Universal material trends in extraordinary magnetoresistive devices
Extraordinary magnetoresistance (EMR) is a geometric magnetoresistance emerging in hybrid systems typically comprising a high-mobility material and a metal. Due to a field-dependent redistribution of electrical currents in these devices, the electrical resistance at room temperature can increase by...
Ausführliche Beschreibung
Autor*in: |
Ricci Erlandsen [verfasserIn] Thierry Désiré Pomar [verfasserIn] Lior Kornblum [verfasserIn] Nini Pryds [verfasserIn] Rasmus Bjørk [verfasserIn] Dennis V Christensen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: JPhys Materials - IOP Publishing, 2019, 6(2023), 4, p 045010 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2023 ; number:4, p 045010 |
Links: |
---|
DOI / URN: |
10.1088/2515-7639/acfac0 |
---|
Katalog-ID: |
DOAJ095179585 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ095179585 | ||
003 | DE-627 | ||
005 | 20240413093557.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1088/2515-7639/acfac0 |2 doi | |
035 | |a (DE-627)DOAJ095179585 | ||
035 | |a (DE-599)DOAJe1bd969e108d41a68880d5095e049822 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA401-492 | |
050 | 0 | |a QC1-999 | |
100 | 0 | |a Ricci Erlandsen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Universal material trends in extraordinary magnetoresistive devices |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Extraordinary magnetoresistance (EMR) is a geometric magnetoresistance emerging in hybrid systems typically comprising a high-mobility material and a metal. Due to a field-dependent redistribution of electrical currents in these devices, the electrical resistance at room temperature can increase by 10 ^7 % when applying a magnetic field of 5 T. Although EMR holds considerable potential for realizing sensitive, all-electronic magnetometers, this potential is largely unmet. A key challenge is that the performance of EMR devices depends very sensitively on variations in a vast parameter space where changes in the device geometry and material properties produce widely different EMR performances. The challenge of navigating in the large parameter space is further amplified by the poor understanding of the interplay between the device geometry and material properties. By systematically varying the material parameters in four key EMR geometries using diffusive transport simulations, we here elucidate this interplay with the aim of finding universal guidelines for designing EMR devices. Common to all geometries, we find that the sensitivity scales inversely with the carrier density, while the MR reaches saturation at low carrier densities. Increasing the mobility beyond 20 000 cm ^2 Vs ^−1 is required to observe strong EMR effects at 1 T with the optimal magnetoresistance observed for mobilities between 100 000–500 000 cm ^2 Vs ^−1 . An interface resistance below $\rho_c = 10^{-4}\ \Omega$ cm ^2 between the constituent materials in the hybrid devices was also found to be a prerequisite for very high magnetoresistances in all geometries. By further simulating several high-mobility materials at room and cryogenic temperatures, we conclude that encapsulated graphene and InSb are amongst the most promising candidates for EMR devices showing high magnetoresistance exceeding 10 ^7 % below 1 T at room temperature. This study paves the way for understanding how to realize EMR devices with record-high magnetoresistance and high sensitivity for detecting magnetic fields. | ||
650 | 4 | |a extraordinary magnetoresistance | |
650 | 4 | |a magnetoresistance | |
650 | 4 | |a magnetometers | |
650 | 4 | |a graphene | |
650 | 4 | |a semiconductor | |
650 | 4 | |a oxides | |
653 | 0 | |a Materials of engineering and construction. Mechanics of materials | |
653 | 0 | |a Physics | |
700 | 0 | |a Thierry Désiré Pomar |e verfasserin |4 aut | |
700 | 0 | |a Lior Kornblum |e verfasserin |4 aut | |
700 | 0 | |a Nini Pryds |e verfasserin |4 aut | |
700 | 0 | |a Rasmus Bjørk |e verfasserin |4 aut | |
700 | 0 | |a Dennis V Christensen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t JPhys Materials |d IOP Publishing, 2019 |g 6(2023), 4, p 045010 |w (DE-627)1040994229 |w (DE-600)2950970-1 |x 25157639 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2023 |g number:4, p 045010 |
856 | 4 | 0 | |u https://doi.org/10.1088/2515-7639/acfac0 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e1bd969e108d41a68880d5095e049822 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1088/2515-7639/acfac0 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2515-7639 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2023 |e 4, p 045010 |
author_variant |
r e re t d p tdp l k lk n p np r b rb d v c dvc |
---|---|
matchkey_str |
article:25157639:2023----::nvramtratedietariayant |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TA |
publishDate |
2023 |
allfields |
