Taguchi optimization of tribological properties and corrosion behavior of self-lubricating Al–Mg–Si/MoS2 composite processed by powder metallurgy
Self-lubricating aluminum matrix composites (AMCs) can be used to reduce the wear and coefficient of friction (COF) in automotive engine components in which the use of liquid lubricants is not desirable. High temperatures accelerate the oxidation and thermal degradation of a liquid lubricant. In thi...
Ausführliche Beschreibung
Autor*in: |
Neeraj Kumar [verfasserIn] Ashutosh Sharma [verfasserIn] M.K. Manoj [verfasserIn] Byungmin Ahn [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Materials Research and Technology - Elsevier, 2015, 26(2023), Seite 1185-1197 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2023 ; pages:1185-1197 |
Links: |
---|
DOI / URN: |
10.1016/j.jmrt.2023.07.215 |
---|
Katalog-ID: |
DOAJ095304428 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ095304428 | ||
003 | DE-627 | ||
005 | 20240413102046.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jmrt.2023.07.215 |2 doi | |
035 | |a (DE-627)DOAJ095304428 | ||
035 | |a (DE-599)DOAJ454d72c35dc84734917d6b90aca411d4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TN1-997 | |
100 | 0 | |a Neeraj Kumar |e verfasserin |4 aut | |
245 | 1 | 0 | |a Taguchi optimization of tribological properties and corrosion behavior of self-lubricating Al–Mg–Si/MoS2 composite processed by powder metallurgy |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Self-lubricating aluminum matrix composites (AMCs) can be used to reduce the wear and coefficient of friction (COF) in automotive engine components in which the use of liquid lubricants is not desirable. High temperatures accelerate the oxidation and thermal degradation of a liquid lubricant. In this study, we used powder metallurgy (PM) technique to prepare self-lubricant (MoS2)-based Al–Mg–Si AMCs, designated as Al–Mg–Si–xMoS2 (x in wt.%; x = 1.5, 2.0, 30, 3.5, and 4.0). The dry sliding wear properties were assessed using a pin-on-disk tribometer at various applied loads (20–50 N) and sliding distances (1000–3000 m), based on the Taguchi model (L9). Furthermore, electrochemical corrosion tests such as open circuit potential (OCP) and potentiodynamic polarization (PDP) were performed in a 3.5 wt% NaCl medium. The morphology of the Al–Mg–Si–xMoS2 composites was observed through scanning electron microscopy and energy dispersive spectroscopy to clarify the particle distribution and chemical composition. The results indicated that the addition of MoS2 to Al–Mg–Si decreased the wear and COF and increased the corrosion resistance, compared with those of the pristine Al–Mg–Si matrix alloy under same operating conditions. As the sliding distance increased to 250 m, the COF fluctuated, but it stabilized as the distance approached 3000 m. The effects of the load and reinforcement concentration were more significant than those of the sliding distance and track diameter, as predicted by the Taguchi model and analysis of variance methods. | ||
650 | 4 | |a Aluminum matrix composite | |
650 | 4 | |a Powder metallurgy | |
650 | 4 | |a Tribology | |
650 | 4 | |a Corrosion | |
650 | 4 | |a MoS2 | |
653 | 0 | |a Mining engineering. Metallurgy | |
700 | 0 | |a Ashutosh Sharma |e verfasserin |4 aut | |
700 | 0 | |a M.K. Manoj |e verfasserin |4 aut | |
700 | 0 | |a Byungmin Ahn |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Materials Research and Technology |d Elsevier, 2015 |g 26(2023), Seite 1185-1197 |w (DE-627)768093163 |w (DE-600)2732709-7 |x 22140697 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:2023 |g pages:1185-1197 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jmrt.2023.07.215 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/454d72c35dc84734917d6b90aca411d4 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S223878542301743X |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2238-7854 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 26 |j 2023 |h 1185-1197 |
author_variant |
n k nk a s as m m mm b a ba |
---|---|
matchkey_str |
article:22140697:2023----::auhotmztootiooiapoeteadorsobhvoosllbiaiglgio2o |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TN |
publishDate |
2023 |
allfields |
