Domain Boundary Formation Within an Intercalated Pb Monolayer Featuring Charge‐Neutral Epitaxial Graphene
Abstract The synthesis of new graphene‐based quantum materials by intercalation is an auspicious approach. However, an accompanying proximity coupling depends crucially on the structural details of the new heterostructure. It is studied in detail the Pb monolayer structure after intercalation into t...
Ausführliche Beschreibung
Autor*in: |
Philip Schädlich [verfasserIn] Chitran Ghosal [verfasserIn] Monja Stettner [verfasserIn] Bharti Matta [verfasserIn] Susanne Wolff [verfasserIn] Franziska Schölzel [verfasserIn] Peter Richter [verfasserIn] Mark Hutter [verfasserIn] Anja Haags [verfasserIn] Sabine Wenzel [verfasserIn] Zamin Mamiyev [verfasserIn] Julian Koch [verfasserIn] Serguei Soubatch [verfasserIn] Philipp Rosenzweig [verfasserIn] Craig Polley [verfasserIn] Frank Stefan Tautz [verfasserIn] Christian Kumpf [verfasserIn] Kathrin Küster [verfasserIn] Ulrich Starke [verfasserIn] Thomas Seyller [verfasserIn] Francois C. Bocquet [verfasserIn] Christoph Tegenkamp [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
angle‐resolved photoelectron sprectroscopy charge‐neutral epitaxial graphene low energy electron diffraction |
---|
Übergeordnetes Werk: |
In: Advanced Materials Interfaces ; 10(2023), 27, Seite n/a-n/a volume:10 ; year:2023 ; number:27 ; pages:n/a-n/a |
---|
Links: |
---|
DOI / URN: |
10.1002/admi.202300471 |
---|
Katalog-ID: |
DOAJ095062564 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ095062564 | ||
003 | DE-627 | ||
005 | 20240413090526.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1002/admi.202300471 |2 doi | |
035 | |a (DE-627)DOAJ095062564 | ||
035 | |a (DE-599)DOAJcae478ddec1b44a88c730ae60c895625 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC1-999 | |
100 | 0 | |a Philip Schädlich |e verfasserin |4 aut | |
245 | 1 | 0 | |a Domain Boundary Formation Within an Intercalated Pb Monolayer Featuring Charge‐Neutral Epitaxial Graphene |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The synthesis of new graphene‐based quantum materials by intercalation is an auspicious approach. However, an accompanying proximity coupling depends crucially on the structural details of the new heterostructure. It is studied in detail the Pb monolayer structure after intercalation into the graphene buffer layer on the SiC(0001) interface by means of photoelectron spectroscopy, x‐ray standing waves, and scanning tunneling microscopy. A coherent fraction close to unity proves the formation of a flat Pb monolayer on the SiC surface. An interlayer distance of 3.67 Å to the suspended graphene underlines the formation of a truly van der Waals heterostructure. The 2D Pb layer reveals a quasi ten‐fold periodicity due to the formation of a grain boundary network, ensuring the saturation of the Si surface bonds. Moreover, the densely‐packed Pb layer also efficiently minimizes the doping influence by the SiC substrate, both from the surface dangling bonds and the SiC surface polarization, giving rise to charge‐neutral monolayer graphene. The observation of a long‐ranged (3×3) reconstruction on the graphene lattice at tunneling conditions close to Fermi energy is most likely a result of a nesting condition to be perfectly fulfilled. | ||
650 | 4 | |a angle‐resolved photoelectron sprectroscopy | |
650 | 4 | |a charge‐neutral epitaxial graphene | |
650 | 4 | |a low energy electron diffraction | |
650 | 4 | |a normal incidence x‐ray standing wave | |
650 | 4 | |a Pb monolayer intercalation | |
650 | 4 | |a scanning tunneling microscopy | |
653 | 0 | |a Physics | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Chitran Ghosal |e verfasserin |4 aut | |
700 | 0 | |a Monja Stettner |e verfasserin |4 aut | |
700 | 0 | |a Bharti Matta |e verfasserin |4 aut | |
700 | 0 | |a Susanne Wolff |e verfasserin |4 aut | |
700 | 0 | |a Franziska Schölzel |e verfasserin |4 aut | |
700 | 0 | |a Peter Richter |e verfasserin |4 aut | |
700 | 0 | |a Mark Hutter |e verfasserin |4 aut | |
700 | 0 | |a Anja Haags |e verfasserin |4 aut | |
700 | 0 | |a Sabine Wenzel |e verfasserin |4 aut | |
700 | 0 | |a Zamin Mamiyev |e verfasserin |4 aut | |
700 | 0 | |a Julian Koch |e verfasserin |4 aut | |
700 | 0 | |a Serguei Soubatch |e verfasserin |4 aut | |
700 | 0 | |a Philipp Rosenzweig |e verfasserin |4 aut | |
700 | 0 | |a Craig Polley |e verfasserin |4 aut | |
700 | 0 | |a Frank Stefan Tautz |e verfasserin |4 aut | |
700 | 0 | |a Christian Kumpf |e verfasserin |4 aut | |
700 | 0 | |a Kathrin Küster |e verfasserin |4 aut | |
700 | 0 | |a Ulrich Starke |e verfasserin |4 aut | |
700 | 0 | |a Thomas Seyller |e verfasserin |4 aut | |
700 | 0 | |a Francois C. Bocquet |e verfasserin |4 aut | |
