A Framework for Robust Deep Learning Models Against Adversarial Attacks Based on a Protection Layer Approach

Deep learning (DL) has demonstrated remarkable achievements in various fields. Nevertheless, DL models encounter significant challenges in detecting and defending against adversarial samples (AEs). These AEs are meticulously crafted by adversaries, introducing imperceptible perturbations to clean da...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Mohammed Nasser Al-Andoli [verfasserIn]

Shing Chiang Tan [verfasserIn]

Kok Swee Sim [verfasserIn]

Pey Yun Goh [verfasserIn]

Chee Peng Lim [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2024

Schlagwörter:

Deep learning

adversarial examples

security

adversarial attacks

adversarial examples detection

Übergeordnetes Werk:

In: IEEE Access - IEEE, 2014, 12(2024), Seite 17522-17540

Übergeordnetes Werk:

volume:12 ; year:2024 ; pages:17522-17540

Links:

Link aufrufen
Link aufrufen
Link aufrufen
Journal toc

DOI / URN:

10.1109/ACCESS.2024.3354699

Katalog-ID:

DOAJ094858667

Nicht das Richtige dabei?

Schreiben Sie uns!