10.1088/2515-7639/acfac0 doi (DE-627)DOAJ095179585 (DE-599)DOAJe1bd969e108d41a68880d5095e049822 DE-627 ger DE-627 rakwb eng TA401-492 QC1-999 Ricci Erlandsen verfasserin aut Universal material trends in extraordinary magnetoresistive devices 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Extraordinary magnetoresistance (EMR) is a geometric magnetoresistance emerging in hybrid systems typically comprising a high-mobility material and a metal. Due to a field-dependent redistribution of electrical currents in these devices, the electrical resistance at room temperature can increase by 10 ^7 % when applying a magnetic field of 5 T. Although EMR holds considerable potential for realizing sensitive, all-electronic magnetometers, this potential is largely unmet. A key challenge is that the performance of EMR devices depends very sensitively on variations in a vast parameter space where changes in the device geometry and material properties produce widely different EMR performances. The challenge of navigating in the large parameter space is further amplified by the poor understanding of the interplay between the device geometry and material properties. By systematically varying the material parameters in four key EMR geometries using diffusive transport simulations, we here elucidate this interplay with the aim of finding universal guidelines for designing EMR devices. Common to all geometries, we find that the sensitivity scales inversely with the carrier density, while the MR reaches saturation at low carrier densities. Increasing the mobility beyond 20 000 cm ^2 Vs ^−1 is required to observe strong EMR effects at 1 T with the optimal magnetoresistance observed for mobilities between 100 000–500 000 cm ^2 Vs ^−1 . An interface resistance below $\rho_c = 10^{-4}\ \Omega$ cm ^2 between the constituent materials in the hybrid devices was also found to be a prerequisite for very high magnetoresistances in all geometries. By further simulating several high-mobility materials at room and cryogenic temperatures, we conclude that encapsulated graphene and InSb are amongst the most promising candidates for EMR devices showing high magnetoresistance exceeding 10 ^7 % below 1 T at room temperature. This study paves the way for understanding how to realize EMR devices with record-high magnetoresistance and high sensitivity for detecting magnetic fields. extraordinary magnetoresistance magnetoresistance magnetometers graphene semiconductor oxides Materials of engineering and construction. Mechanics of materials Physics Thierry Désiré Pomar verfasserin aut Lior Kornblum verfasserin aut Nini Pryds verfasserin aut Rasmus Bjørk verfasserin aut Dennis V Christensen verfasserin aut In JPhys Materials IOP Publishing, 2019 6(2023), 4, p 045010 (DE-627)1040994229 (DE-600)2950970-1 25157639 nnns volume:6 year:2023 number:4, p 045010 https://doi.org/10.1088/2515-7639/acfac0 kostenfrei https://doaj.org/article/e1bd969e108d41a68880d5095e049822 kostenfrei https://doi.org/10.1088/2515-7639/acfac0 kostenfrei https://doaj.org/toc/2515-7639 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2023 4, p 045010 |
spelling |
10.1088/2515-7639/acfac0 doi (DE-627)DOAJ095179585 (DE-599)DOAJe1bd969e108d41a68880d5095e049822 DE-627 ger DE-627 rakwb eng TA401-492 QC1-999 Ricci Erlandsen verfasserin aut Universal material trends in extraordinary magnetoresistive devices 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Extraordinary magnetoresistance (EMR) is a geometric magnetoresistance emerging in hybrid systems typically comprising a high-mobility material and a metal. Due to a field-dependent redistribution of electrical currents in these devices, the electrical resistance at room temperature can increase by 10 ^7 % when applying a magnetic field of 5 T. Although EMR holds considerable potential for realizing sensitive, all-electronic magnetometers, this potential is largely unmet. A key challenge is that the performance of EMR devices depends very sensitively on variations in a vast parameter space where changes in the device geometry and material properties produce widely different EMR performances. The challenge of navigating in the large parameter space is further amplified by the poor understanding of the interplay between the device geometry and material properties. By systematically varying the material parameters in four key EMR geometries using diffusive transport simulations, we here elucidate this interplay with the aim of finding universal guidelines for designing EMR devices. Common to all geometries, we find that the sensitivity scales inversely with the carrier density, while the MR reaches saturation at low carrier densities. Increasing the mobility beyond 20 000 cm ^2 Vs ^−1 is required to observe strong EMR effects at 1 T with the optimal magnetoresistance observed for mobilities between 100 000–500 000 cm ^2 Vs ^−1 . An interface resistance below $\rho_c = 10^{-4}\ \Omega$ cm ^2 