Hot deformation behavior and flow stress modeling of coarse-grain nickel-base GH4151 superalloy ingot materials in cogging
Due to the high deformation resistance and poor thermal ductility of the new cast GH4151 alloy ingots, cracks are easy to occur during cogging process. For clarifying the effects of deformation parameters on microstructural evolution and dynamic recrystallization (DRX) nucleation mechanisms. In this...
Ausführliche Beschreibung
Autor*in: |
Lei Jia [verfasserIn] Heng Cui [verfasserIn] Shufeng Yang [verfasserIn] Shaomin Lv [verfasserIn] Xingfei Xie [verfasserIn] Jinglong Qu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Materials Research and Technology - Elsevier, 2015, 26(2023), Seite 6652-6671 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2023 ; pages:6652-6671 |
Links: |
---|
DOI / URN: |
10.1016/j.jmrt.2023.09.022 |
---|
Katalog-ID: |
DOAJ095300384 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ095300384 | ||
003 | DE-627 | ||
005 | 20240414085144.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jmrt.2023.09.022 |2 doi | |
035 | |a (DE-627)DOAJ095300384 | ||
035 | |a (DE-599)DOAJ652e263aa54f4b60ad757158ef5c949c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TN1-997 | |
100 | 0 | |a Lei Jia |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hot deformation behavior and flow stress modeling of coarse-grain nickel-base GH4151 superalloy ingot materials in cogging |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Due to the high deformation resistance and poor thermal ductility of the new cast GH4151 alloy ingots, cracks are easy to occur during cogging process. For clarifying the effects of deformation parameters on microstructural evolution and dynamic recrystallization (DRX) nucleation mechanisms. In this work, the causes of crack formation and extension were first investigated using SEM and EBSD. The study revealed that the reasons for crack formation and propagation are the MC carbides at the original grain boundaries, large-size γ′ phase, residual eutectic phases, and tiny pores near the grain boundaries. Subsequently, a series of hot compression tests were performed using a Thermecamastor-Z thermo-mechanical simulator at temperatures ranging from 1080 °C to 1160 °C and a strain rate range of 0.01–10 s−1. The constitutive equation of the Arrhenius model and the hot working map was established, determining activation energy(Q) of 1086.58 kJ·mol−1. Large-size γ′ is coherent with the matrix. For the γ+γ′ dual-phase region, heterogeneous strain-induced dynamic recrystallization (HDRX) occurs, and discontinuous dynamic recrystallization (DDRX) is the main nucleation mechanism for DRX. However, for γ single-phase region, DDRX plays a more significant role. Furthermore, the MC phase (<1 μm) has different crystal orientations with the γ matrix and acts as sites for recrystallization through particle-stimulated nucleation (PSN). Finally, a fine and uniform grain structure can be obtained in the temperature range of 1120–1135 °C and the strain rate range of 0.1 s−1 to 1 s−1. | ||
650 | 4 | |a GH4151 alloy | |
650 | 4 | |a Cogging cracking mechanism | |
650 | 4 | |a Hot processing map | |
650 | 4 | |a Constitutive equation | |
650 | 4 | |a Dynamic recrystallization | |
653 | 0 | |a Mining engineering. Metallurgy | |
700 | 0 | |a Heng Cui |e verfasserin |4 aut | |
700 | 0 | |a Shufeng Yang |e verfasserin |4 aut | |
700 | 0 | |a Shaomin Lv |e verfasserin |4 aut | |
700 | 0 | |a Xingfei Xie |e verfasserin |4 aut | |
700 | 0 | |a Jinglong Qu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Materials Research and Technology |d Elsevier, 2015 |g 26(2023), Seite 6652-6671 |w (DE-627)768093163 |w (DE-600)2732709-7 |x 22140697 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:2023 |g pages:6652-6671 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jmrt.2023.09.022 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/652e263aa54f4b60ad757158ef5c949c |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2238785423021476 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2238-7854 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 26 |j 2023 |h 6652-6671 |
author_variant |
l j lj h c hc s y sy s l sl x x xx j q jq |
---|---|
matchkey_str |
article:22140697:2023----::odfraineairnfosrsmdlnocasganiklaeh11uea |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TN |
publishDate |
2023 |
allfields |