10.1016/j.jmrt.2023.07.215 doi (DE-627)DOAJ095304428 (DE-599)DOAJ454d72c35dc84734917d6b90aca411d4 DE-627 ger DE-627 rakwb eng TN1-997 Neeraj Kumar verfasserin aut Taguchi optimization of tribological properties and corrosion behavior of self-lubricating Al–Mg–Si/MoS2 composite processed by powder metallurgy 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Self-lubricating aluminum matrix composites (AMCs) can be used to reduce the wear and coefficient of friction (COF) in automotive engine components in which the use of liquid lubricants is not desirable. High temperatures accelerate the oxidation and thermal degradation of a liquid lubricant. In this study, we used powder metallurgy (PM) technique to prepare self-lubricant (MoS2)-based Al–Mg–Si AMCs, designated as Al–Mg–Si–xMoS2 (x in wt.%; x = 1.5, 2.0, 30, 3.5, and 4.0). The dry sliding wear properties were assessed using a pin-on-disk tribometer at various applied loads (20–50 N) and sliding distances (1000–3000 m), based on the Taguchi model (L9). Furthermore, electrochemical corrosion tests such as open circuit potential (OCP) and potentiodynamic polarization (PDP) were performed in a 3.5 wt% NaCl medium. The morphology of the Al–Mg–Si–xMoS2 composites was observed through scanning electron microscopy and energy dispersive spectroscopy to clarify the particle distribution and chemical composition. The results indicated that the addition of MoS2 to Al–Mg–Si decreased the wear and COF and increased the corrosion resistance, compared with those of the pristine Al–Mg–Si matrix alloy under same operating conditions. As the sliding distance increased to 250 m, the COF fluctuated, but it stabilized as the distance approached 3000 m. The effects of the load and reinforcement concentration were more significant than those of the sliding distance and track diameter, as predicted by the Taguchi model and analysis of variance methods. Aluminum matrix composite Powder metallurgy Tribology Corrosion MoS2 Mining engineering. Metallurgy Ashutosh Sharma verfasserin aut M.K. Manoj verfasserin aut Byungmin Ahn verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 26(2023), Seite 1185-1197 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:26 year:2023 pages:1185-1197 https://doi.org/10.1016/j.jmrt.2023.07.215 kostenfrei https://doaj.org/article/454d72c35dc84734917d6b90aca411d4 kostenfrei http://www.sciencedirect.com/science/article/pii/S223878542301743X kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 26 2023 1185-1197 |
spelling |
10.1016/j.jmrt.2023.07.215 doi (DE-627)DOAJ095304428 (DE-599)DOAJ454d72c35dc84734917d6b90aca411d4 DE-627 ger DE-627 rakwb eng TN1-997 Neeraj Kumar verfasserin aut Taguchi optimization of tribological properties and corrosion behavior of self-lubricating Al–Mg–Si/MoS2 composite processed by powder metallurgy 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Self-lubricating aluminum matrix composites (AMCs) can be used to reduce the wear and coefficient of friction (COF) in automotive engine components in which the use of liquid lubricants is not desirable. High temperatures accelerate the oxidation and thermal degradation of a liquid lubricant. In this study, we used powder metallurgy (PM) technique to prepare self-lubricant (MoS2)-based Al–Mg–Si AMCs, designated as Al–Mg–Si–xMoS2 (x in wt.%; x = 1.5, 2.0, 30, 3.5, and 4.0). The dry sliding wear properties were assessed using a pin-on-disk tribometer at various applied loads (20–50 N) and sliding distances (1000–3000 m), based on the Taguchi model (L9). Furthermore, electrochemical corrosion tests such as open circuit potential (OCP) and potentiodynamic polarization (PDP) were performed in a 3.5 wt% NaCl medium. The morphology of the Al–Mg–Si–xMoS2 composites was observed through scanning electron microscopy and energy dispersive spectroscopy to clarify the particle distribution and chemical composition. The results indicated that the addition of MoS2 to Al–Mg–Si decreased the wear and COF and increased the corrosion resistance, compared with those of the pristine Al–Mg–Si matrix alloy under same operating conditions. As the sliding distance increased to 250 m, the COF fluctuated, but it stabilized as the distance approached 3000 m. The effects of the load and reinforcement concentration were more significant than those of the sliding distance and track diameter, as predicted by the Taguchi model and analysis of variance methods. Aluminum matrix composite Powder metallurgy Tribology Corrosion MoS2 Mining engineering. Metallurgy Ashutosh Sharma verfasserin aut M.K. Manoj verfasserin aut Byungmin Ahn verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 26(2023), Seite 1185-1197 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:26 year:2023 pages:1185-1197 https://doi.org/10.1016/j.jmrt.2023.07.215 kostenfrei https://doaj.org/article/454d72c35dc84734917d6b90aca411d4 kostenfrei http://www.sciencedirect.com/science/article/pii/S223878542301743X kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 26 2023 1185-1197 |
allfields_unstemmed |