between the constituent materials in the hybrid devices was also found to be a prerequisite for very high magnetoresistances in all geometries. By further simulating several high-mobility materials at room and cryogenic temperatures, we conclude that encapsulated graphene and InSb are amongst the most promising candidates for EMR devices showing high magnetoresistance exceeding 10 ^7 % below 1 T at room temperature. This study paves the way for understanding how to realize EMR devices with record-high magnetoresistance and high sensitivity for detecting magnetic fields. extraordinary magnetoresistance magnetoresistance magnetometers graphene semiconductor oxides Materials of engineering and construction. Mechanics of materials Physics Thierry Désiré Pomar verfasserin aut Lior Kornblum verfasserin aut Nini Pryds verfasserin aut Rasmus Bjørk verfasserin aut Dennis V Christensen verfasserin aut In JPhys Materials IOP Publishing, 2019 6(2023), 4, p 045010 (DE-627)1040994229 (DE-600)2950970-1 25157639 nnns volume:6 year:2023 number:4, p 045010 https://doi.org/10.1088/2515-7639/acfac0 kostenfrei https://doaj.org/article/e1bd969e108d41a68880d5095e049822 kostenfrei https://doi.org/10.1088/2515-7639/acfac0 kostenfrei https://doaj.org/toc/2515-7639 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2023 4, p 045010 |
allfields_unstemmed |
10.1088/2515-7639/acfac0 doi (DE-627)DOAJ095179585 (DE-599)DOAJe1bd969e108d41a68880d5095e049822 DE-627 ger DE-627 rakwb eng TA401-492 QC1-999 Ricci Erlandsen verfasserin aut Universal material trends in extraordinary magnetoresistive devices 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Extraordinary magnetoresistance (EMR) is a geometric magnetoresistance emerging in hybrid systems typically comprising a high-mobility material and a metal. Due to a field-dependent redistribution of electrical currents in these devices, the electrical resistance at room temperature can increase by 10 ^7 % when applying a magnetic field of 5 T. Although EMR holds considerable potential for realizing sensitive, all-electronic magnetometers, this potential is largely unmet. A key challenge is that the performance of EMR devices depends very sensitively on variations in a vast parameter space where changes in the device geometry and material properties produce widely different EMR performances. The challenge of navigating in the large parameter space is further amplified by the poor understanding of the interplay between the device geometry and material properties. By systematically varying the material parameters in four key EMR geometries using diffusive transport simulations, we here elucidate this interplay with the aim of finding universal guidelines for designing EMR devices. Common to all geometries, we find that the sensitivity scales inversely with the carrier density, while the MR reaches saturation at low carrier densities. Increasing the mobility beyond 20 000 cm ^2 Vs ^−1 is required to observe strong EMR effects at 1 T with the optimal magnetoresistance observed for mobilities between 100 000–500 000 cm ^2 Vs ^−1 . An interface resistance below $\rho_c = 10^{-4}\ \Omega$ cm ^2 between the constituent materials in the hybrid devices was also found to be a prerequisite for very high magnetoresistances in all geometries. By further simulating several high-mobility materials at room and cryogenic temperatures, we conclude that encapsulated graphene and InSb are amongst the most promising candidates for EMR devices showing high magnetoresistance exceeding 10 ^7 % below 1 T at room temperature. This study paves the way for understanding how to realize EMR devices with record-high magnetoresistance and high sensitivity for detecting magnetic fields. extraordinary magnetoresistance magnetoresistance magnetometers graphene semiconductor oxides Materials of engineering and construction. Mechanics of materials Physics Thierry Désiré Pomar verfasserin aut Lior Kornblum verfasserin aut Nini Pryds verfasserin aut Rasmus Bjørk verfasserin aut Dennis V Christensen verfasserin aut In JPhys Materials IOP Publishing, 2019 6(2023), 4, p 045010 (DE-627)1040994229 (DE-600)2950970-1 25157639 nnns volume:6 year:2023 number:4, p 045010 https://doi.org/10.1088/2515-7639/acfac0 kostenfrei https://doaj.org/article/e1bd969e108d41a68880d5095e049822 kostenfrei https://doi.org/10.1088/2515-7639/acfac0 kostenfrei https://doaj.org/toc/2515-7639 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2023 4, p 045010 |
allfieldsGer |