10.1016/j.jmrt.2023.09.022 doi (DE-627)DOAJ095300384 (DE-599)DOAJ652e263aa54f4b60ad757158ef5c949c DE-627 ger DE-627 rakwb eng TN1-997 Lei Jia verfasserin aut Hot deformation behavior and flow stress modeling of coarse-grain nickel-base GH4151 superalloy ingot materials in cogging 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Due to the high deformation resistance and poor thermal ductility of the new cast GH4151 alloy ingots, cracks are easy to occur during cogging process. For clarifying the effects of deformation parameters on microstructural evolution and dynamic recrystallization (DRX) nucleation mechanisms. In this work, the causes of crack formation and extension were first investigated using SEM and EBSD. The study revealed that the reasons for crack formation and propagation are the MC carbides at the original grain boundaries, large-size γ′ phase, residual eutectic phases, and tiny pores near the grain boundaries. Subsequently, a series of hot compression tests were performed using a Thermecamastor-Z thermo-mechanical simulator at temperatures ranging from 1080 °C to 1160 °C and a strain rate range of 0.01–10 s−1. The constitutive equation of the Arrhenius model and the hot working map was established, determining activation energy(Q) of 1086.58 kJ·mol−1. Large-size γ′ is coherent with the matrix. For the γ+γ′ dual-phase region, heterogeneous strain-induced dynamic recrystallization (HDRX) occurs, and discontinuous dynamic recrystallization (DDRX) is the main nucleation mechanism for DRX. However, for γ single-phase region, DDRX plays a more significant role. Furthermore, the MC phase (<1 μm) has different crystal orientations with the γ matrix and acts as sites for recrystallization through particle-stimulated nucleation (PSN). Finally, a fine and uniform grain structure can be obtained in the temperature range of 1120–1135 °C and the strain rate range of 0.1 s−1 to 1 s−1. GH4151 alloy Cogging cracking mechanism Hot processing map Constitutive equation Dynamic recrystallization Mining engineering. Metallurgy Heng Cui verfasserin aut Shufeng Yang verfasserin aut Shaomin Lv verfasserin aut Xingfei Xie verfasserin aut Jinglong Qu verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 26(2023), Seite 6652-6671 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:26 year:2023 pages:6652-6671 https://doi.org/10.1016/j.jmrt.2023.09.022 kostenfrei https://doaj.org/article/652e263aa54f4b60ad757158ef5c949c kostenfrei http://www.sciencedirect.com/science/article/pii/S2238785423021476 kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 26 2023 6652-6671 |
spelling |
10.1016/j.jmrt.2023.09.022 doi (DE-627)DOAJ095300384 (DE-599)DOAJ652e263aa54f4b60ad757158ef5c949c DE-627 ger DE-627 rakwb eng TN1-997 Lei Jia verfasserin aut Hot deformation behavior and flow stress modeling of coarse-grain nickel-base GH4151 superalloy ingot materials in cogging 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Due to the high deformation resistance and poor thermal ductility of the new cast GH4151 alloy ingots, cracks are easy to occur during cogging process. For clarifying the effects of deformation parameters on microstructural evolution and dynamic recrystallization (DRX) nucleation mechanisms. In this work, the causes of crack formation and extension were first investigated using SEM and EBSD. The study revealed that the reasons for crack formation and propagation are the MC carbides at the original grain boundaries, large-size γ′ phase, residual eutectic phases, and tiny pores near the grain boundaries. Subsequently, a series of hot compression tests were performed using a Thermecamastor-Z thermo-mechanical simulator at temperatures ranging from 1080 °C to 1160 °C and a strain rate range of 0.01–10 s−1. The constitutive equation of the Arrhenius model and the hot working map was established, determining activation energy(Q) of 1086.58 kJ·mol−1. Large-size γ′ is coherent with the matrix. For the γ+γ′ dual-phase region, heterogeneous strain-induced dynamic recrystallization (HDRX) occurs, and discontinuous dynamic recrystallization (DDRX) is the main nucleation mechanism for DRX. However, for γ single-phase region, DDRX plays a more significant role. Furthermore, the MC phase (<1 μm) has different crystal orientations with the γ matrix and acts as sites for recrystallization through particle-stimulated nucleation (PSN). Finally, a fine and uniform grain structure can be obtained in the temperature range of 1120–1135 °C and the strain rate range of 0.1 s−1 to 1 s−1. GH4151 alloy Cogging cracking mechanism Hot processing map Constitutive equation Dynamic recrystallization Mining engineering. Metallurgy Heng Cui verfasserin aut Shufeng Yang verfasserin aut Shaomin Lv verfasserin aut Xingfei Xie verfasserin aut Jinglong Qu verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 26(2023), Seite 6652-6671 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:26 year:2023 pages:6652-6671 https://doi.org/10.1016/j.jmrt.2023.09.022 kostenfrei https://doaj.org/article/652e263aa54f4b60ad757158ef5c949c kostenfrei http://www.sciencedirect.com/science/article/pii/S2238785423021476 kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 26 2023 6652-6671 |
allfields_unstemmed |
