka Nishigaki verfasserin aut Yoshiaki Ono verfasserin aut Masato Onodera verfasserin aut Yuma Sugahara verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 962(2024), 1, p 50 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:962 year:2024 number:1, p 50 https://doi.org/10.3847/1538-4357/ad13ff kostenfrei https://doaj.org/article/6635069359c34b39a702013d4d0143f9 kostenfrei https://doi.org/10.3847/1538-4357/ad13ff kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 962 2024 1, p 50 |
allfields_unstemmed |
10.3847/1538-4357/ad13ff doi (DE-627)DOAJ094813574 (DE-599)DOAJ6635069359c34b39a702013d4d0143f9 DE-627 ger DE-627 rakwb eng QB460-466 Kuria Watanabe verfasserin aut EMPRESS. XIII. Chemical Enrichment of Young Galaxies Near and Far at z ∼ 0 and 4–10: Fe/O, Ar/O, S/O, and N/O Measurements with a Comparison of Chemical Evolution Models 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present gas-phase elemental abundance ratios of thirteen local extremely metal-poor galaxies (EMPGs), including our new Keck/LRIS spectroscopy determinations together with 33 James Webb Space Telescope z ∼ 4–10 star-forming galaxies in the literature, and compare chemical evolution models. We develop chemical evolution models with the yields of core-collapse supernovae (CCSNe), Type Ia SNe, hypernovae (HNe), and pair-instability supernovae (PISNe), and compare the EMPGs and high- z galaxies in conjunction with dust depletion contributions. We find that high Fe/O values of EMPGs can (cannot) be explained by PISN metal enrichments (CCSN/HN enrichments even with the mixing-and-fallback mechanism enhancing iron abundance), while the observed Ar/O and S/O values are much smaller than the predictions of the PISN models. The abundance ratios of EMPGs can be explained by the combination of Type Ia SNe and CCSNe/HNe whose inner layers of argon and sulfur mostly fallback, which are comparable to the Sculptor stellar chemical abundance distribution, suggesting that early chemical enrichment has taken place in the EMPGs. Comparing our chemical evolution models with the star-forming galaxies at z ∼ 4–10, we find that the Ar/O and S/O ratios of the high- z galaxies are comparable to those of the CCSN/HN models, while the majority of high- z galaxies do not have constraints good enough to rule out contributions from PISNe. The high N/O ratio recently reported in GN-z11 cannot be explained even by rotating PISNe, but could be reproduced by the winds of rotating Wolf–Rayet stars that end up as a direct collapse. Galaxy chemical evolution Galaxy evolution Chemical enrichment Chemical abundances Galaxy formation Sculptor dwarf elliptical galaxy Astrophysics Masami Ouchi verfasserin aut Kimihiko Nakajima verfasserin aut Yuki Isobe verfasserin aut Nozomu Tominaga verfasserin aut Akihiro Suzuki verfasserin aut Miho N. Ishigaki verfasserin aut Ken’ichi Nomoto verfasserin aut Koh Takahashi verfasserin aut Yuichi Harikane verfasserin aut Shun Hatano verfasserin aut Haruka Kusakabe verfasserin aut Takashi J. Moriya verfasserin aut Moka Nishigaki verfasserin aut Yoshiaki Ono verfasserin aut Masato Onodera verfasserin aut Yuma Sugahara verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 962(2024), 1, p 50 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:962 year:2024 number:1, p 50 https://doi.org/10.3847/1538-4357/ad13ff kostenfrei https://doaj.org/article/6635069359c34b39a702013d4d0143f9 kostenfrei https://doi.org/10.3847/1538-4357/ad13ff kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 962 2024 1, p 50 |
allfieldsGer |
10.3847/1538-4357/ad13ff doi (DE-627)DOAJ094813574 (DE-599)DOAJ6635069359c34b39a702013d4d0143f9 DE-627 ger DE-627 rakwb eng QB460-466 Kuria Watanabe verfasserin aut EMPRESS. XIII. Chemical Enrichment of Young Galaxies Near and Far at z ∼ 0 and 4–10: Fe/O, Ar/O, S/O, and N/O Measurements with a Comparison of Chemical Evolution Models 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present gas-phase elemental abundance ratios of thirteen local extremely metal-poor galaxies (EMPGs), including our new Keck/LRIS spectroscopy determinations together with 33 James Webb Space Telescope z ∼ 4–10 star-forming galaxies in the literature, and compare chemical evolution models. We develop chemical evolution models with the yields of core-collapse supernovae (CCSNe), Type Ia SNe, hypernovae (HNe), and pair-instability supernovae (PISNe), and compare the EMPGs and high- z galaxies in conjunction with dust depletion contributions. We find that high Fe/O values of EMPGs can (cannot) be explained by PISN metal enrichments (CCSN/HN enrichments even with the mixing-and-fallback mechanism enhancing iron abundance), while the observed Ar/O and S/O values are much smaller than the predictions of the PISN models. The