700 | 0 | |a Christoph Tegenkamp |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Advanced Materials Interfaces |g 10(2023), 27, Seite n/a-n/a |
773 | 1 | 8 | |g volume:10 |g year:2023 |g number:27 |g pages:n/a-n/a |
856 | 4 | 0 | |u https://doi.org/10.1002/admi.202300471 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/cae478ddec1b44a88c730ae60c895625 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1002/admi.202300471 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2196-7350 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
951 | |a AR | ||
952 | |d 10 |j 2023 |e 27 |h n/a-n/a |
author_variant |
p s ps c g cg m s ms b m bm s w sw f s fs p r pr m h mh a h ah s w sw z m zm j k jk s s ss p r pr c p cp f s t fst c k ck k k kk u s us t s ts f c b fcb c t ct |
---|---|
matchkey_str |
philipschdlichchitranghosalmonjastettner:2023----:oanonayomtowtiaitraaepmnlyretrncag |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QC |
publishDate |
2023 |
allfields |
10.1002/admi.202300471 doi (DE-627)DOAJ095062564 (DE-599)DOAJcae478ddec1b44a88c730ae60c895625 DE-627 ger DE-627 rakwb eng QC1-999 Philip Schädlich verfasserin aut Domain Boundary Formation Within an Intercalated Pb Monolayer Featuring Charge‐Neutral Epitaxial Graphene 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The synthesis of new graphene‐based quantum materials by intercalation is an auspicious approach. However, an accompanying proximity coupling depends crucially on the structural details of the new heterostructure. It is studied in detail the Pb monolayer structure after intercalation into the graphene buffer layer on the SiC(0001) interface by means of photoelectron spectroscopy, x‐ray standing waves, and scanning tunneling microscopy. A coherent fraction close to unity proves the formation of a flat Pb monolayer on the SiC surface. An interlayer distance of 3.67 Å to the suspended graphene underlines the formation of a truly van der Waals heterostructure. The 2D Pb layer reveals a quasi ten‐fold periodicity due to the formation of a grain boundary network, ensuring the saturation of the Si surface bonds. Moreover, the densely‐packed Pb layer also efficiently minimizes the doping influence by the SiC substrate, both from the surface dangling bonds and the SiC surface polarization, giving rise to charge‐neutral monolayer graphene. The observation of a long‐ranged (3×3) reconstruction on the graphene lattice at tunneling conditions close to Fermi energy is most likely a result of a nesting condition to be perfectly fulfilled. angle‐resolved photoelectron sprectroscopy charge‐neutral epitaxial graphene low energy electron diffraction normal incidence x‐ray standing wave Pb monolayer intercalation scanning tunneling microscopy Physics Technology T Chitran Ghosal verfasserin aut Monja Stettner verfasserin aut Bharti Matta verfasserin aut Susanne Wolff verfasserin aut Franziska Schölzel verfasserin aut Peter Richter verfasserin aut Mark Hutter verfasserin aut Anja Haags verfasserin aut Sabine Wenzel verfasserin aut Zamin Mamiyev verfasserin aut Julian Koch verfasserin aut Serguei Soubatch verfasserin aut Philipp Rosenzweig verfasserin aut Craig Polley verfasserin aut Frank Stefan Tautz verfasserin aut Christian Kumpf verfasserin aut Kathrin Küster verfasserin aut Ulrich Starke verfasserin aut Thomas Seyller verfasserin aut Francois C. Bocquet verfasserin aut Christoph Tegenkamp verfasserin aut In Advanced Materials Interfaces 10(2023), 27, Seite n/a-n/a volume:10 year:2023 number:27 pages:n/a-n/a https://doi.org/10.1002/admi.202300471 kostenfrei https://doaj.org/article/cae478ddec1b44a88c730ae60c895625 kostenfrei https://doi.org/10.1002/admi.202300471 kostenfrei https://doaj.org/toc/2196-7350 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 10 2023 27 n/a-n/a |
spelling |
10.1002/admi.202300471 doi (DE-627)DOAJ095062564 (DE-599)DOAJcae478ddec1b44a88c730ae60c895625 DE-627 ger DE-627 rakwb eng QC1-999 Philip Schädlich verfasserin aut Domain Boundary Formation Within an Intercalated Pb Monolayer Featuring Charge‐Neutral Epitaxial Graphene 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The synthesis of new graphene‐based quantum materials by intercalation is an auspicious approach. However, an accompanying proximity coupling depends crucially on the structural details of the new heterostructure. It is studied in detail the Pb monolayer structure after intercalation into the graphene buffer layer on the SiC(0001) interface by means of photoelectron spectroscopy, x‐ray standing waves, and scanning tunneling microscopy. A coherent fraction close to unity proves the formation of a flat Pb monolayer on the SiC surface. An interlayer distance of 3.67 Å to the suspended graphene underlines the formation of a truly van der Waals heterostructure. The 2D Pb layer reveals a quasi ten‐fold