10.1016/j.jmrt.2023.09.022 doi (DE-627)DOAJ095300384 (DE-599)DOAJ652e263aa54f4b60ad757158ef5c949c DE-627 ger DE-627 rakwb eng TN1-997 Lei Jia verfasserin aut Hot deformation behavior and flow stress modeling of coarse-grain nickel-base GH4151 superalloy ingot materials in cogging 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Due to the high deformation resistance and poor thermal ductility of the new cast GH4151 alloy ingots, cracks are easy to occur during cogging process. For clarifying the effects of deformation parameters on microstructural evolution and dynamic recrystallization (DRX) nucleation mechanisms. In this work, the causes of crack formation and extension were first investigated using SEM and EBSD. The study revealed that the reasons for crack formation and propagation are the MC carbides at the original grain boundaries, large-size γ′ phase, residual eutectic phases, and tiny pores near the grain boundaries. Subsequently, a series of hot compression tests were performed using a Thermecamastor-Z thermo-mechanical simulator at temperatures ranging from 1080 °C to 1160 °C and a strain rate range of 0.01–10 s−1. The constitutive equation of the Arrhenius model and the hot working map was established, determining activation energy(Q) of 1086.58 kJ·mol−1. Large-size γ′ is coherent with the matrix. For the γ+γ′ dual-phase region, heterogeneous strain-induced dynamic recrystallization (HDRX) occurs, and discontinuous dynamic recrystallization (DDRX) is the main nucleation mechanism for DRX. However, for γ single-phase region, DDRX plays a more significant role. Furthermore, the MC phase (<1 μm) has different crystal orientations with the γ matrix and acts as sites for recrystallization through particle-stimulated nucleation (PSN). Finally, a fine and uniform grain structure can be obtained in the temperature range of 1120–1135 °C and the strain rate range of 0.1 s−1 to 1 s−1. GH4151 alloy Cogging cracking mechanism Hot processing map Constitutive equation Dynamic recrystallization Mining engineering. Metallurgy Heng Cui verfasserin aut Shufeng Yang verfasserin aut Shaomin Lv verfasserin aut Xingfei Xie verfasserin aut Jinglong Qu verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 26(2023), Seite 6652-6671 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:26 year:2023 pages:6652-6671 https://doi.org/10.1016/j.jmrt.2023.09.022 kostenfrei https://doaj.org/article/652e263aa54f4b60ad757158ef5c949c kostenfrei http://www.sciencedirect.com/science/article/pii/S2238785423021476 kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 26 2023 6652-6671 |
allfieldsGer |
10.1016/j.jmrt.2023.09.022 doi (DE-627)DOAJ095300384 (DE-599)DOAJ652e263aa54f4b60ad757158ef5c949c DE-627 ger DE-627 rakwb eng TN1-997 Lei Jia verfasserin aut Hot deformation behavior and flow stress modeling of coarse-grain nickel-base GH4151 superalloy ingot materials in cogging 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Due to the high deformation resistance and poor thermal ductility of the new cast GH4151 alloy ingots, cracks are easy to occur during cogging process. For clarifying the effects of deformation parameters on microstructural evolution and dynamic recrystallization (DRX) nucleation mechanisms. In this work, the causes of crack formation and extension were first investigated using SEM and EBSD. The study revealed that the reasons for crack formation and propagation are the MC carbides at the original grain boundaries, large-size γ′ phase, residual eutectic phases, and tiny pores near the grain boundaries. Subsequently, a series of hot compression tests were performed using a Thermecamastor-Z thermo-mechanical simulator at temperatures ranging from 1080 °C to 1160 °C and a strain rate range of 0.01–10 s−1. The constitutive equation of the Arrhenius model and the hot working map was established, determining activation energy(Q) of 1086.58 kJ·mol−1. Large-size γ′ is coherent with the matrix. For the γ+γ′ dual-phase region, heterogeneous strain-induced dynamic recrystallization (HDRX) occurs, and discontinuous dynamic recrystallization (DDRX) is the main nucleation mechanism for DRX. However, for γ single-phase region, DDRX plays a more significant role. Furthermore, the MC phase (<1 μm) has different crystal orientations with the γ matrix and acts as sites for recrystallization through particle-stimulated nucleation (PSN). Finally, a fine and uniform grain structure can be obtained in the temperature range of 1120–1135 °C and the strain rate range of 0.1 s−1 to 1 s−1. GH4151 alloy Cogging cracking mechanism Hot processing map Constitutive equation Dynamic recrystallization Mining engineering. Metallurgy Heng Cui verfasserin aut Shufeng Yang verfasserin aut Shaomin Lv verfasserin aut Xingfei Xie verfasserin aut Jinglong Qu verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 26(2023), Seite 6652-6671 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:26 year:2023 pages:6652-6671 https://doi.org/10.1016/j.jmrt.2023.09.022 kostenfrei https://doaj.org/article/652e263aa54f4b60ad757158ef5c949c kostenfrei http://www.sciencedirect.com/science/article/pii/S2238785423021476 kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 26 2023 6652-6671 |