10.1016/j.jmrt.2023.07.215 doi (DE-627)DOAJ095304428 (DE-599)DOAJ454d72c35dc84734917d6b90aca411d4 DE-627 ger DE-627 rakwb eng TN1-997 Neeraj Kumar verfasserin aut Taguchi optimization of tribological properties and corrosion behavior of self-lubricating Al–Mg–Si/MoS2 composite processed by powder metallurgy 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Self-lubricating aluminum matrix composites (AMCs) can be used to reduce the wear and coefficient of friction (COF) in automotive engine components in which the use of liquid lubricants is not desirable. High temperatures accelerate the oxidation and thermal degradation of a liquid lubricant. In this study, we used powder metallurgy (PM) technique to prepare self-lubricant (MoS2)-based Al–Mg–Si AMCs, designated as Al–Mg–Si–xMoS2 (x in wt.%; x = 1.5, 2.0, 30, 3.5, and 4.0). The dry sliding wear properties were assessed using a pin-on-disk tribometer at various applied loads (20–50 N) and sliding distances (1000–3000 m), based on the Taguchi model (L9). Furthermore, electrochemical corrosion tests such as open circuit potential (OCP) and potentiodynamic polarization (PDP) were performed in a 3.5 wt% NaCl medium. The morphology of the Al–Mg–Si–xMoS2 composites was observed through scanning electron microscopy and energy dispersive spectroscopy to clarify the particle distribution and chemical composition. The results indicated that the addition of MoS2 to Al–Mg–Si decreased the wear and COF and increased the corrosion resistance, compared with those of the pristine Al–Mg–Si matrix alloy under same operating conditions. As the sliding distance increased to 250 m, the COF fluctuated, but it stabilized as the distance approached 3000 m. The effects of the load and reinforcement concentration were more significant than those of the sliding distance and track diameter, as predicted by the Taguchi model and analysis of variance methods. Aluminum matrix composite Powder metallurgy Tribology Corrosion MoS2 Mining engineering. Metallurgy Ashutosh Sharma verfasserin aut M.K. Manoj verfasserin aut Byungmin Ahn verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 26(2023), Seite 1185-1197 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:26 year:2023 pages:1185-1197 https://doi.org/10.1016/j.jmrt.2023.07.215 kostenfrei https://doaj.org/article/454d72c35dc84734917d6b90aca411d4 kostenfrei http://www.sciencedirect.com/science/article/pii/S223878542301743X kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 26 2023 1185-1197 |
allfieldsGer |
10.1016/j.jmrt.2023.07.215 doi (DE-627)DOAJ095304428 (DE-599)DOAJ454d72c35dc84734917d6b90aca411d4 DE-627 ger DE-627 rakwb eng TN1-997 Neeraj Kumar verfasserin aut Taguchi optimization of tribological properties and corrosion behavior of self-lubricating Al–Mg–Si/MoS2 composite processed by powder metallurgy 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Self-lubricating aluminum matrix composites (AMCs) can be used to reduce the wear and coefficient of friction (COF) in automotive engine components in which the use of liquid lubricants is not desirable. High temperatures accelerate the oxidation and thermal degradation of a liquid lubricant. In this study, we used powder metallurgy (PM) technique to prepare self-lubricant (MoS2)-based Al–Mg–Si AMCs, designated as Al–Mg–Si–xMoS2 (x in wt.%; x = 1.5, 2.0, 30, 3.5, and 4.0). The dry sliding wear properties were assessed using a pin-on-disk tribometer at various applied loads (20–50 N) and sliding distances (1000–3000 m), based on the Taguchi model (L9). Furthermore, electrochemical corrosion tests such as open circuit potential (OCP) and potentiodynamic polarization (PDP) were performed in a 3.5 wt% NaCl medium. The morphology of the Al–Mg–Si–xMoS2 composites was observed through scanning electron microscopy and energy dispersive spectroscopy to clarify the particle distribution and chemical composition. The results indicated that the addition of MoS2 to Al–Mg–Si decreased the wear and COF and increased the corrosion resistance, compared with those of the pristine Al–Mg–Si matrix alloy under same operating conditions. As the sliding distance increased to 250 m, the COF fluctuated, but it stabilized as the distance approached 3000 m. The effects of the load and reinforcement concentration were more significant than those of the sliding distance and track diameter, as predicted by the Taguchi model and analysis of variance methods. Aluminum matrix composite Powder metallurgy Tribology Corrosion MoS2 Mining engineering. Metallurgy Ashutosh Sharma verfasserin aut M.K. Manoj verfasserin aut Byungmin Ahn verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 26(2023), Seite 1185-1197 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:26 year:2023 pages:1185-1197 https://doi.org/10.1016/j.jmrt.2023.07.215 kostenfrei https://doaj.org/article/454d72c35dc84734917d6b90aca411d4 kostenfrei http://www.sciencedirect.com/science/article/pii/S223878542301743X kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 26 2023 1185-1197 |