periodicity due to the formation of a grain boundary network, ensuring the saturation of the Si surface bonds. Moreover, the densely‐packed Pb layer also efficiently minimizes the doping influence by the SiC substrate, both from the surface dangling bonds and the SiC surface polarization, giving rise to charge‐neutral monolayer graphene. The observation of a long‐ranged (3×3) reconstruction on the graphene lattice at tunneling conditions close to Fermi energy is most likely a result of a nesting condition to be perfectly fulfilled. angle‐resolved photoelectron sprectroscopy charge‐neutral epitaxial graphene low energy electron diffraction normal incidence x‐ray standing wave Pb monolayer intercalation scanning tunneling microscopy Physics Technology T Chitran Ghosal verfasserin aut Monja Stettner verfasserin aut Bharti Matta verfasserin aut Susanne Wolff verfasserin aut Franziska Schölzel verfasserin aut Peter Richter verfasserin aut Mark Hutter verfasserin aut Anja Haags verfasserin aut Sabine Wenzel verfasserin aut Zamin Mamiyev verfasserin aut Julian Koch verfasserin aut Serguei Soubatch verfasserin aut Philipp Rosenzweig verfasserin aut Craig Polley verfasserin aut Frank Stefan Tautz verfasserin aut Christian Kumpf verfasserin aut Kathrin Küster verfasserin aut Ulrich Starke verfasserin aut Thomas Seyller verfasserin aut Francois C. Bocquet verfasserin aut Christoph Tegenkamp verfasserin aut In Advanced Materials Interfaces 10(2023), 27, Seite n/a-n/a volume:10 year:2023 number:27 pages:n/a-n/a https://doi.org/10.1002/admi.202300471 kostenfrei https://doaj.org/article/cae478ddec1b44a88c730ae60c895625 kostenfrei https://doi.org/10.1002/admi.202300471 kostenfrei https://doaj.org/toc/2196-7350 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 10 2023 27 n/a-n/a |
allfields_unstemmed |
10.1002/admi.202300471 doi (DE-627)DOAJ095062564 (DE-599)DOAJcae478ddec1b44a88c730ae60c895625 DE-627 ger DE-627 rakwb eng QC1-999 Philip Schädlich verfasserin aut Domain Boundary Formation Within an Intercalated Pb Monolayer Featuring Charge‐Neutral Epitaxial Graphene 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The synthesis of new graphene‐based quantum materials by intercalation is an auspicious approach. However, an accompanying proximity coupling depends crucially on the structural details of the new heterostructure. It is studied in detail the Pb monolayer structure after intercalation into the graphene buffer layer on the SiC(0001) interface by means of photoelectron spectroscopy, x‐ray standing waves, and scanning tunneling microscopy. A coherent fraction close to unity proves the formation of a flat Pb monolayer on the SiC surface. An interlayer distance of 3.67 Å to the suspended graphene underlines the formation of a truly van der Waals heterostructure. The 2D Pb layer reveals a quasi ten‐fold periodicity due to the formation of a grain boundary network, ensuring the saturation of the Si surface bonds. Moreover, the densely‐packed Pb layer also efficiently minimizes the doping influence by the SiC substrate, both from the surface dangling bonds and the SiC surface polarization, giving rise to charge‐neutral monolayer graphene. The observation of a long‐ranged (3×3) reconstruction on the graphene lattice at tunneling conditions close to Fermi energy is most likely a result of a nesting condition to be perfectly fulfilled. angle‐resolved photoelectron sprectroscopy charge‐neutral epitaxial graphene low energy electron diffraction normal incidence x‐ray standing wave Pb monolayer intercalation scanning tunneling microscopy Physics Technology T Chitran Ghosal verfasserin aut Monja Stettner verfasserin aut Bharti Matta verfasserin aut Susanne Wolff verfasserin aut Franziska Schölzel verfasserin aut Peter Richter verfasserin aut Mark Hutter verfasserin aut Anja Haags verfasserin aut Sabine Wenzel verfasserin aut Zamin Mamiyev verfasserin aut Julian Koch verfasserin aut Serguei Soubatch verfasserin aut Philipp Rosenzweig verfasserin aut Craig Polley verfasserin aut Frank Stefan Tautz verfasserin aut Christian Kumpf verfasserin aut Kathrin Küster verfasserin aut Ulrich Starke verfasserin aut Thomas Seyller verfasserin aut Francois C. Bocquet verfasserin aut Christoph Tegenkamp verfasserin aut In Advanced Materials Interfaces 10(2023), 27, Seite n/a-n/a volume:10 year:2023 number:27 pages:n/a-n/a https://doi.org/10.1002/admi.202300471 kostenfrei https://doaj.org/article/cae478ddec1b44a88c730ae60c895625 kostenfrei https://doi.org/10.1002/admi.202300471 kostenfrei https://doaj.org/toc/2196-7350 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 10 2023 27 n/a-n/a |
allfieldsGer |
