Information sharing in high-dimensional gene expression data for improved parameter estimation in concentration-response modelling.
In toxicological concentration-response studies, a frequent goal is the determination of an 'alert concentration', i.e. the lowest concentration where a notable change in the response in comparison to the control is observed. In high-throughput gene expression experiments, e.g. based on mi...
Ausführliche Beschreibung
Autor*in: |
Franziska Kappenberg [verfasserIn] Jörg Rahnenführer [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Übergeordnetes Werk: |
In: PLoS ONE - Public Library of Science (PLoS), 2007, 18(2023), 10, p e0293180 |
---|---|
Übergeordnetes Werk: |
volume:18 ; year:2023 ; number:10, p e0293180 |
Links: |
---|
DOI / URN: |
10.1371/journal.pone.0293180 |
---|
Katalog-ID: |
DOAJ095360166 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ095360166 | ||
003 | DE-627 | ||
005 | 20240413103917.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1371/journal.pone.0293180 |2 doi | |
035 | |a (DE-627)DOAJ095360166 | ||
035 | |a (DE-599)DOAJc6cb078f932c456b99b41455f5029951 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Franziska Kappenberg |e verfasserin |4 aut | |
245 | 1 | 0 | |a Information sharing in high-dimensional gene expression data for improved parameter estimation in concentration-response modelling. |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In toxicological concentration-response studies, a frequent goal is the determination of an 'alert concentration', i.e. the lowest concentration where a notable change in the response in comparison to the control is observed. In high-throughput gene expression experiments, e.g. based on microarray or RNA-seq technology, concentration-response profiles can be measured for thousands of genes simultaneously. One approach for determining the alert concentration is given by fitting a parametric model to the data which allows interpolation between the tested concentrations. It is well known that the quality of a model fit improves with the number of measured data points. However, adding new replicates for existing concentrations or even several replicates for new concentrations is time-consuming and expensive. Here, we propose an empirical Bayes approach to information sharing across genes, where in essence a weighted mean of the individual estimate for one specific parameter of a fitted model and the mean of all estimates of the entire set of genes is calculated as a result. Results of a controlled plasmode simulation study show that for many genes a notable improvement in terms of the mean squared error (MSE) between estimate and true underlying value of the parameter can be observed. However, for some genes, the MSE increases, and this cannot be prevented by using a more sophisticated prior distribution in the Bayesian approach. | ||
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Jörg Rahnenführer |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t PLoS ONE |d Public Library of Science (PLoS), 2007 |g 18(2023), 10, p e0293180 |w (DE-627)523574592 |w (DE-600)2267670-3 |x 19326203 |7 nnns |
773 | 1 | 8 | |g volume:18 |g year:2023 |g number:10, p e0293180 |
856 | 4 | 0 | |u https://doi.org/10.1371/journal.pone.0293180 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c6cb078f932c456b99b41455f5029951 |z kostenfrei |
856 | 4 | 0 | |u https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0293180&type=printable |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1932-6203 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_34 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_235 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 18 |j 2023 |e 10, p e0293180 |
author_variant |
f k fk j r jr |
---|---|
matchkey_str |
article:19326203:2023----::nomtosaignihiesoagnepesodtfrmrvdaaeeetmtoi |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1371/journal.pone.0293180 doi (DE-627)DOAJ095360166 (DE-599)DOAJc6cb078f932c456b99b41455f5029951 DE-627 ger DE-627 rakwb eng Franziska Kappenberg verfasserin aut Information sharing in high-dimensional gene expression data for improved parameter estimation in concentration-response modelling. 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In toxicological concentration-response studies, a frequent goal is the determination of an 'alert concentration', i.e. the lowest concentration where a notable change in the response in comparison to the control is observed. In high-throughput gene expression experiments, e.g. based on microarray or RNA-seq technology, concentration-response profiles can be measured for thousands of genes simultaneously. One approach for determining the alert concentration is given by fitting a parametric model to the data which allows interpolation between the tested concentrations. It is well known that the quality of a model fit improves with the number of measured data points. However, adding new replicates for existing concentrations or even several replicates for new concentrations is time-consuming and expensive. Here, we propose an empirical Bayes approach to information sharing across genes, where in essence a weighted mean of the individual estimate for one specific parameter of a fitted model and the mean of all estimates of the entire set of genes is calculated as a result. Results of a controlled plasmode simulation study show that for many genes a notable improvement in terms of the mean squared error (MSE) between estimate and true underlying value of the parameter can be observed. However, for some genes, the MSE increases, and this cannot be prevented by using a more sophisticated prior distribution in the Bayesian approach. Medicine R Science Q Jörg Rahnenführer verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 18(2023), 10, p e0293180 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:18 year:2023 number:10, p e0293180 https://doi.org/10.1371/journal.pone.0293180 kostenfrei https://doaj.org/article/c6cb078f932c456b99b41455f5029951 kostenfrei https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0293180&type=printable kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2023 10, p e0293180 |