abundance ratios of EMPGs can be explained by the combination of Type Ia SNe and CCSNe/HNe whose inner layers of argon and sulfur mostly fallback, which are comparable to the Sculptor stellar chemical abundance distribution, suggesting that early chemical enrichment has taken place in the EMPGs. Comparing our chemical evolution models with the star-forming galaxies at z ∼ 4–10, we find that the Ar/O and S/O ratios of the high- z galaxies are comparable to those of the CCSN/HN models, while the majority of high- z galaxies do not have constraints good enough to rule out contributions from PISNe. The high N/O ratio recently reported in GN-z11 cannot be explained even by rotating PISNe, but could be reproduced by the winds of rotating Wolf–Rayet stars that end up as a direct collapse. Galaxy chemical evolution Galaxy evolution Chemical enrichment Chemical abundances Galaxy formation Sculptor dwarf elliptical galaxy Astrophysics Masami Ouchi verfasserin aut Kimihiko Nakajima verfasserin aut Yuki Isobe verfasserin aut Nozomu Tominaga verfasserin aut Akihiro Suzuki verfasserin aut Miho N. Ishigaki verfasserin aut Ken’ichi Nomoto verfasserin aut Koh Takahashi verfasserin aut Yuichi Harikane verfasserin aut Shun Hatano verfasserin aut Haruka Kusakabe verfasserin aut Takashi J. Moriya verfasserin aut Moka Nishigaki verfasserin aut Yoshiaki Ono verfasserin aut Masato Onodera verfasserin aut Yuma Sugahara verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 962(2024), 1, p 50 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:962 year:2024 number:1, p 50 https://doi.org/10.3847/1538-4357/ad13ff kostenfrei https://doaj.org/article/6635069359c34b39a702013d4d0143f9 kostenfrei https://doi.org/10.3847/1538-4357/ad13ff kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 962 2024 1, p 50 |
allfieldsSound |
10.3847/1538-4357/ad13ff doi (DE-627)DOAJ094813574 (DE-599)DOAJ6635069359c34b39a702013d4d0143f9 DE-627 ger DE-627 rakwb eng QB460-466 Kuria Watanabe verfasserin aut EMPRESS. XIII. Chemical Enrichment of Young Galaxies Near and Far at z ∼ 0 and 4–10: Fe/O, Ar/O, S/O, and N/O Measurements with a Comparison of Chemical Evolution Models 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present gas-phase elemental abundance ratios of thirteen local extremely metal-poor galaxies (EMPGs), including our new Keck/LRIS spectroscopy determinations together with 33 James Webb Space Telescope z ∼ 4–10 star-forming galaxies in the literature, and compare chemical evolution models. We develop chemical evolution models with the yields of core-collapse supernovae (CCSNe), Type Ia SNe, hypernovae (HNe), and pair-instability supernovae (PISNe), and compare the EMPGs and high- z galaxies in conjunction with dust depletion contributions. We find that high Fe/O values of EMPGs can (cannot) be explained by PISN metal enrichments (CCSN/HN enrichments even with the mixing-and-fallback mechanism enhancing iron abundance), while the observed Ar/O and S/O values are much smaller than the predictions of the PISN models. The abundance ratios of EMPGs can be explained by the combination of Type Ia SNe and CCSNe/HNe whose inner layers of argon and sulfur mostly fallback, which are comparable to the Sculptor stellar chemical abundance distribution, suggesting that early chemical enrichment has taken place in the EMPGs. Comparing our chemical evolution models with the star-forming galaxies at z ∼ 4–10, we find that the Ar/O and S/O ratios of the high- z galaxies are comparable to those of the CCSN/HN models, while the majority of high- z galaxies do not have constraints good enough to rule out contributions from PISNe. The high N/O ratio recently reported in GN-z11 cannot be explained even by rotating PISNe, but could be reproduced by the winds of rotating Wolf–Rayet stars that end up as a direct collapse. Galaxy chemical evolution Galaxy evolution Chemical enrichment Chemical abundances Galaxy formation Sculptor dwarf elliptical galaxy Astrophysics Masami Ouchi verfasserin aut Kimihiko Nakajima verfasserin aut Yuki Isobe verfasserin aut Nozomu Tominaga verfasserin aut Akihiro Suzuki verfasserin aut Miho N. Ishigaki verfasserin aut Ken’ichi Nomoto verfasserin aut Koh Takahashi verfasserin aut Yuichi Harikane verfasserin aut Shun Hatano verfasserin aut Haruka Kusakabe verfasserin aut Takashi J. Moriya verfasserin aut Moka Nishigaki verfasserin aut Yoshiaki Ono verfasserin aut Masato Onodera verfasserin aut Yuma Sugahara verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 962(2024), 1, p 50 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:962 year:2024 number:1, p 50 https://doi.org/10.3847/1538-4357/ad13ff kostenfrei https://doaj.org/article/6635069359c34b39a702013d4d0143f9 kostenfrei https://doi.org/10.3847/1538-4357/ad13ff kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 962 2024 1, p 50 |