allfieldsSound |
10.1016/j.jmrt.2023.09.022 doi (DE-627)DOAJ095300384 (DE-599)DOAJ652e263aa54f4b60ad757158ef5c949c DE-627 ger DE-627 rakwb eng TN1-997 Lei Jia verfasserin aut Hot deformation behavior and flow stress modeling of coarse-grain nickel-base GH4151 superalloy ingot materials in cogging 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Due to the high deformation resistance and poor thermal ductility of the new cast GH4151 alloy ingots, cracks are easy to occur during cogging process. For clarifying the effects of deformation parameters on microstructural evolution and dynamic recrystallization (DRX) nucleation mechanisms. In this work, the causes of crack formation and extension were first investigated using SEM and EBSD. The study revealed that the reasons for crack formation and propagation are the MC carbides at the original grain boundaries, large-size γ′ phase, residual eutectic phases, and tiny pores near the grain boundaries. Subsequently, a series of hot compression tests were performed using a Thermecamastor-Z thermo-mechanical simulator at temperatures ranging from 1080 °C to 1160 °C and a strain rate range of 0.01–10 s−1. The constitutive equation of the Arrhenius model and the hot working map was established, determining activation energy(Q) of 1086.58 kJ·mol−1. Large-size γ′ is coherent with the matrix. For the γ+γ′ dual-phase region, heterogeneous strain-induced dynamic recrystallization (HDRX) occurs, and discontinuous dynamic recrystallization (DDRX) is the main nucleation mechanism for DRX. However, for γ single-phase region, DDRX plays a more significant role. Furthermore, the MC phase (<1 μm) has different crystal orientations with the γ matrix and acts as sites for recrystallization through particle-stimulated nucleation (PSN). Finally, a fine and uniform grain structure can be obtained in the temperature range of 1120–1135 °C and the strain rate range of 0.1 s−1 to 1 s−1. GH4151 alloy Cogging cracking mechanism Hot processing map Constitutive equation Dynamic recrystallization Mining engineering. Metallurgy Heng Cui verfasserin aut Shufeng Yang verfasserin aut Shaomin Lv verfasserin aut Xingfei Xie verfasserin aut Jinglong Qu verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 26(2023), Seite 6652-6671 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:26 year:2023 pages:6652-6671 https://doi.org/10.1016/j.jmrt.2023.09.022 kostenfrei https://doaj.org/article/652e263aa54f4b60ad757158ef5c949c kostenfrei http://www.sciencedirect.com/science/article/pii/S2238785423021476 kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 26 2023 6652-6671 |
language |
English |
source |
In Journal of Materials Research and Technology 26(2023), Seite 6652-6671 volume:26 year:2023 pages:6652-6671 |
sourceStr |
In Journal of Materials Research and Technology 26(2023), Seite 6652-6671 volume:26 year:2023 pages:6652-6671 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
GH4151 alloy Cogging cracking mechanism Hot processing map Constitutive equation Dynamic recrystallization Mining engineering. Metallurgy |
isfreeaccess_bool |
true |
container_title |
Journal of Materials Research and Technology |
authorswithroles_txt_mv |
Lei Jia @@aut@@ Heng Cui @@aut@@ Shufeng Yang @@aut@@ Shaomin Lv @@aut@@ Xingfei Xie @@aut@@ Jinglong Qu @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
768093163 |
id |
DOAJ095300384 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ095300384</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414085144.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmrt.2023.09.022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ095300384</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ652e263aa54f4b60ad757158ef5c949c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lei Jia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hot deformation behavior and flow stress modeling of coarse-grain nickel-base GH4151 superalloy ingot materials in cogging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Due to the high deformation resistance and poor thermal ductility of the new cast GH4151 alloy ingots, cracks are easy to occur during cogging process. For clarifying the effects of deformation parameters on microstructural evolution and dynamic recrystallization (DRX) nucleation mechanisms. In this work, the causes of crack formation and extension were first investigated using SEM and EBSD. The study revealed that the reasons for crack formation and propagation are the MC carbides at the original grain