10.1002/admi.202300471 doi (DE-627)DOAJ095062564 (DE-599)DOAJcae478ddec1b44a88c730ae60c895625 DE-627 ger DE-627 rakwb eng QC1-999 Philip Schädlich verfasserin aut Domain Boundary Formation Within an Intercalated Pb Monolayer Featuring Charge‐Neutral Epitaxial Graphene 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The synthesis of new graphene‐based quantum materials by intercalation is an auspicious approach. However, an accompanying proximity coupling depends crucially on the structural details of the new heterostructure. It is studied in detail the Pb monolayer structure after intercalation into the graphene buffer layer on the SiC(0001) interface by means of photoelectron spectroscopy, x‐ray standing waves, and scanning tunneling microscopy. A coherent fraction close to unity proves the formation of a flat Pb monolayer on the SiC surface. An interlayer distance of 3.67 Å to the suspended graphene underlines the formation of a truly van der Waals heterostructure. The 2D Pb layer reveals a quasi ten‐fold periodicity due to the formation of a grain boundary network, ensuring the saturation of the Si surface bonds. Moreover, the densely‐packed Pb layer also efficiently minimizes the doping influence by the SiC substrate, both from the surface dangling bonds and the SiC surface polarization, giving rise to charge‐neutral monolayer graphene. The observation of a long‐ranged (3×3) reconstruction on the graphene lattice at tunneling conditions close to Fermi energy is most likely a result of a nesting condition to be perfectly fulfilled. angle‐resolved photoelectron sprectroscopy charge‐neutral epitaxial graphene low energy electron diffraction normal incidence x‐ray standing wave Pb monolayer intercalation scanning tunneling microscopy Physics Technology T Chitran Ghosal verfasserin aut Monja Stettner verfasserin aut Bharti Matta verfasserin aut Susanne Wolff verfasserin aut Franziska Schölzel verfasserin aut Peter Richter verfasserin aut Mark Hutter verfasserin aut Anja Haags verfasserin aut Sabine Wenzel verfasserin aut Zamin Mamiyev verfasserin aut Julian Koch verfasserin aut Serguei Soubatch verfasserin aut Philipp Rosenzweig verfasserin aut Craig Polley verfasserin aut Frank Stefan Tautz verfasserin aut Christian Kumpf verfasserin aut Kathrin Küster verfasserin aut Ulrich Starke verfasserin aut Thomas Seyller verfasserin aut Francois C. Bocquet verfasserin aut Christoph Tegenkamp verfasserin aut In Advanced Materials Interfaces 10(2023), 27, Seite n/a-n/a volume:10 year:2023 number:27 pages:n/a-n/a https://doi.org/10.1002/admi.202300471 kostenfrei https://doaj.org/article/cae478ddec1b44a88c730ae60c895625 kostenfrei https://doi.org/10.1002/admi.202300471 kostenfrei https://doaj.org/toc/2196-7350 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 10 2023 27 n/a-n/a |
allfieldsSound |
10.1002/admi.202300471 doi (DE-627)DOAJ095062564 (DE-599)DOAJcae478ddec1b44a88c730ae60c895625 DE-627 ger DE-627 rakwb eng QC1-999 Philip Schädlich verfasserin aut Domain Boundary Formation Within an Intercalated Pb Monolayer Featuring Charge‐Neutral Epitaxial Graphene 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The synthesis of new graphene‐based quantum materials by intercalation is an auspicious approach. However, an accompanying proximity coupling depends crucially on the structural details of the new heterostructure. It is studied in detail the Pb monolayer structure after intercalation into the graphene buffer layer on the SiC(0001) interface by means of photoelectron spectroscopy, x‐ray standing waves, and scanning tunneling microscopy. A coherent fraction close to unity proves the formation of a flat Pb monolayer on the SiC surface. An interlayer distance of 3.67 Å to the suspended graphene underlines the formation of a truly van der Waals heterostructure. The 2D Pb layer reveals a quasi ten‐fold periodicity due to the formation of a grain boundary network, ensuring the saturation of the Si surface bonds. Moreover, the densely‐packed Pb layer also efficiently minimizes the doping influence by the SiC substrate, both from the surface dangling bonds and the SiC surface polarization, giving rise to charge‐neutral monolayer graphene. The observation of a long‐ranged (3×3) reconstruction on the graphene lattice at tunneling conditions close to Fermi energy is most likely a result of a nesting condition to be perfectly fulfilled. angle‐resolved photoelectron sprectroscopy charge‐neutral epitaxial graphene low energy electron diffraction normal incidence x‐ray standing wave Pb monolayer intercalation scanning tunneling microscopy Physics Technology T Chitran Ghosal verfasserin aut Monja Stettner verfasserin aut Bharti Matta verfasserin aut Susanne Wolff verfasserin aut Franziska Schölzel verfasserin aut Peter Richter verfasserin aut Mark Hutter verfasserin aut Anja Haags verfasserin aut Sabine Wenzel verfasserin aut Zamin Mamiyev verfasserin aut Julian Koch verfasserin aut Serguei Soubatch verfasserin aut Philipp Rosenzweig verfasserin aut Craig Polley verfasserin aut Frank Stefan Tautz verfasserin aut Christian Kumpf verfasserin aut Kathrin Küster verfasserin aut Ulrich Starke verfasserin aut Thomas Seyller verfasserin aut Francois C. Bocquet verfasserin aut Christoph Tegenkamp verfasserin aut In Advanced Materials Interfaces 10(2023), 27, Seite n/a-n/a volume:10 year:2023 number:27 pages:n/a-n/a https://doi.org/10.1002/admi.202300471 kostenfrei https://doaj.org/article/cae478ddec1b44a88c730ae60c895625 kostenfrei https://doi.org/10.1002/admi.202300471 kostenfrei https://doaj.org/toc/2196-7350 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 10 2023 27 n/a-n/a |