spelling |
10.1371/journal.pone.0293180 doi (DE-627)DOAJ095360166 (DE-599)DOAJc6cb078f932c456b99b41455f5029951 DE-627 ger DE-627 rakwb eng Franziska Kappenberg verfasserin aut Information sharing in high-dimensional gene expression data for improved parameter estimation in concentration-response modelling. 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In toxicological concentration-response studies, a frequent goal is the determination of an 'alert concentration', i.e. the lowest concentration where a notable change in the response in comparison to the control is observed. In high-throughput gene expression experiments, e.g. based on microarray or RNA-seq technology, concentration-response profiles can be measured for thousands of genes simultaneously. One approach for determining the alert concentration is given by fitting a parametric model to the data which allows interpolation between the tested concentrations. It is well known that the quality of a model fit improves with the number of measured data points. However, adding new replicates for existing concentrations or even several replicates for new concentrations is time-consuming and expensive. Here, we propose an empirical Bayes approach to information sharing across genes, where in essence a weighted mean of the individual estimate for one specific parameter of a fitted model and the mean of all estimates of the entire set of genes is calculated as a result. Results of a controlled plasmode simulation study show that for many genes a notable improvement in terms of the mean squared error (MSE) between estimate and true underlying value of the parameter can be observed. However, for some genes, the MSE increases, and this cannot be prevented by using a more sophisticated prior distribution in the Bayesian approach. Medicine R Science Q Jörg Rahnenführer verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 18(2023), 10, p e0293180 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:18 year:2023 number:10, p e0293180 https://doi.org/10.1371/journal.pone.0293180 kostenfrei https://doaj.org/article/c6cb078f932c456b99b41455f5029951 kostenfrei https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0293180&type=printable kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2023 10, p e0293180 |
allfields_unstemmed |
10.1371/journal.pone.0293180 doi (DE-627)DOAJ095360166 (DE-599)DOAJc6cb078f932c456b99b41455f5029951 DE-627 ger DE-627 rakwb eng Franziska Kappenberg verfasserin aut Information sharing in high-dimensional gene expression data for improved parameter estimation in concentration-response modelling. 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In toxicological concentration-response studies, a frequent goal is the determination of an 'alert concentration', i.e. the lowest concentration where a notable change in the response in comparison to the control is observed. In high-throughput gene expression experiments, e.g. based on microarray or RNA-seq technology, concentration-response profiles can be measured for thousands of genes simultaneously. One approach for determining the alert concentration is given by fitting a parametric model to the data which allows interpolation between the tested concentrations. It is well known that the quality of a model fit improves with the number of measured data points. However, adding new replicates for existing concentrations or even several replicates for new concentrations is time-consuming and expensive. Here, we propose an empirical Bayes approach to information sharing across genes, where in essence a weighted mean of the individual estimate for one specific parameter of a fitted model and the mean of all estimates of the entire set of genes is calculated as a result. Results of a controlled plasmode simulation study show that for many genes a notable improvement in terms of the mean squared error (MSE) between estimate and true underlying value of the parameter can be observed. However, for some genes, the MSE increases, and this cannot be prevented by using a more sophisticated prior distribution in the Bayesian approach. Medicine R Science Q Jörg Rahnenführer verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 18(2023), 10, p e0293180 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:18 year:2023 number:10, p e0293180 https://doi.org/10.1371/journal.pone.0293180 kostenfrei https://doaj.org/article/c6cb078f932c456b99b41455f5029951 kostenfrei https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0293180&type=printable kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2023 10, p e0293180 |
allfieldsGer |
10.1371/journal.pone.0293180 doi (DE-627)DOAJ095360166 (DE-599)DOAJc6cb078f932c456b99b41455f5029951 DE-627 ger DE-627 rakwb eng Franziska Kappenberg verfasserin aut Information sharing in high-dimensional gene expression data for improved parameter estimation in concentration-response modelling. 