boundaries, large-size γ′ phase, residual eutectic phases, and tiny pores near the grain boundaries. Subsequently, a series of hot compression tests were performed using a Thermecamastor-Z thermo-mechanical simulator at temperatures ranging from 1080 °C to 1160 °C and a strain rate range of 0.01–10 s−1. The constitutive equation of the Arrhenius model and the hot working map was established, determining activation energy(Q) of 1086.58 kJ·mol−1. Large-size γ′ is coherent with the matrix. For the γ+γ′ dual-phase region, heterogeneous strain-induced dynamic recrystallization (HDRX) occurs, and discontinuous dynamic recrystallization (DDRX) is the main nucleation mechanism for DRX. However, for γ single-phase region, DDRX plays a more significant role. Furthermore, the MC phase (<1 μm) has different crystal orientations with the γ matrix and acts as sites for recrystallization through particle-stimulated nucleation (PSN). Finally, a fine and uniform grain structure can be obtained in the temperature range of 1120–1135 °C and the strain rate range of 0.1 s−1 to 1 s−1.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GH4151 alloy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cogging cracking mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hot processing map</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constitutive equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic recrystallization</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Heng Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shufeng Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shaomin Lv</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xingfei Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinglong Qu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Materials Research and Technology</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">26(2023), Seite 6652-6671</subfield><subfield code="w">(DE-627)768093163</subfield><subfield code="w">(DE-600)2732709-7</subfield><subfield code="x">22140697</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:6652-6671</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmrt.2023.09.022</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/652e263aa54f4b60ad757158ef5c949c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2238785423021476</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2238-7854</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2023</subfield><subfield code="h">6652-6671</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Lei Jia |
spellingShingle |
Lei Jia misc TN1-997 misc GH4151 alloy misc Cogging cracking mechanism misc Hot processing map misc Constitutive equation misc Dynamic recrystallization misc Mining engineering. Metallurgy Hot deformation behavior and flow stress modeling of coarse-grain nickel-base GH4151 superalloy ingot materials in cogging |
authorStr |
Lei Jia |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)768093163 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TN1-997 |
illustrated |
Not Illustrated |
issn |
22140697 |
topic_title |
TN1-997 Hot deformation behavior and flow stress modeling of coarse-grain nickel-base GH4151 superalloy ingot materials in cogging GH4151 alloy Cogging cracking mechanism Hot processing map Constitutive equation Dynamic recrystallization |
topic |
misc TN1-997 misc GH4151 alloy misc Cogging cracking mechanism misc Hot processing map misc Constitutive equation misc Dynamic recrystallization misc Mining engineering. Metallurgy |
topic_unstemmed |
misc TN1-997 misc GH4151 alloy misc Cogging cracking mechanism misc Hot processing map misc Constitutive equation misc Dynamic recrystallization misc Mining engineering. Metallurgy |
topic_browse |
misc TN1-997 misc GH4151 alloy misc Cogging cracking mechanism misc Hot processing map misc Constitutive equation misc Dynamic recrystallization misc Mining engineering. Metallurgy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Materials Research and Technology |
hierarchy_parent_id |
768093163 |
hierarchy_top_title |
Journal of Materials Research and Technology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)768093163 (DE-600)2732709-7 |
title |
Hot deformation behavior and flow stress modeling of coarse-grain nickel-base GH4151 superalloy ingot materials in cogging |
ctrlnum |
(DE-627)DOAJ095300384 (DE-599)DOAJ652e263aa54f4b60ad757158ef5c949c |
title_full |
Hot deformation behavior and flow stress modeling of coarse-grain nickel-base GH4151 superalloy ingot materials in cogging |
author_sort |
Lei Jia |
journal |
Journal of Materials Research and Technology |
journalStr |
Journal of Materials Research and Technology |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
6652 |
author_browse |
Lei Jia Heng Cui Shufeng Yang Shaomin Lv Xingfei Xie Jinglong Qu |
container_volume |
26 |
class |
TN1-997 |