allfieldsSound |
10.1016/j.jmrt.2023.07.215 doi (DE-627)DOAJ095304428 (DE-599)DOAJ454d72c35dc84734917d6b90aca411d4 DE-627 ger DE-627 rakwb eng TN1-997 Neeraj Kumar verfasserin aut Taguchi optimization of tribological properties and corrosion behavior of self-lubricating Al–Mg–Si/MoS2 composite processed by powder metallurgy 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Self-lubricating aluminum matrix composites (AMCs) can be used to reduce the wear and coefficient of friction (COF) in automotive engine components in which the use of liquid lubricants is not desirable. High temperatures accelerate the oxidation and thermal degradation of a liquid lubricant. In this study, we used powder metallurgy (PM) technique to prepare self-lubricant (MoS2)-based Al–Mg–Si AMCs, designated as Al–Mg–Si–xMoS2 (x in wt.%; x = 1.5, 2.0, 30, 3.5, and 4.0). The dry sliding wear properties were assessed using a pin-on-disk tribometer at various applied loads (20–50 N) and sliding distances (1000–3000 m), based on the Taguchi model (L9). Furthermore, electrochemical corrosion tests such as open circuit potential (OCP) and potentiodynamic polarization (PDP) were performed in a 3.5 wt% NaCl medium. The morphology of the Al–Mg–Si–xMoS2 composites was observed through scanning electron microscopy and energy dispersive spectroscopy to clarify the particle distribution and chemical composition. The results indicated that the addition of MoS2 to Al–Mg–Si decreased the wear and COF and increased the corrosion resistance, compared with those of the pristine Al–Mg–Si matrix alloy under same operating conditions. As the sliding distance increased to 250 m, the COF fluctuated, but it stabilized as the distance approached 3000 m. The effects of the load and reinforcement concentration were more significant than those of the sliding distance and track diameter, as predicted by the Taguchi model and analysis of variance methods. Aluminum matrix composite Powder metallurgy Tribology Corrosion MoS2 Mining engineering. Metallurgy Ashutosh Sharma verfasserin aut M.K. Manoj verfasserin aut Byungmin Ahn verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 26(2023), Seite 1185-1197 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:26 year:2023 pages:1185-1197 https://doi.org/10.1016/j.jmrt.2023.07.215 kostenfrei https://doaj.org/article/454d72c35dc84734917d6b90aca411d4 kostenfrei http://www.sciencedirect.com/science/article/pii/S223878542301743X kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 26 2023 1185-1197 |
language |
English |
source |
In Journal of Materials Research and Technology 26(2023), Seite 1185-1197 volume:26 year:2023 pages:1185-1197 |
sourceStr |
In Journal of Materials Research and Technology 26(2023), Seite 1185-1197 volume:26 year:2023 pages:1185-1197 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Aluminum matrix composite Powder metallurgy Tribology Corrosion MoS2 Mining engineering. Metallurgy |
isfreeaccess_bool |
true |
container_title |
Journal of Materials Research and Technology |
authorswithroles_txt_mv |
Neeraj Kumar @@aut@@ Ashutosh Sharma @@aut@@ M.K. Manoj @@aut@@ Byungmin Ahn @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
768093163 |
id |
DOAJ095304428 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ095304428</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413102046.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmrt.2023.07.215</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ095304428</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ454d72c35dc84734917d6b90aca411d4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Neeraj Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Taguchi optimization of tribological properties and corrosion behavior of self-lubricating Al–Mg–Si/MoS2 composite processed by powder metallurgy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Self-lubricating aluminum matrix composites (AMCs) can be used to reduce the wear and coefficient of friction (COF) in automotive engine components in which the use of liquid lubricants is not desirable. High temperatures accelerate the oxidation and thermal degradation of a liquid lubricant. In this study, we used powder metallurgy (PM) technique to prepare self-lubricant (MoS2)-based Al–Mg–Si AMCs, designated as Al–Mg–Si–xMoS2 (x in wt.