10.1088/2515-7639/acfac0 doi (DE-627)DOAJ095179585 (DE-599)DOAJe1bd969e108d41a68880d5095e049822 DE-627 ger DE-627 rakwb eng TA401-492 QC1-999 Ricci Erlandsen verfasserin aut Universal material trends in extraordinary magnetoresistive devices 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Extraordinary magnetoresistance (EMR) is a geometric magnetoresistance emerging in hybrid systems typically comprising a high-mobility material and a metal. Due to a field-dependent redistribution of electrical currents in these devices, the electrical resistance at room temperature can increase by 10 ^7 % when applying a magnetic field of 5 T. Although EMR holds considerable potential for realizing sensitive, all-electronic magnetometers, this potential is largely unmet. A key challenge is that the performance of EMR devices depends very sensitively on variations in a vast parameter space where changes in the device geometry and material properties produce widely different EMR performances. The challenge of navigating in the large parameter space is further amplified by the poor understanding of the interplay between the device geometry and material properties. By systematically varying the material parameters in four key EMR geometries using diffusive transport simulations, we here elucidate this interplay with the aim of finding universal guidelines for designing EMR devices. Common to all geometries, we find that the sensitivity scales inversely with the carrier density, while the MR reaches saturation at low carrier densities. Increasing the mobility beyond 20 000 cm ^2 Vs ^−1 is required to observe strong EMR effects at 1 T with the optimal magnetoresistance observed for mobilities between 100 000–500 000 cm ^2 Vs ^−1 . An interface resistance below $\rho_c = 10^{-4}\ \Omega$ cm ^2 between the constituent materials in the hybrid devices was also found to be a prerequisite for very high magnetoresistances in all geometries. By further simulating several high-mobility materials at room and cryogenic temperatures, we conclude that encapsulated graphene and InSb are amongst the most promising candidates for EMR devices showing high magnetoresistance exceeding 10 ^7 % below 1 T at room temperature. This study paves the way for understanding how to realize EMR devices with record-high magnetoresistance and high sensitivity for detecting magnetic fields. extraordinary magnetoresistance magnetoresistance magnetometers graphene semiconductor oxides Materials of engineering and construction. Mechanics of materials Physics Thierry Désiré Pomar verfasserin aut Lior Kornblum verfasserin aut Nini Pryds verfasserin aut Rasmus Bjørk verfasserin aut Dennis V Christensen verfasserin aut In JPhys Materials IOP Publishing, 2019 6(2023), 4, p 045010 (DE-627)1040994229 (DE-600)2950970-1 25157639 nnns volume:6 year:2023 number:4, p 045010 https://doi.org/10.1088/2515-7639/acfac0 kostenfrei https://doaj.org/article/e1bd969e108d41a68880d5095e049822 kostenfrei https://doi.org/10.1088/2515-7639/acfac0 kostenfrei https://doaj.org/toc/2515-7639 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2023 4, p 045010 |
allfieldsSound |
10.1088/2515-7639/acfac0 doi (DE-627)DOAJ095179585 (DE-599)DOAJe1bd969e108d41a68880d5095e049822 DE-627 ger DE-627 rakwb eng TA401-492 QC1-999 Ricci Erlandsen verfasserin aut Universal material trends in extraordinary magnetoresistive devices 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Extraordinary magnetoresistance (EMR) is a geometric magnetoresistance emerging in hybrid systems typically comprising a high-mobility material and a metal. Due to a field-dependent redistribution of electrical currents in these devices, the electrical resistance at room temperature can increase by 10 ^7 % when applying a magnetic field of 5 T. Although EMR holds considerable potential for realizing sensitive, all-electronic magnetometers, this potential is largely unmet. A key challenge is that the performance of EMR devices depends very sensitively on variations in a vast parameter space where changes in the device geometry and material properties produce widely different EMR performances. The challenge of navigating in the large parameter space is further amplified by the poor understanding of the interplay between the device geometry and material properties. By systematically varying the material parameters in four key EMR geometries using diffusive transport simulations, we here elucidate this interplay with the aim of finding universal guidelines for designing EMR devices. Common to all geometries, we find that the sensitivity scales inversely with the carrier density, while the MR reaches saturation at low carrier densities. Increasing the mobility beyond 20 000 cm ^2 Vs ^−1 is required to observe strong EMR effects at 1 T with the optimal magnetoresistance observed for mobilities between 100 000–500 000 cm ^2 Vs ^−1 . An interface resistance below $\rho_c = 10^{-4}\ \Omega$ cm ^2 between the constituent materials in the hybrid devices was also found to be a prerequisite for very high magnetoresistances in all geometries. By further simulating several high-mobility materials at room and cryogenic temperatures, we conclude that encapsulated graphene and InSb are amongst the most promising candidates for EMR devices showing high magnetoresistance exceeding 10 ^7 % below 1 T at room temperature. This