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In toxicological concentration-response studies, a frequent goal is the determination of an 'alert concentration', i.e. the lowest concentration where a notable change in the response in comparison to the control is observed. In high-throughput gene expression experiments, e.g. based on microarray or RNA-seq technology, concentration-response profiles can be measured for thousands of genes simultaneously. One approach for determining the alert concentration is given by fitting a parametric model to the data which allows interpolation between the tested concentrations. It is well known that the quality of a model fit improves with the number of measured data points. However, adding new replicates for existing concentrations or even several replicates for new concentrations is time-consuming and expensive. Here, we propose an empirical Bayes approach to information sharing across genes, where in essence a weighted mean of the individual estimate for one specific parameter of a fitted model and the mean of all estimates of the entire set of genes is calculated as a result. Results of a controlled plasmode simulation study show that for many genes a notable improvement in terms of the mean squared error (MSE) between estimate and true underlying value of the parameter can be observed. However, for some genes, the MSE increases, and this cannot be prevented by using a more sophisticated prior distribution in the Bayesian approach. Medicine R Science Q Jörg Rahnenführer verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 18(2023), 10, p e0293180 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:18 year:2023 number:10, p e0293180 https://doi.org/10.1371/journal.pone.0293180 kostenfrei https://doaj.org/article/c6cb078f932c456b99b41455f5029951 kostenfrei https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0293180&type=printable kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2023 10, p e0293180 |
allfieldsSound |
10.1371/journal.pone.0293180 doi (DE-627)DOAJ095360166 (DE-599)DOAJc6cb078f932c456b99b41455f5029951 DE-627 ger DE-627 rakwb eng Franziska Kappenberg verfasserin aut Information sharing in high-dimensional gene expression data for improved parameter estimation in concentration-response modelling. 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In toxicological concentration-response studies, a frequent goal is the determination of an 'alert concentration', i.e. the lowest concentration where a notable change in the response in comparison to the control is observed. In high-throughput gene expression experiments, e.g. based on microarray or RNA-seq technology, concentration-response profiles can be measured for thousands of genes simultaneously. One approach for determining the alert concentration is given by fitting a parametric model to the data which allows interpolation between the tested concentrations. It is well known that the quality of a model fit improves with the number of measured data points. However, adding new replicates for existing concentrations or even several replicates for new concentrations is time-consuming and expensive. Here, we propose an empirical Bayes approach to information sharing across genes, where in essence a weighted mean of the individual estimate for one specific parameter of a fitted model and the mean of all estimates of the entire set of genes is calculated as a result. Results of a controlled plasmode simulation study show that for many genes a notable improvement in terms of the mean squared error (MSE) between estimate and true underlying value of the parameter can be observed. However, for some genes, the MSE increases, and this cannot be prevented by using a more sophisticated prior distribution in the Bayesian approach. Medicine R Science Q Jörg Rahnenführer verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 18(2023), 10, p e0293180 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:18 year:2023 number:10, p e0293180 https://doi.org/10.1371/journal.pone.0293180 kostenfrei https://doaj.org/article/c6cb078f932c456b99b41455f5029951 kostenfrei https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0293180&type=printable kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2023 10, p e0293180 |
language |
English |
source |
In PLoS ONE 18(2023), 10, p e0293180 volume:18 year:2023 number:10, p e0293180 |
sourceStr |
In PLoS ONE 18(2023), 10, p e0293180 volume:18 year:2023 number:10, p e0293180 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Medicine R Science Q |
isfreeaccess_bool |
true |
container_title |
PLoS ONE |
authorswithroles_txt_mv |
Franziska Kappenberg @@aut@@ Jörg Rahnenführer @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
523574592 |
id |
DOAJ095360166 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ095360166</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413103917.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1371/journal.pone.0293180</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ095360166</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc6cb078f932c456b99b41455f5029951</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Franziska Kappenberg</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Information sharing in high-dimensional gene expression data for improved parameter estimation in concentration-response modelling.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In toxicological concentration-response studies, a frequent goal is the determination of an 'alert concentration', i.e. the lowest concentration where a notable change in the response in comparison to the control is observed. In high-throughput gene expression experiments, e.g. based on microarray or RNA-seq technology, concentration-response profiles can be measured for thousands of genes simultaneously. One approach for determining the alert concentration is given by fitting a parametric model to the data which allows interpolation between the tested concentrations. It is well known that the quality of a model fit improves with the number of measured data points. However, adding new replicates for existing concentrations or even several replicates for new concentrations is time-consuming and expensive. Here, we propose an empirical Bayes approach to information sharing across genes, where in essence a weighted mean of the individual estimate for one specific parameter of a fitted model and the mean of all estimates of the entire set of genes is calculated as a result. Results of a controlled plasmode simulation study show that for many genes a notable improvement in terms of the mean squared error (MSE) between estimate and true underlying value of the parameter can be observed. However, for some genes, the MSE increases, and this cannot be prevented by using a more sophisticated prior distribution in the Bayesian approach.