%; x = 1.5, 2.0, 30, 3.5, and 4.0). The dry sliding wear properties were assessed using a pin-on-disk tribometer at various applied loads (20–50 N) and sliding distances (1000–3000 m), based on the Taguchi model (L9). Furthermore, electrochemical corrosion tests such as open circuit potential (OCP) and potentiodynamic polarization (PDP) were performed in a 3.5 wt% NaCl medium. The morphology of the Al–Mg–Si–xMoS2 composites was observed through scanning electron microscopy and energy dispersive spectroscopy to clarify the particle distribution and chemical composition. The results indicated that the addition of MoS2 to Al–Mg–Si decreased the wear and COF and increased the corrosion resistance, compared with those of the pristine Al–Mg–Si matrix alloy under same operating conditions. As the sliding distance increased to 250 m, the COF fluctuated, but it stabilized as the distance approached 3000 m. The effects of the load and reinforcement concentration were more significant than those of the sliding distance and track diameter, as predicted by the Taguchi model and analysis of variance methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aluminum matrix composite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Powder metallurgy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tribology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corrosion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MoS2</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ashutosh Sharma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M.K. Manoj</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Byungmin Ahn</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Materials Research and Technology</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">26(2023), Seite 1185-1197</subfield><subfield code="w">(DE-627)768093163</subfield><subfield code="w">(DE-600)2732709-7</subfield><subfield code="x">22140697</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:1185-1197</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmrt.2023.07.215</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/454d72c35dc84734917d6b90aca411d4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S223878542301743X</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2238-7854</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2023</subfield><subfield code="h">1185-1197</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Neeraj Kumar |
spellingShingle |
Neeraj Kumar misc TN1-997 misc Aluminum matrix composite misc Powder metallurgy misc Tribology misc Corrosion misc MoS2 misc Mining engineering. Metallurgy Taguchi optimization of tribological properties and corrosion behavior of self-lubricating Al–Mg–Si/MoS2 composite processed by powder metallurgy |
authorStr |
Neeraj Kumar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)768093163 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TN1-997 |
illustrated |
Not Illustrated |
issn |
22140697 |
topic_title |
TN1-997 Taguchi optimization of tribological properties and corrosion behavior of self-lubricating Al–Mg–Si/MoS2 composite processed by powder metallurgy Aluminum matrix composite Powder metallurgy Tribology Corrosion MoS2 |
topic |
misc TN1-997 misc Aluminum matrix composite misc Powder metallurgy misc Tribology misc Corrosion misc MoS2 misc Mining engineering. Metallurgy |
topic_unstemmed |
misc TN1-997 misc Aluminum matrix composite misc Powder metallurgy misc Tribology misc Corrosion misc MoS2 misc Mining engineering. Metallurgy |
topic_browse |
misc TN1-997 misc Aluminum matrix composite misc Powder metallurgy misc Tribology misc Corrosion misc MoS2 misc Mining engineering. Metallurgy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Materials Research and Technology |
hierarchy_parent_id |
768093163 |
hierarchy_top_title |
Journal of Materials Research and Technology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)768093163 (DE-600)2732709-7 |
title |
Taguchi optimization of tribological properties and corrosion behavior of self-lubricating Al–Mg–Si/MoS2 composite processed by powder metallurgy |
ctrlnum |
(DE-627)DOAJ095304428 (DE-599)DOAJ454d72c35dc84734917d6b90aca411d4 |
title_full |
Taguchi optimization of tribological properties and corrosion behavior of self-lubricating Al–Mg–Si/MoS2 composite processed by powder metallurgy |
author_sort |
Neeraj Kumar |
journal |
Journal of Materials Research and Technology |
journalStr |
Journal of Materials Research and Technology |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
1185 |
author_browse |
Neeraj Kumar Ashutosh Sharma M.K. Manoj Byungmin Ahn |
container_volume |
26 |
class |
TN1-997 |
format_se |
Elektronische Aufsätze |
author-letter |
Neeraj Kumar |
doi_str_mv |
10.1016/j.jmrt.2023.07.215 |
author2-role |