study paves the way for understanding how to realize EMR devices with record-high magnetoresistance and high sensitivity for detecting magnetic fields. extraordinary magnetoresistance magnetoresistance magnetometers graphene semiconductor oxides Materials of engineering and construction. Mechanics of materials Physics Thierry Désiré Pomar verfasserin aut Lior Kornblum verfasserin aut Nini Pryds verfasserin aut Rasmus Bjørk verfasserin aut Dennis V Christensen verfasserin aut In JPhys Materials IOP Publishing, 2019 6(2023), 4, p 045010 (DE-627)1040994229 (DE-600)2950970-1 25157639 nnns volume:6 year:2023 number:4, p 045010 https://doi.org/10.1088/2515-7639/acfac0 kostenfrei https://doaj.org/article/e1bd969e108d41a68880d5095e049822 kostenfrei https://doi.org/10.1088/2515-7639/acfac0 kostenfrei https://doaj.org/toc/2515-7639 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2023 4, p 045010 |
language |
English |
source |
In JPhys Materials 6(2023), 4, p 045010 volume:6 year:2023 number:4, p 045010 |
sourceStr |
In JPhys Materials 6(2023), 4, p 045010 volume:6 year:2023 number:4, p 045010 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
extraordinary magnetoresistance magnetoresistance magnetometers graphene semiconductor oxides Materials of engineering and construction. Mechanics of materials Physics |
isfreeaccess_bool |
true |
container_title |
JPhys Materials |
authorswithroles_txt_mv |
Ricci Erlandsen @@aut@@ Thierry Désiré Pomar @@aut@@ Lior Kornblum @@aut@@ Nini Pryds @@aut@@ Rasmus Bjørk @@aut@@ Dennis V Christensen @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
1040994229 |
id |
DOAJ095179585 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ095179585</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413093557.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1088/2515-7639/acfac0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ095179585</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe1bd969e108d41a68880d5095e049822</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ricci Erlandsen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Universal material trends in extraordinary magnetoresistive devices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Extraordinary magnetoresistance (EMR) is a geometric magnetoresistance emerging in hybrid systems typically comprising a high-mobility material and a metal. Due to a field-dependent redistribution of electrical currents in these devices, the electrical resistance at room temperature can increase by 10 ^7 % when applying a magnetic field of 5 T. Although EMR holds considerable potential for realizing sensitive, all-electronic magnetometers, this potential is largely unmet. A key challenge is that the performance of EMR devices depends very sensitively on variations in a vast parameter space where changes in the device geometry and material properties produce widely different EMR performances. The challenge of navigating in the large parameter space is further amplified by the poor understanding of the interplay between the device geometry and material properties. By systematically varying the material parameters in four key EMR geometries using diffusive transport simulations, we here elucidate this interplay with the aim of finding universal guidelines for designing EMR devices. Common to all geometries, we find that the sensitivity scales inversely with the carrier density, while the MR reaches saturation at low carrier densities. Increasing the mobility beyond 20 000 cm ^2 Vs ^−1 is required to observe strong EMR effects at 1 T with the optimal magnetoresistance observed for mobilities between 100 000–500 000 cm ^2 Vs ^−1 . An interface resistance below $\rho_c = 10^{-4}\ \Omega$ cm ^2 between the constituent materials in the hybrid devices was also found to be a prerequisite for very high magnetoresistances in all geometries. By further simulating several high-mobility materials at room and cryogenic temperatures, we conclude that encapsulated graphene and InSb are amongst the most promising candidates for EMR devices showing high magnetoresistance exceeding 10 ^7 % below 1 T at room temperature. This study paves the way for understanding how to realize EMR devices with record-high magnetoresistance and high sensitivity for detecting magnetic fields.