language |
English |
source |
In The Astrophysical Journal 962(2024), 1, p 50 volume:962 year:2024 number:1, p 50 |
sourceStr |
In The Astrophysical Journal 962(2024), 1, p 50 volume:962 year:2024 number:1, p 50 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Galaxy chemical evolution Galaxy evolution Chemical enrichment Chemical abundances Galaxy formation Sculptor dwarf elliptical galaxy Astrophysics |
isfreeaccess_bool |
true |
container_title |
The Astrophysical Journal |
authorswithroles_txt_mv |
Kuria Watanabe @@aut@@ Masami Ouchi @@aut@@ Kimihiko Nakajima @@aut@@ Yuki Isobe @@aut@@ Nozomu Tominaga @@aut@@ Akihiro Suzuki @@aut@@ Miho N. Ishigaki @@aut@@ Ken’ichi Nomoto @@aut@@ Koh Takahashi @@aut@@ Yuichi Harikane @@aut@@ Shun Hatano @@aut@@ Haruka Kusakabe @@aut@@ Takashi J. Moriya @@aut@@ Moka Nishigaki @@aut@@ Yoshiaki Ono @@aut@@ Masato Onodera @@aut@@ Yuma Sugahara @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
269019219 |
id |
DOAJ094813574 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094813574</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413080609.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/ad13ff</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094813574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6635069359c34b39a702013d4d0143f9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kuria Watanabe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">EMPRESS. XIII. Chemical Enrichment of Young Galaxies Near and Far at z ∼ 0 and 4–10: Fe/O, Ar/O, S/O, and N/O Measurements with a Comparison of Chemical Evolution Models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present gas-phase elemental abundance ratios of thirteen local extremely metal-poor galaxies (EMPGs), including our new Keck/LRIS spectroscopy determinations together with 33 James Webb Space Telescope z ∼ 4–10 star-forming galaxies in the literature, and compare chemical evolution models. We develop chemical evolution models with the yields of core-collapse supernovae (CCSNe), Type Ia SNe, hypernovae (HNe), and pair-instability supernovae (PISNe), and compare the EMPGs and high- z galaxies in conjunction with dust depletion contributions. We find that high Fe/O values of EMPGs can (cannot) be explained by PISN metal enrichments (CCSN/HN enrichments even with the mixing-and-fallback mechanism enhancing iron abundance), while the observed Ar/O and S/O values are much smaller than the predictions of the PISN models. The abundance ratios of EMPGs can be explained by the combination of Type Ia SNe and CCSNe/HNe whose inner layers of argon and sulfur mostly fallback, which are comparable to the Sculptor stellar chemical abundance distribution, suggesting that early chemical enrichment has taken place in the EMPGs. Comparing our chemical evolution models with the star-forming galaxies at z ∼ 4–10, we find that the Ar/O and S/O ratios of the high- z galaxies are comparable to those of the CCSN/HN models, while the majority of high- z galaxies do not have constraints good enough to rule out contributions from PISNe. The high N/O ratio recently reported in GN-z11 cannot be explained even by rotating PISNe, but could be reproduced by the winds of rotating Wolf–Rayet stars that end up as a direct collapse.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxy chemical evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxy evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical enrichment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical abundances</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxy formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sculptor dwarf elliptical galaxy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Masami Ouchi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kimihiko Nakajima</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuki Isobe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nozomu Tominaga</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Akihiro Suzuki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Miho N. Ishigaki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ken’ichi Nomoto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Koh Takahashi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuichi Harikane</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shun Hatano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haruka Kusakabe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Takashi J. Moriya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Moka Nishigaki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yoshiaki Ono</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Masato Onodera</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuma Sugahara</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">962(2024), 1, p 50</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:962</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1, p 50</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad13ff</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6635069359c34b39a702013d4d0143f9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad13ff</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">962</subfield><subfield code="j">2024</subfield><subfield code="e">1, p 50</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Kuria Watanabe |