verfasserin |
title_sort |
taguchi optimization of tribological properties and corrosion behavior of self-lubricating al–mg–si/mos2 composite processed by powder metallurgy |
callnumber |
TN1-997 |
title_auth |
Taguchi optimization of tribological properties and corrosion behavior of self-lubricating Al–Mg–Si/MoS2 composite processed by powder metallurgy |
abstract |
Self-lubricating aluminum matrix composites (AMCs) can be used to reduce the wear and coefficient of friction (COF) in automotive engine components in which the use of liquid lubricants is not desirable. High temperatures accelerate the oxidation and thermal degradation of a liquid lubricant. In this study, we used powder metallurgy (PM) technique to prepare self-lubricant (MoS2)-based Al–Mg–Si AMCs, designated as Al–Mg–Si–xMoS2 (x in wt.%; x = 1.5, 2.0, 30, 3.5, and 4.0). The dry sliding wear properties were assessed using a pin-on-disk tribometer at various applied loads (20–50 N) and sliding distances (1000–3000 m), based on the Taguchi model (L9). Furthermore, electrochemical corrosion tests such as open circuit potential (OCP) and potentiodynamic polarization (PDP) were performed in a 3.5 wt% NaCl medium. The morphology of the Al–Mg–Si–xMoS2 composites was observed through scanning electron microscopy and energy dispersive spectroscopy to clarify the particle distribution and chemical composition. The results indicated that the addition of MoS2 to Al–Mg–Si decreased the wear and COF and increased the corrosion resistance, compared with those of the pristine Al–Mg–Si matrix alloy under same operating conditions. As the sliding distance increased to 250 m, the COF fluctuated, but it stabilized as the distance approached 3000 m. The effects of the load and reinforcement concentration were more significant than those of the sliding distance and track diameter, as predicted by the Taguchi model and analysis of variance methods. |
abstractGer |
Self-lubricating aluminum matrix composites (AMCs) can be used to reduce the wear and coefficient of friction (COF) in automotive engine components in which the use of liquid lubricants is not desirable. High temperatures accelerate the oxidation and thermal degradation of a liquid lubricant. In this study, we used powder metallurgy (PM) technique to prepare self-lubricant (MoS2)-based Al–Mg–Si AMCs, designated as Al–Mg–Si–xMoS2 (x in wt.%; x = 1.5, 2.0, 30, 3.5, and 4.0). The dry sliding wear properties were assessed using a pin-on-disk tribometer at various applied loads (20–50 N) and sliding distances (1000–3000 m), based on the Taguchi model (L9). Furthermore, electrochemical corrosion tests such as open circuit potential (OCP) and potentiodynamic polarization (PDP) were performed in a 3.5 wt% NaCl medium. The morphology of the Al–Mg–Si–xMoS2 composites was observed through scanning electron microscopy and energy dispersive spectroscopy to clarify the particle distribution and chemical composition. The results indicated that the addition of MoS2 to Al–Mg–Si decreased the wear and COF and increased the corrosion resistance, compared with those of the pristine Al–Mg–Si matrix alloy under same operating conditions. As the sliding distance increased to 250 m, the COF fluctuated, but it stabilized as the distance approached 3000 m. The effects of the load and reinforcement concentration were more significant than those of the sliding distance and track diameter, as predicted by the Taguchi model and analysis of variance methods. |
abstract_unstemmed |
Self-lubricating aluminum matrix composites (AMCs) can be used to reduce the wear and coefficient of friction (COF) in automotive engine components in which the use of liquid lubricants is not desirable. High temperatures accelerate the oxidation and thermal degradation of a liquid lubricant. In this study, we used powder metallurgy (PM) technique to prepare self-lubricant (MoS2)-based Al–Mg–Si AMCs, designated as Al–Mg–Si–xMoS2 (x in wt.%; x = 1.5, 2.0, 30, 3.5, and 4.0). The dry sliding wear properties were assessed using a pin-on-disk tribometer at various applied loads (20–50 N) and sliding distances (1000–3000 m), based on the Taguchi model (L9). Furthermore, electrochemical corrosion tests such as open circuit potential (OCP) and potentiodynamic polarization (PDP) were performed in a 3.5 wt% NaCl medium. The morphology of the Al–Mg–Si–xMoS2 composites was observed through scanning electron microscopy and energy dispersive spectroscopy to clarify the particle distribution and chemical composition. The results indicated that the addition of MoS2 to Al–Mg–Si decreased the wear and COF and increased the corrosion resistance, compared with those of the pristine Al–Mg–Si matrix alloy under same operating conditions. As the sliding distance increased to 250 m, the COF fluctuated, but it stabilized as the distance approached 3000 m. The effects of the load and reinforcement concentration were more significant than those of the sliding distance and track diameter, as predicted by the Taguchi model and analysis of variance methods. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Taguchi optimization of tribological properties and corrosion behavior of self-lubricating Al–Mg–Si/MoS2 composite processed by powder metallurgy |