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">extraordinary magnetoresistance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetoresistance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetometers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">graphene</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">semiconductor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oxides</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thierry Désiré Pomar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lior Kornblum</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nini Pryds</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rasmus Bjørk</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dennis V Christensen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">JPhys Materials</subfield><subfield code="d">IOP Publishing, 2019</subfield><subfield code="g">6(2023), 4, p 045010</subfield><subfield code="w">(DE-627)1040994229</subfield><subfield code="w">(DE-600)2950970-1</subfield><subfield code="x">25157639</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4, p 045010</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1088/2515-7639/acfac0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e1bd969e108d41a68880d5095e049822</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1088/2515-7639/acfac0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2515-7639</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2023</subfield><subfield code="e">4, p 045010</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Ricci Erlandsen |
spellingShingle |
Ricci Erlandsen misc TA401-492 misc QC1-999 misc extraordinary magnetoresistance misc magnetoresistance misc magnetometers misc graphene misc semiconductor misc oxides misc Materials of engineering and construction. Mechanics of materials misc Physics Universal material trends in extraordinary magnetoresistive devices |
authorStr |
Ricci Erlandsen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1040994229 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA401-492 |
illustrated |
Not Illustrated |
issn |
25157639 |
topic_title |
TA401-492 QC1-999 Universal material trends in extraordinary magnetoresistive devices extraordinary magnetoresistance magnetoresistance magnetometers graphene semiconductor oxides |
topic |
misc TA401-492 misc QC1-999 misc extraordinary magnetoresistance misc magnetoresistance misc magnetometers misc graphene misc semiconductor misc oxides misc Materials of engineering and construction. Mechanics of materials misc Physics |
topic_unstemmed |
misc TA401-492 misc QC1-999 misc extraordinary magnetoresistance misc magnetoresistance misc magnetometers misc graphene misc semiconductor misc oxides misc Materials of engineering and construction. Mechanics of materials misc Physics |
topic_browse |
misc TA401-492 misc QC1-999 misc extraordinary magnetoresistance misc magnetoresistance misc magnetometers misc graphene misc semiconductor misc oxides misc Materials of engineering and construction. Mechanics of materials misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
JPhys Materials |
hierarchy_parent_id |
1040994229 |
hierarchy_top_title |
JPhys Materials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1040994229 (DE-600)2950970-1 |
title |
Universal material trends in extraordinary magnetoresistive devices |
ctrlnum |
(DE-627)DOAJ095179585 (DE-599)DOAJe1bd969e108d41a68880d5095e049822 |
title_full |
Universal material trends in extraordinary magnetoresistive devices |
author_sort |
Ricci Erlandsen |
journal |
JPhys Materials |
journalStr |
JPhys Materials |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Ricci Erlandsen Thierry Désiré Pomar Lior Kornblum Nini Pryds Rasmus Bjørk Dennis V Christensen |
container_volume |
6 |
class |
TA401-492 QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Ricci Erlandsen |
doi_str_mv |
10.1088/2515-7639/acfac0 |
author2-role |
verfasserin |
title_sort |
universal material trends in extraordinary magnetoresistive devices |
callnumber |
TA401-492 |
title_auth |
Universal material trends in extraordinary magnetoresistive devices |
abstract |
Extraordinary magnetoresistance (EMR) is a geometric magnetoresistance emerging in hybrid systems typically comprising a high-mobility material and a metal. Due to a field-dependent redistribution of electrical currents in these devices, the electrical resistance at room temperature can increase by 10 ^7 % when applying a magnetic field of 5 T. Although EMR holds considerable potential for realizing sensitive, all-electronic magnetometers, this potential is largely unmet. A key challenge is that the performance of EMR devices depends very sensitively on variations in a vast parameter space where changes in the device geometry and material properties produce widely different EMR performances. The challenge of navigating in the large parameter space is further amplified by the poor understanding of the interplay between the device geometry and material properties. By systematically varying the material parameters in four key EMR geometries using diffusive transport simulations, we here elucidate this interplay with the aim of finding universal guidelines for designing EMR devices. Common to all geometries, we find that the sensitivity scales inversely with the carrier density, while the MR reaches saturation at low carrier densities. Increasing the mobility beyond 20 000 cm ^2 Vs ^−1 is required to observe strong EMR effects at 1 T with the optimal magnetoresistance observed for mobilities between 100 000–500 000 cm ^2 Vs ^−1 . An interface resistance below $\rho_c = 10^{-4}\ \Omega$ cm ^2 between the constituent materials in the hybrid devices was also found to be a prerequisite for very high magnetoresistances in all geometries. By further simulating several high-mobility materials at room and cryogenic temperatures, we conclude that encapsulated graphene and InSb are amongst the most promising candidates for EMR devices showing high magnetoresistance exceeding 10 ^7 % below 1 T at room temperature. This study paves the way for understanding how to realize EMR devices with record-high magnetoresistance and high sensitivity for detecting magnetic fields. |