language |
English |
source |
In Advanced Materials Interfaces 10(2023), 27, Seite n/a-n/a volume:10 year:2023 number:27 pages:n/a-n/a |
sourceStr |
In Advanced Materials Interfaces 10(2023), 27, Seite n/a-n/a volume:10 year:2023 number:27 pages:n/a-n/a |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
angle‐resolved photoelectron sprectroscopy charge‐neutral epitaxial graphene low energy electron diffraction normal incidence x‐ray standing wave Pb monolayer intercalation scanning tunneling microscopy Physics Technology T |
isfreeaccess_bool |
true |
container_title |
Advanced Materials Interfaces |
authorswithroles_txt_mv |
Philip Schädlich @@aut@@ Chitran Ghosal @@aut@@ Monja Stettner @@aut@@ Bharti Matta @@aut@@ Susanne Wolff @@aut@@ Franziska Schölzel @@aut@@ Peter Richter @@aut@@ Mark Hutter @@aut@@ Anja Haags @@aut@@ Sabine Wenzel @@aut@@ Zamin Mamiyev @@aut@@ Julian Koch @@aut@@ Serguei Soubatch @@aut@@ Philipp Rosenzweig @@aut@@ Craig Polley @@aut@@ Frank Stefan Tautz @@aut@@ Christian Kumpf @@aut@@ Kathrin Küster @@aut@@ Ulrich Starke @@aut@@ Thomas Seyller @@aut@@ Francois C. Bocquet @@aut@@ Christoph Tegenkamp @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
id |
DOAJ095062564 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ095062564</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413090526.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/admi.202300471</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ095062564</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcae478ddec1b44a88c730ae60c895625</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Philip Schädlich</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Domain Boundary Formation Within an Intercalated Pb Monolayer Featuring Charge‐Neutral Epitaxial Graphene</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The synthesis of new graphene‐based quantum materials by intercalation is an auspicious approach. However, an accompanying proximity coupling depends crucially on the structural details of the new heterostructure. It is studied in detail the Pb monolayer structure after intercalation into the graphene buffer layer on the SiC(0001) interface by means of photoelectron spectroscopy, x‐ray standing waves, and scanning tunneling microscopy. A coherent fraction close to unity proves the formation of a flat Pb monolayer on the SiC surface. An interlayer distance of 3.67 Å to the suspended graphene underlines the formation of a truly van der Waals heterostructure. The 2D Pb layer reveals a quasi ten‐fold periodicity due to the formation of a grain boundary network, ensuring the saturation of the Si surface bonds. Moreover, the densely‐packed Pb layer also efficiently minimizes the doping influence by the SiC substrate, both from the surface dangling bonds and the SiC surface polarization, giving rise to charge‐neutral monolayer graphene. The observation of a long‐ranged (3×3) reconstruction on the graphene lattice at tunneling conditions close to Fermi energy is most likely a result of a nesting condition to be perfectly fulfilled.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">angle‐resolved photoelectron sprectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">charge‐neutral epitaxial graphene</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low energy electron diffraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">normal incidence x‐ray standing wave</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pb monolayer intercalation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">scanning tunneling microscopy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chitran Ghosal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Monja Stettner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bharti Matta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Susanne Wolff</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Franziska Schölzel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peter Richter</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mark