format_se |
Elektronische Aufsätze |
author-letter |
Lei Jia |
doi_str_mv |
10.1016/j.jmrt.2023.09.022 |
author2-role |
verfasserin |
title_sort |
hot deformation behavior and flow stress modeling of coarse-grain nickel-base gh4151 superalloy ingot materials in cogging |
callnumber |
TN1-997 |
title_auth |
Hot deformation behavior and flow stress modeling of coarse-grain nickel-base GH4151 superalloy ingot materials in cogging |
abstract |
Due to the high deformation resistance and poor thermal ductility of the new cast GH4151 alloy ingots, cracks are easy to occur during cogging process. For clarifying the effects of deformation parameters on microstructural evolution and dynamic recrystallization (DRX) nucleation mechanisms. In this work, the causes of crack formation and extension were first investigated using SEM and EBSD. The study revealed that the reasons for crack formation and propagation are the MC carbides at the original grain boundaries, large-size γ′ phase, residual eutectic phases, and tiny pores near the grain boundaries. Subsequently, a series of hot compression tests were performed using a Thermecamastor-Z thermo-mechanical simulator at temperatures ranging from 1080 °C to 1160 °C and a strain rate range of 0.01–10 s−1. The constitutive equation of the Arrhenius model and the hot working map was established, determining activation energy(Q) of 1086.58 kJ·mol−1. Large-size γ′ is coherent with the matrix. For the γ+γ′ dual-phase region, heterogeneous strain-induced dynamic recrystallization (HDRX) occurs, and discontinuous dynamic recrystallization (DDRX) is the main nucleation mechanism for DRX. However, for γ single-phase region, DDRX plays a more significant role. Furthermore, the MC phase (<1 μm) has different crystal orientations with the γ matrix and acts as sites for recrystallization through particle-stimulated nucleation (PSN). Finally, a fine and uniform grain structure can be obtained in the temperature range of 1120–1135 °C and the strain rate range of 0.1 s−1 to 1 s−1. |
abstractGer |
Due to the high deformation resistance and poor thermal ductility of the new cast GH4151 alloy ingots, cracks are easy to occur during cogging process. For clarifying the effects of deformation parameters on microstructural evolution and dynamic recrystallization (DRX) nucleation mechanisms. In this work, the causes of crack formation and extension were first investigated using SEM and EBSD. The study revealed that the reasons for crack formation and propagation are the MC carbides at the original grain boundaries, large-size γ′ phase, residual eutectic phases, and tiny pores near the grain boundaries. Subsequently, a series of hot compression tests were performed using a Thermecamastor-Z thermo-mechanical simulator at temperatures ranging from 1080 °C to 1160 °C and a strain rate range of 0.01–10 s−1. The constitutive equation of the Arrhenius model and the hot working map was established, determining activation energy(Q) of 1086.58 kJ·mol−1. Large-size γ′ is coherent with the matrix. For the γ+γ′ dual-phase region, heterogeneous strain-induced dynamic recrystallization (HDRX) occurs, and discontinuous dynamic recrystallization (DDRX) is the main nucleation mechanism for DRX. However, for γ single-phase region, DDRX plays a more significant role. Furthermore, the MC phase (<1 μm) has different crystal orientations with the γ matrix and acts as sites for recrystallization through particle-stimulated nucleation (PSN). Finally, a fine and uniform grain structure can be obtained in the temperature range of 1120–1135 °C and the strain rate range of 0.1 s−1 to 1 s−1. |
abstract_unstemmed |
Due to the high deformation resistance and poor thermal ductility of the new cast GH4151 alloy ingots, cracks are easy to occur during cogging process. For clarifying the effects of deformation parameters on microstructural evolution and dynamic recrystallization (DRX) nucleation mechanisms. In this work, the causes of crack formation and extension were first investigated using SEM and EBSD. The study revealed that the reasons for crack formation and propagation are the MC carbides at the original grain boundaries, large-size γ′ phase, residual eutectic phases, and tiny pores near the grain boundaries. Subsequently, a series of hot compression tests were performed using a Thermecamastor-Z thermo-mechanical simulator at temperatures ranging from 1080 °C to 1160 °C and a strain rate range of 0.01–10 s−1. The constitutive equation of the Arrhenius model and the hot working map was established, determining activation energy(Q) of 1086.58 kJ·mol−1. Large-size γ′ is coherent with the matrix. For the γ+γ′ dual-phase region, heterogeneous strain-induced dynamic recrystallization (HDRX) occurs, and discontinuous dynamic recrystallization (DDRX) is the main nucleation mechanism for DRX. However, for γ single-phase region, DDRX plays a more significant role. Furthermore, the MC phase (<1 μm) has different crystal orientations with the γ matrix and acts as sites for recrystallization through particle-stimulated nucleation (PSN). Finally, a fine and uniform grain structure can be obtained in the temperature range of 1120–1135 °C and the strain rate range of 0.1 s−1 to 1 s−1. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Hot deformation behavior and flow stress modeling of coarse-grain nickel-base GH4151 superalloy ingot materials in cogging |