spellingShingle |
Kuria Watanabe misc QB460-466 misc Galaxy chemical evolution misc Galaxy evolution misc Chemical enrichment misc Chemical abundances misc Galaxy formation misc Sculptor dwarf elliptical galaxy misc Astrophysics EMPRESS. XIII. Chemical Enrichment of Young Galaxies Near and Far at z ∼ 0 and 4–10: Fe/O, Ar/O, S/O, and N/O Measurements with a Comparison of Chemical Evolution Models |
authorStr |
Kuria Watanabe |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)269019219 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB460-466 |
illustrated |
Not Illustrated |
issn |
15384357 |
topic_title |
QB460-466 EMPRESS. XIII. Chemical Enrichment of Young Galaxies Near and Far at z ∼ 0 and 4–10: Fe/O, Ar/O, S/O, and N/O Measurements with a Comparison of Chemical Evolution Models Galaxy chemical evolution Galaxy evolution Chemical enrichment Chemical abundances Galaxy formation Sculptor dwarf elliptical galaxy |
topic |
misc QB460-466 misc Galaxy chemical evolution misc Galaxy evolution misc Chemical enrichment misc Chemical abundances misc Galaxy formation misc Sculptor dwarf elliptical galaxy misc Astrophysics |
topic_unstemmed |
misc QB460-466 misc Galaxy chemical evolution misc Galaxy evolution misc Chemical enrichment misc Chemical abundances misc Galaxy formation misc Sculptor dwarf elliptical galaxy misc Astrophysics |
topic_browse |
misc QB460-466 misc Galaxy chemical evolution misc Galaxy evolution misc Chemical enrichment misc Chemical abundances misc Galaxy formation misc Sculptor dwarf elliptical galaxy misc Astrophysics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Astrophysical Journal |
hierarchy_parent_id |
269019219 |
hierarchy_top_title |
The Astrophysical Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)269019219 (DE-600)1473835-1 |
title |
EMPRESS. XIII. Chemical Enrichment of Young Galaxies Near and Far at z ∼ 0 and 4–10: Fe/O, Ar/O, S/O, and N/O Measurements with a Comparison of Chemical Evolution Models |
ctrlnum |
(DE-627)DOAJ094813574 (DE-599)DOAJ6635069359c34b39a702013d4d0143f9 |
title_full |
EMPRESS. XIII. Chemical Enrichment of Young Galaxies Near and Far at z ∼ 0 and 4–10: Fe/O, Ar/O, S/O, and N/O Measurements with a Comparison of Chemical Evolution Models |
author_sort |
Kuria Watanabe |
journal |
The Astrophysical Journal |
journalStr |
The Astrophysical Journal |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Kuria Watanabe Masami Ouchi Kimihiko Nakajima Yuki Isobe Nozomu Tominaga Akihiro Suzuki Miho N. Ishigaki Ken’ichi Nomoto Koh Takahashi Yuichi Harikane Shun Hatano Haruka Kusakabe Takashi J. Moriya Moka Nishigaki Yoshiaki Ono Masato Onodera Yuma Sugahara |
container_volume |
962 |
class |
QB460-466 |
format_se |
Elektronische Aufsätze |
author-letter |
Kuria Watanabe |
doi_str_mv |
10.3847/1538-4357/ad13ff |
author2-role |
verfasserin |
title_sort |
empress. xiii. chemical enrichment of young galaxies near and far at z ∼ 0 and 4–10: fe/o, ar/o, s/o, and n/o measurements with a comparison of chemical evolution models |
callnumber |
QB460-466 |
title_auth |
EMPRESS. XIII. Chemical Enrichment of Young Galaxies Near and Far at z ∼ 0 and 4–10: Fe/O, Ar/O, S/O, and N/O Measurements with a Comparison of Chemical Evolution Models |
abstract |
We present gas-phase elemental abundance ratios of thirteen local extremely metal-poor galaxies (EMPGs), including our new Keck/LRIS spectroscopy determinations together with 33 James Webb Space Telescope z ∼ 4–10 star-forming galaxies in the literature, and compare chemical evolution models. We develop chemical evolution models with the yields of core-collapse supernovae (CCSNe), Type Ia SNe, hypernovae (HNe), and pair-instability supernovae (PISNe), and compare the EMPGs and high- z galaxies in conjunction with dust depletion contributions. We find that high Fe/O values of EMPGs can (cannot) be explained by PISN metal enrichments (CCSN/HN enrichments even with the mixing-and-fallback mechanism enhancing iron abundance), while the observed Ar/O and S/O values are much smaller than the predictions of the PISN models. The abundance