Hutter</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anja Haags</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sabine Wenzel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zamin Mamiyev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Julian Koch</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Serguei Soubatch</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Philipp Rosenzweig</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Craig Polley</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Frank Stefan Tautz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christian Kumpf</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kathrin Küster</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ulrich Starke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thomas Seyller</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Francois C. Bocquet</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christoph Tegenkamp</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Advanced Materials Interfaces</subfield><subfield code="g">10(2023), 27, Seite n/a-n/a</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:27</subfield><subfield code="g">pages:n/a-n/a</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/admi.202300471</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cae478ddec1b44a88c730ae60c895625</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/admi.202300471</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2196-7350</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2023</subfield><subfield code="e">27</subfield><subfield code="h">n/a-n/a</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Philip Schädlich |
spellingShingle |
Philip Schädlich misc QC1-999 misc angle‐resolved photoelectron sprectroscopy misc charge‐neutral epitaxial graphene misc low energy electron diffraction misc normal incidence x‐ray standing wave misc Pb monolayer intercalation misc scanning tunneling microscopy misc Physics misc Technology misc T Domain Boundary Formation Within an Intercalated Pb Monolayer Featuring Charge‐Neutral Epitaxial Graphene |
authorStr |
Philip Schädlich |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC1-999 |
illustrated |
Not Illustrated |
topic_title |
QC1-999 Domain Boundary Formation Within an Intercalated Pb Monolayer Featuring Charge‐Neutral Epitaxial Graphene angle‐resolved photoelectron sprectroscopy charge‐neutral epitaxial graphene low energy electron diffraction normal incidence x‐ray standing wave Pb monolayer intercalation scanning tunneling microscopy |
topic |
misc QC1-999 misc angle‐resolved photoelectron sprectroscopy misc charge‐neutral epitaxial graphene misc low energy electron diffraction misc normal incidence x‐ray standing wave misc Pb monolayer intercalation misc scanning tunneling microscopy misc Physics misc Technology misc T |
topic_unstemmed |
misc QC1-999 misc angle‐resolved photoelectron sprectroscopy misc charge‐neutral epitaxial graphene misc low energy electron diffraction misc normal incidence x‐ray standing wave misc Pb monolayer intercalation misc scanning tunneling microscopy misc Physics misc Technology misc T |
topic_browse |
misc QC1-999 misc angle‐resolved photoelectron sprectroscopy misc charge‐neutral epitaxial graphene misc low energy electron diffraction misc normal incidence x‐ray standing wave misc Pb monolayer intercalation misc scanning tunneling microscopy misc Physics misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Advanced Materials Interfaces |
hierarchy_top_title |
Advanced Materials Interfaces |
isfreeaccess_txt |
true |
title |
Domain Boundary Formation Within an Intercalated Pb Monolayer Featuring Charge‐Neutral Epitaxial Graphene |
ctrlnum |
(DE-627)DOAJ095062564 (DE-599)DOAJcae478ddec1b44a88c730ae60c895625 |
title_full |
Domain Boundary Formation Within an Intercalated Pb Monolayer Featuring Charge‐Neutral Epitaxial Graphene |
author_sort |
Philip Schädlich |
journal |
Advanced Materials Interfaces |
journalStr |
Advanced Materials Interfaces |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Philip Schädlich Chitran Ghosal Monja Stettner Bharti Matta Susanne Wolff Franziska Schölzel Peter Richter Mark Hutter Anja Haags Sabine Wenzel Zamin Mamiyev Julian Koch Serguei Soubatch Philipp Rosenzweig Craig Polley Frank Stefan Tautz Christian Kumpf Kathrin Küster Ulrich Starke Thomas Seyller Francois C. Bocquet Christoph Tegenkamp |
container_volume |
10 |
class |
QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Philip Schädlich |
doi_str_mv |
10.1002/admi.202300471 |
author2-role |
verfasserin |
title_sort |
domain boundary formation within an intercalated pb monolayer featuring charge‐neutral epitaxial graphene |
callnumber |
QC1-999 |
title_auth |