abstractGer |
Extraordinary magnetoresistance (EMR) is a geometric magnetoresistance emerging in hybrid systems typically comprising a high-mobility material and a metal. Due to a field-dependent redistribution of electrical currents in these devices, the electrical resistance at room temperature can increase by 10 ^7 % when applying a magnetic field of 5 T. Although EMR holds considerable potential for realizing sensitive, all-electronic magnetometers, this potential is largely unmet. A key challenge is that the performance of EMR devices depends very sensitively on variations in a vast parameter space where changes in the device geometry and material properties produce widely different EMR performances. The challenge of navigating in the large parameter space is further amplified by the poor understanding of the interplay between the device geometry and material properties. By systematically varying the material parameters in four key EMR geometries using diffusive transport simulations, we here elucidate this interplay with the aim of finding universal guidelines for designing EMR devices. Common to all geometries, we find that the sensitivity scales inversely with the carrier density, while the MR reaches saturation at low carrier densities. Increasing the mobility beyond 20 000 cm ^2 Vs ^−1 is required to observe strong EMR effects at 1 T with the optimal magnetoresistance observed for mobilities between 100 000–500 000 cm ^2 Vs ^−1 . An interface resistance below $\rho_c = 10^{-4}\ \Omega$ cm ^2 between the constituent materials in the hybrid devices was also found to be a prerequisite for very high magnetoresistances in all geometries. By further simulating several high-mobility materials at room and cryogenic temperatures, we conclude that encapsulated graphene and InSb are amongst the most promising candidates for EMR devices showing high magnetoresistance exceeding 10 ^7 % below 1 T at room temperature. This study paves the way for understanding how to realize EMR devices with record-high magnetoresistance and high sensitivity for detecting magnetic fields. |
abstract_unstemmed |
Extraordinary magnetoresistance (EMR) is a geometric magnetoresistance emerging in hybrid systems typically comprising a high-mobility material and a metal. Due to a field-dependent redistribution of electrical currents in these devices, the electrical resistance at room temperature can increase by 10 ^7 % when applying a magnetic field of 5 T. Although EMR holds considerable potential for realizing sensitive, all-electronic magnetometers, this potential is largely unmet. A key challenge is that the performance of EMR devices depends very sensitively on variations in a vast parameter space where changes in the device geometry and material properties produce widely different EMR performances. The challenge of navigating in the large parameter space is further amplified by the poor understanding of the interplay between the device geometry and material properties. By systematically varying the material parameters in four key EMR geometries using diffusive transport simulations, we here elucidate this interplay with the aim of finding universal guidelines for designing EMR devices. Common to all geometries, we find that the sensitivity scales inversely with the carrier density, while the MR reaches saturation at low carrier densities. Increasing the mobility beyond 20 000 cm ^2 Vs ^−1 is required to observe strong EMR effects at 1 T with the optimal magnetoresistance observed for mobilities between 100 000–500 000 cm ^2 Vs ^−1 . An interface resistance below $\rho_c = 10^{-4}\ \Omega$ cm ^2 between the constituent materials in the hybrid devices was also found to be a prerequisite for very high magnetoresistances in all geometries. By further simulating several high-mobility materials at room and cryogenic temperatures, we conclude that encapsulated graphene and InSb are amongst the most promising candidates for EMR devices showing high magnetoresistance exceeding 10 ^7 % below 1 T at room temperature. This study paves the way for understanding how to realize EMR devices with record-high magnetoresistance and high sensitivity for detecting magnetic fields. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4, p 045010 |