ratios of EMPGs can be explained by the combination of Type Ia SNe and CCSNe/HNe whose inner layers of argon and sulfur mostly fallback, which are comparable to the Sculptor stellar chemical abundance distribution, suggesting that early chemical enrichment has taken place in the EMPGs. Comparing our chemical evolution models with the star-forming galaxies at z ∼ 4–10, we find that the Ar/O and S/O ratios of the high- z galaxies are comparable to those of the CCSN/HN models, while the majority of high- z galaxies do not have constraints good enough to rule out contributions from PISNe. The high N/O ratio recently reported in GN-z11 cannot be explained even by rotating PISNe, but could be reproduced by the winds of rotating Wolf–Rayet stars that end up as a direct collapse. |
abstractGer |
We present gas-phase elemental abundance ratios of thirteen local extremely metal-poor galaxies (EMPGs), including our new Keck/LRIS spectroscopy determinations together with 33 James Webb Space Telescope z ∼ 4–10 star-forming galaxies in the literature, and compare chemical evolution models. We develop chemical evolution models with the yields of core-collapse supernovae (CCSNe), Type Ia SNe, hypernovae (HNe), and pair-instability supernovae (PISNe), and compare the EMPGs and high- z galaxies in conjunction with dust depletion contributions. We find that high Fe/O values of EMPGs can (cannot) be explained by PISN metal enrichments (CCSN/HN enrichments even with the mixing-and-fallback mechanism enhancing iron abundance), while the observed Ar/O and S/O values are much smaller than the predictions of the PISN models. The abundance ratios of EMPGs can be explained by the combination of Type Ia SNe and CCSNe/HNe whose inner layers of argon and sulfur mostly fallback, which are comparable to the Sculptor stellar chemical abundance distribution, suggesting that early chemical enrichment has taken place in the EMPGs. Comparing our chemical evolution models with the star-forming galaxies at z ∼ 4–10, we find that the Ar/O and S/O ratios of the high- z galaxies are comparable to those of the CCSN/HN models, while the majority of high- z galaxies do not have constraints good enough to rule out contributions from PISNe. The high N/O ratio recently reported in GN-z11 cannot be explained even by rotating PISNe, but could be reproduced by the winds of rotating Wolf–Rayet stars that end up as a direct collapse. |
abstract_unstemmed |
We present gas-phase elemental abundance ratios of thirteen local extremely metal-poor galaxies (EMPGs), including our new Keck/LRIS spectroscopy determinations together with 33 James Webb Space Telescope z ∼ 4–10 star-forming galaxies in the literature, and compare chemical evolution models. We develop chemical evolution models with the yields of core-collapse supernovae (CCSNe), Type Ia SNe, hypernovae (HNe), and pair-instability supernovae (PISNe), and compare the EMPGs and high- z galaxies in conjunction with dust depletion contributions. We find that high Fe/O values of EMPGs can (cannot) be explained by PISN metal enrichments (CCSN/HN enrichments even with the mixing-and-fallback mechanism enhancing iron abundance), while the observed Ar/O and S/O values are much smaller than the predictions of the PISN models. The abundance ratios of EMPGs can be explained by the combination of Type Ia SNe and CCSNe/HNe whose inner layers of argon and sulfur mostly fallback, which are comparable to the Sculptor stellar chemical abundance distribution, suggesting that early chemical enrichment has taken place in the EMPGs. Comparing our chemical evolution models with the star-forming galaxies at z ∼ 4–10, we find that the Ar/O and S/O ratios of the high- z galaxies are comparable to those of the CCSN/HN models, while the majority of high- z galaxies do not have constraints good enough to rule out contributions from PISNe. The high N/O ratio recently reported in GN-z11 cannot be explained even by rotating PISNe, but could be reproduced by the winds of rotating Wolf–Rayet stars that end up as a direct collapse. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 50 |
title_short |
EMPRESS. XIII. Chemical Enrichment of Young Galaxies Near and Far at z ∼ 0 and 4–10: Fe/O, Ar/O, S/O, and N/O Measurements with a Comparison of Chemical Evolution Models |
url |
https://doi.org/10.3847/1538-4357/ad13ff https://doaj.org/article/6635069359c34b39a702013d4d0143f9 https://doaj.org/toc/1538-4357 |
remote_bool |
true |
author2 |
Masami Ouchi Kimihiko Nakajima Yuki Isobe Nozomu Tominaga Akihiro Suzuki Miho N. Ishigaki Ken’ichi Nomoto Koh Takahashi Yuichi Harikane Shun Hatano Haruka Kusakabe Takashi J. Moriya Moka Nishigaki Yoshiaki Ono Masato Onodera Yuma Sugahara |
author2Str |