Domain Boundary Formation Within an Intercalated Pb Monolayer Featuring Charge‐Neutral Epitaxial Graphene |
abstract |
Abstract The synthesis of new graphene‐based quantum materials by intercalation is an auspicious approach. However, an accompanying proximity coupling depends crucially on the structural details of the new heterostructure. It is studied in detail the Pb monolayer structure after intercalation into the graphene buffer layer on the SiC(0001) interface by means of photoelectron spectroscopy, x‐ray standing waves, and scanning tunneling microscopy. A coherent fraction close to unity proves the formation of a flat Pb monolayer on the SiC surface. An interlayer distance of 3.67 Å to the suspended graphene underlines the formation of a truly van der Waals heterostructure. The 2D Pb layer reveals a quasi ten‐fold periodicity due to the formation of a grain boundary network, ensuring the saturation of the Si surface bonds. Moreover, the densely‐packed Pb layer also efficiently minimizes the doping influence by the SiC substrate, both from the surface dangling bonds and the SiC surface polarization, giving rise to charge‐neutral monolayer graphene. The observation of a long‐ranged (3×3) reconstruction on the graphene lattice at tunneling conditions close to Fermi energy is most likely a result of a nesting condition to be perfectly fulfilled. |
abstractGer |
Abstract The synthesis of new graphene‐based quantum materials by intercalation is an auspicious approach. However, an accompanying proximity coupling depends crucially on the structural details of the new heterostructure. It is studied in detail the Pb monolayer structure after intercalation into the graphene buffer layer on the SiC(0001) interface by means of photoelectron spectroscopy, x‐ray standing waves, and scanning tunneling microscopy. A coherent fraction close to unity proves the formation of a flat Pb monolayer on the SiC surface. An interlayer distance of 3.67 Å to the suspended graphene underlines the formation of a truly van der Waals heterostructure. The 2D Pb layer reveals a quasi ten‐fold periodicity due to the formation of a grain boundary network, ensuring the saturation of the Si surface bonds. Moreover, the densely‐packed Pb layer also efficiently minimizes the doping influence by the SiC substrate, both from the surface dangling bonds and the SiC surface polarization, giving rise to charge‐neutral monolayer graphene. The observation of a long‐ranged (3×3) reconstruction on the graphene lattice at tunneling conditions close to Fermi energy is most likely a result of a nesting condition to be perfectly fulfilled. |
abstract_unstemmed |
Abstract The synthesis of new graphene‐based quantum materials by intercalation is an auspicious approach. However, an accompanying proximity coupling depends crucially on the structural details of the new heterostructure. It is studied in detail the Pb monolayer structure after intercalation into the graphene buffer layer on the SiC(0001) interface by means of photoelectron spectroscopy, x‐ray standing waves, and scanning tunneling microscopy. A coherent fraction close to unity proves the formation of a flat Pb monolayer on the SiC surface. An interlayer distance of 3.67 Å to the suspended graphene underlines the formation of a truly van der Waals heterostructure. The 2D Pb layer reveals a quasi ten‐fold periodicity due to the formation of a grain boundary network, ensuring the saturation of the Si surface bonds. Moreover, the densely‐packed Pb layer also efficiently minimizes the doping influence by the SiC substrate, both from the surface dangling bonds and the SiC surface polarization, giving rise to charge‐neutral monolayer graphene. The observation of a long‐ranged (3×3) reconstruction on the graphene lattice at tunneling conditions close to Fermi energy is most likely a result of a nesting condition to be perfectly fulfilled. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ |
container_issue |
27 |
title_short |
Domain Boundary Formation Within an Intercalated Pb Monolayer Featuring Charge‐Neutral Epitaxial Graphene |
url |
https://doi.org/10.1002/admi.202300471 https://doaj.org/article/cae478ddec1b44a88c730ae60c895625 https://doaj.org/toc/2196-7350 |
remote_bool |
true |
author2 |
Chitran Ghosal Monja Stettner Bharti Matta Susanne Wolff Franziska Schölzel Peter Richter Mark Hutter Anja Haags Sabine Wenzel Zamin Mamiyev Julian Koch Serguei Soubatch Philipp Rosenzweig Craig Polley Frank Stefan Tautz Christian Kumpf Kathrin Küster Ulrich Starke Thomas Seyller Francois C. Bocquet Christoph Tegenkamp |
author2Str |
Chitran Ghosal Monja Stettner Bharti Matta Susanne Wolff Franziska Schölzel Peter Richter Mark Hutter Anja Haags Sabine Wenzel Zamin Mamiyev Julian Koch Serguei Soubatch Philipp Rosenzweig Craig Polley Frank Stefan Tautz Christian Kumpf Kathrin Küster Ulrich Starke Thomas Seyller Francois C. Bocquet Christoph Tegenkamp |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1002/admi.202300471 |