title_short |
Universal material trends in extraordinary magnetoresistive devices |
url |
https://doi.org/10.1088/2515-7639/acfac0 https://doaj.org/article/e1bd969e108d41a68880d5095e049822 https://doaj.org/toc/2515-7639 |
remote_bool |
true |
author2 |
Thierry Désiré Pomar Lior Kornblum Nini Pryds Rasmus Bjørk Dennis V Christensen |
author2Str |
Thierry Désiré Pomar Lior Kornblum Nini Pryds Rasmus Bjørk Dennis V Christensen |
ppnlink |
1040994229 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1088/2515-7639/acfac0 |
callnumber-a |
TA401-492 |
up_date |
2024-07-04T02:12:35.404Z |
_version_ |
1803612748940050432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ095179585</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413093557.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1088/2515-7639/acfac0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ095179585</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe1bd969e108d41a68880d5095e049822</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ricci Erlandsen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Universal material trends in extraordinary magnetoresistive devices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Extraordinary magnetoresistance (EMR) is a geometric magnetoresistance emerging in hybrid systems typically comprising a high-mobility material and a metal. Due to a field-dependent redistribution of electrical currents in these devices, the electrical resistance at room temperature can increase by 10 ^7 % when applying a magnetic field of 5 T. Although EMR holds considerable potential for realizing sensitive, all-electronic magnetometers, this potential is largely unmet. A key challenge is that the performance of EMR devices depends very sensitively on variations in a vast parameter space where changes in the device geometry and material properties produce widely different EMR performances. The challenge of navigating in the large parameter space is further amplified by the poor understanding of the interplay between the device geometry and material properties. By systematically varying the material parameters in four key EMR geometries using diffusive transport simulations, we here elucidate this interplay with the aim of finding universal guidelines for designing EMR devices. Common to all geometries, we find that the sensitivity scales inversely with the carrier density, while the MR reaches saturation at low carrier densities. Increasing the mobility beyond 20 000 cm ^2 Vs ^−1 is required to observe strong EMR effects at 1 T with the optimal magnetoresistance observed for mobilities between 100 000–500 000 cm ^2 Vs ^−1 . An interface resistance below $\rho_c = 10^{-4}\ \Omega$ cm ^2 between the constituent materials in the hybrid devices was also found to be a prerequisite for very high magnetoresistances in all geometries. By further simulating several high-mobility materials at room and cryogenic temperatures, we conclude that encapsulated graphene and InSb are amongst the most promising candidates for EMR devices showing high magnetoresistance exceeding 10 ^7 % below 1 T at room temperature. This study paves the way for understanding how to realize EMR devices with record-high magnetoresistance and high sensitivity for detecting magnetic fields.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">extraordinary magnetoresistance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetoresistance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetometers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">graphene</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">semiconductor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oxides</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thierry Désiré Pomar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lior Kornblum</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nini Pryds</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rasmus Bjørk</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dennis V Christensen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">JPhys Materials</subfield><subfield code="d">IOP Publishing, 2019</subfield><subfield code="g">6(2023), 4, p 045010</subfield><subfield code="w">(DE-627)1040994229</subfield><subfield code="w">(DE-600)2950970-1</subfield><subfield code="x">25157639</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4, p 045010</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1088/2515-7639/acfac0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e1bd969e108d41a68880d5095e049822</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1088/2515-7639/acfac0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2515-7639</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2023</subfield><subfield code="e">4, p 045010</subfield></datafield></record></collection>
|
score |
7.4017544 |