Masami Ouchi Kimihiko Nakajima Yuki Isobe Nozomu Tominaga Akihiro Suzuki Miho N. Ishigaki Ken’ichi Nomoto Koh Takahashi Yuichi Harikane Shun Hatano Haruka Kusakabe Takashi J. Moriya Moka Nishigaki Yoshiaki Ono Masato Onodera Yuma Sugahara |
ppnlink |
269019219 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3847/1538-4357/ad13ff |
callnumber-a |
QB460-466 |
up_date |
2024-07-04T00:47:24.782Z |
_version_ |
1803607390064476160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094813574</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413080609.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/ad13ff</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094813574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6635069359c34b39a702013d4d0143f9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kuria Watanabe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">EMPRESS. XIII. Chemical Enrichment of Young Galaxies Near and Far at z ∼ 0 and 4–10: Fe/O, Ar/O, S/O, and N/O Measurements with a Comparison of Chemical Evolution Models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present gas-phase elemental abundance ratios of thirteen local extremely metal-poor galaxies (EMPGs), including our new Keck/LRIS spectroscopy determinations together with 33 James Webb Space Telescope z ∼ 4–10 star-forming galaxies in the literature, and compare chemical evolution models. We develop chemical evolution models with the yields of core-collapse supernovae (CCSNe), Type Ia SNe, hypernovae (HNe), and pair-instability supernovae (PISNe), and compare the EMPGs and high- z galaxies in conjunction with dust depletion contributions. We find that high Fe/O values of EMPGs can (cannot) be explained by PISN metal enrichments (CCSN/HN enrichments even with the mixing-and-fallback mechanism enhancing iron abundance), while the observed Ar/O and S/O values are much smaller than the predictions of the PISN models. The abundance ratios of EMPGs can be explained by the combination of Type Ia SNe and CCSNe/HNe whose inner layers of argon and sulfur mostly fallback, which are comparable to the Sculptor stellar chemical abundance distribution, suggesting that early chemical enrichment has taken place in the EMPGs. Comparing our chemical evolution models with the star-forming galaxies at z ∼ 4–10, we find that the Ar/O and S/O ratios of the high- z galaxies are comparable to those of the CCSN/HN models, while the majority of high- z galaxies do not have constraints good enough to rule out contributions from PISNe. The high N/O ratio recently reported in GN-z11 cannot be explained even by rotating PISNe, but could be reproduced by the winds of rotating Wolf–Rayet stars that end up as a direct collapse.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxy chemical evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxy evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical enrichment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical abundances</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxy formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sculptor dwarf elliptical galaxy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Masami Ouchi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kimihiko Nakajima</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuki Isobe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nozomu Tominaga</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Akihiro Suzuki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Miho N. Ishigaki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ken’ichi Nomoto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Koh Takahashi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuichi Harikane</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shun Hatano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haruka Kusakabe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Takashi J. Moriya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Moka Nishigaki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yoshiaki Ono</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Masato Onodera</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuma Sugahara</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">962(2024), 1, p 50</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:962</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1, p 50</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad13ff</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6635069359c34b39a702013d4d0143f9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad13ff</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">962</subfield><subfield code="j">2024</subfield><subfield code="e">1, p 50</subfield></datafield></record></collection>
|
score |
7.402439 |