callnumber-a |
QC1-999 |
up_date |
2024-07-04T01:45:07.707Z |
_version_ |
1803611021217103872 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ095062564</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413090526.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/admi.202300471</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ095062564</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcae478ddec1b44a88c730ae60c895625</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Philip Schädlich</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Domain Boundary Formation Within an Intercalated Pb Monolayer Featuring Charge‐Neutral Epitaxial Graphene</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The synthesis of new graphene‐based quantum materials by intercalation is an auspicious approach. However, an accompanying proximity coupling depends crucially on the structural details of the new heterostructure. It is studied in detail the Pb monolayer structure after intercalation into the graphene buffer layer on the SiC(0001) interface by means of photoelectron spectroscopy, x‐ray standing waves, and scanning tunneling microscopy. A coherent fraction close to unity proves the formation of a flat Pb monolayer on the SiC surface. An interlayer distance of 3.67 Å to the suspended graphene underlines the formation of a truly van der Waals heterostructure. The 2D Pb layer reveals a quasi ten‐fold periodicity due to the formation of a grain boundary network, ensuring the saturation of the Si surface bonds. Moreover, the densely‐packed Pb layer also efficiently minimizes the doping influence by the SiC substrate, both from the surface dangling bonds and the SiC surface polarization, giving rise to charge‐neutral monolayer graphene. The observation of a long‐ranged (3×3) reconstruction on the graphene lattice at tunneling conditions close to Fermi energy is most likely a result of a nesting condition to be perfectly fulfilled.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">angle‐resolved photoelectron sprectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">charge‐neutral epitaxial graphene</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low energy electron diffraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">normal incidence x‐ray standing wave</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pb monolayer intercalation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">scanning tunneling microscopy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chitran Ghosal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Monja Stettner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bharti Matta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Susanne Wolff</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Franziska Schölzel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peter Richter</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mark Hutter</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anja Haags</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sabine Wenzel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zamin Mamiyev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Julian Koch</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Serguei Soubatch</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Philipp Rosenzweig</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Craig Polley</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Frank Stefan Tautz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christian Kumpf</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kathrin Küster</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ulrich Starke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thomas Seyller</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Francois C. Bocquet</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christoph Tegenkamp</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Advanced Materials Interfaces</subfield><subfield code="g">10(2023), 27, Seite n/a-n/a</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:27</subfield><subfield code="g">pages:n/a-n/a</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/admi.202300471</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cae478ddec1b44a88c730ae60c895625</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/admi.202300471</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2196-7350</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2023</subfield><subfield code="e">27</subfield><subfield code="h">n/a-n/a</subfield></datafield></record></collection>
|
score |
7.3996077 |