url |
https://doi.org/10.1016/j.jmrt.2023.09.022 https://doaj.org/article/652e263aa54f4b60ad757158ef5c949c http://www.sciencedirect.com/science/article/pii/S2238785423021476 https://doaj.org/toc/2238-7854 |
remote_bool |
true |
author2 |
Heng Cui Shufeng Yang Shaomin Lv Xingfei Xie Jinglong Qu |
author2Str |
Heng Cui Shufeng Yang Shaomin Lv Xingfei Xie Jinglong Qu |
ppnlink |
768093163 |
callnumber-subject |
TN - Mining Engineering and Metallurgy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jmrt.2023.09.022 |
callnumber-a |
TN1-997 |
up_date |
2024-07-03T13:50:26.751Z |
_version_ |
1803566057263202304 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ095300384</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414085144.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmrt.2023.09.022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ095300384</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ652e263aa54f4b60ad757158ef5c949c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lei Jia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hot deformation behavior and flow stress modeling of coarse-grain nickel-base GH4151 superalloy ingot materials in cogging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Due to the high deformation resistance and poor thermal ductility of the new cast GH4151 alloy ingots, cracks are easy to occur during cogging process. For clarifying the effects of deformation parameters on microstructural evolution and dynamic recrystallization (DRX) nucleation mechanisms. In this work, the causes of crack formation and extension were first investigated using SEM and EBSD. The study revealed that the reasons for crack formation and propagation are the MC carbides at the original grain boundaries, large-size γ′ phase, residual eutectic phases, and tiny pores near the grain boundaries. Subsequently, a series of hot compression tests were performed using a Thermecamastor-Z thermo-mechanical simulator at temperatures ranging from 1080 °C to 1160 °C and a strain rate range of 0.01–10 s−1. The constitutive equation of the Arrhenius model and the hot working map was established, determining activation energy(Q) of 1086.58 kJ·mol−1. Large-size γ′ is coherent with the matrix. For the γ+γ′ dual-phase region, heterogeneous strain-induced dynamic recrystallization (HDRX) occurs, and discontinuous dynamic recrystallization (DDRX) is the main nucleation mechanism for DRX. However, for γ single-phase region, DDRX plays a more significant role. Furthermore, the MC phase (<1 μm) has different crystal orientations with the γ matrix and acts as sites for recrystallization through particle-stimulated nucleation (PSN). Finally, a fine and uniform grain structure can be obtained in the temperature range of 1120–1135 °C and the strain rate range of 0.1 s−1 to 1 s−1.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GH4151 alloy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cogging cracking mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hot processing map</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constitutive equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic recrystallization</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Heng Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shufeng Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shaomin Lv</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xingfei Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinglong Qu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Materials Research and Technology</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">26(2023), Seite 6652-6671</subfield><subfield code="w">(DE-627)768093163</subfield><subfield code="w">(DE-600)2732709-7</subfield><subfield code="x">22140697</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:6652-6671</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmrt.2023.09.022</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/652e263aa54f4b60ad757158ef5c949c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2238785423021476</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2238-7854</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2023</subfield><subfield code="h">6652-6671</subfield></datafield></record></collection>
|
score |
7.4026117 |