url |
https://doi.org/10.1016/j.jmrt.2023.07.215 https://doaj.org/article/454d72c35dc84734917d6b90aca411d4 http://www.sciencedirect.com/science/article/pii/S223878542301743X https://doaj.org/toc/2238-7854 |
remote_bool |
true |
author2 |
Ashutosh Sharma M.K. Manoj Byungmin Ahn |
author2Str |
Ashutosh Sharma M.K. Manoj Byungmin Ahn |
ppnlink |
768093163 |
callnumber-subject |
TN - Mining Engineering and Metallurgy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jmrt.2023.07.215 |
callnumber-a |
TN1-997 |
up_date |
2024-07-03T13:52:02.551Z |
_version_ |
1803566157718880256 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ095304428</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413102046.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmrt.2023.07.215</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ095304428</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ454d72c35dc84734917d6b90aca411d4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Neeraj Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Taguchi optimization of tribological properties and corrosion behavior of self-lubricating Al–Mg–Si/MoS2 composite processed by powder metallurgy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Self-lubricating aluminum matrix composites (AMCs) can be used to reduce the wear and coefficient of friction (COF) in automotive engine components in which the use of liquid lubricants is not desirable. High temperatures accelerate the oxidation and thermal degradation of a liquid lubricant. In this study, we used powder metallurgy (PM) technique to prepare self-lubricant (MoS2)-based Al–Mg–Si AMCs, designated as Al–Mg–Si–xMoS2 (x in wt.%; x = 1.5, 2.0, 30, 3.5, and 4.0). The dry sliding wear properties were assessed using a pin-on-disk tribometer at various applied loads (20–50 N) and sliding distances (1000–3000 m), based on the Taguchi model (L9). Furthermore, electrochemical corrosion tests such as open circuit potential (OCP) and potentiodynamic polarization (PDP) were performed in a 3.5 wt% NaCl medium. The morphology of the Al–Mg–Si–xMoS2 composites was observed through scanning electron microscopy and energy dispersive spectroscopy to clarify the particle distribution and chemical composition. The results indicated that the addition of MoS2 to Al–Mg–Si decreased the wear and COF and increased the corrosion resistance, compared with those of the pristine Al–Mg–Si matrix alloy under same operating conditions. As the sliding distance increased to 250 m, the COF fluctuated, but it stabilized as the distance approached 3000 m. The effects of the load and reinforcement concentration were more significant than those of the sliding distance and track diameter, as predicted by the Taguchi model and analysis of variance methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aluminum matrix composite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Powder metallurgy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tribology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corrosion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MoS2</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ashutosh Sharma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M.K. Manoj</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Byungmin Ahn</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Materials Research and Technology</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">26(2023), Seite 1185-1197</subfield><subfield code="w">(DE-627)768093163</subfield><subfield code="w">(DE-600)2732709-7</subfield><subfield code="x">22140697</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:1185-1197</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmrt.2023.07.215</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/454d72c35dc84734917d6b90aca411d4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S223878542301743X</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2238-7854</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2023</subfield><subfield code="h">1185-1197</subfield></datafield></record></collection>
|
score |
7.401784 |