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jörg Rahnenführer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PLoS ONE</subfield><subfield code="d">Public Library of Science (PLoS), 2007</subfield><subfield code="g">18(2023), 10, p e0293180</subfield><subfield code="w">(DE-627)523574592</subfield><subfield code="w">(DE-600)2267670-3</subfield><subfield code="x">19326203</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:10, p e0293180</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pone.0293180</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c6cb078f932c456b99b41455f5029951</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0293180&type=printable</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1932-6203</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_235</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2023</subfield><subfield code="e">10, p e0293180</subfield></datafield></record></collection>
|
author |
Franziska Kappenberg |
spellingShingle |
Franziska Kappenberg misc Medicine misc R misc Science misc Q Information sharing in high-dimensional gene expression data for improved parameter estimation in concentration-response modelling. |
authorStr |
Franziska Kappenberg |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)523574592 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19326203 |
topic_title |
Information sharing in high-dimensional gene expression data for improved parameter estimation in concentration-response modelling |
topic |
misc Medicine misc R misc Science misc Q |
topic_unstemmed |
misc Medicine misc R misc Science misc Q |
topic_browse |
misc Medicine misc R misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
PLoS ONE |
hierarchy_parent_id |
523574592 |
hierarchy_top_title |
PLoS ONE |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)523574592 (DE-600)2267670-3 |
title |
Information sharing in high-dimensional gene expression data for improved parameter estimation in concentration-response modelling. |
ctrlnum |
(DE-627)DOAJ095360166 (DE-599)DOAJc6cb078f932c456b99b41455f5029951 |
title_full |
Information sharing in high-dimensional gene expression data for improved parameter estimation in concentration-response modelling |
author_sort |
Franziska Kappenberg |
journal |
PLoS ONE |
journalStr |
PLoS ONE |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Franziska Kappenberg Jörg Rahnenführer |
container_volume |
18 |
format_se |
Elektronische Aufsätze |
author-letter |
Franziska Kappenberg |
doi_str_mv |
10.1371/journal.pone.0293180 |
author2-role |
verfasserin |
title_sort |
information sharing in high-dimensional gene expression data for improved parameter estimation in concentration-response modelling |
title_auth |
Information sharing in high-dimensional gene expression data for improved parameter estimation in concentration-response modelling. |
abstract |
In toxicological concentration-response studies, a frequent goal is the determination of an 'alert concentration', i.e. the lowest concentration where a notable change in the response in comparison to the control is observed. In high-throughput gene expression experiments, e.g. based on microarray or RNA-seq technology, concentration-response profiles can be measured for thousands of genes simultaneously. One approach for determining the alert concentration is given by fitting a parametric model to the data which allows interpolation between the tested concentrations. It is well known that the quality of a model fit improves with the number of measured data points. However, adding new replicates for existing concentrations or even several replicates for new concentrations is time-consuming and expensive. Here, we propose an empirical Bayes approach to information sharing across genes, where in essence a weighted mean of the individual estimate for one specific parameter of a fitted model and the mean of all estimates of the entire set of genes is calculated as a result. Results of a controlled plasmode simulation study show that for many genes a notable improvement in terms of the mean squared error (MSE) between estimate and true underlying value of the parameter can be observed. However, for some genes, the MSE increases, and this cannot be prevented by using a more sophisticated prior distribution in the Bayesian approach. |
abstractGer |
In toxicological concentration-response studies, a frequent goal is the determination of an 'alert concentration', i.e. the lowest concentration where a notable change in the response in comparison to the control is observed. In high-throughput gene expression experiments, e.g. based on microarray or RNA-seq technology, concentration-response profiles can be measured for thousands of genes simultaneously. One approach for determining the alert concentration is given by fitting a parametric model to the data which allows interpolation between the tested concentrations. It is well known that the quality of a model fit improves with the number of measured data points. However, adding new replicates for existing concentrations or even several replicates for new concentrations is time-consuming and expensive. Here, we propose an empirical Bayes approach to information sharing across genes, where in essence a weighted mean of the individual estimate for one specific parameter of a fitted model and the mean of all estimates of the entire set of genes is calculated as a result. Results of a controlled plasmode simulation study show that for many genes a notable improvement in terms of the mean squared error (MSE) between estimate and true underlying value of the parameter can be observed. However, for some genes, the MSE increases, and this cannot be prevented by using a more sophisticated prior distribution in the Bayesian approach. |
abstract_unstemmed |
In toxicological concentration-response studies, a frequent goal is the determination of an 'alert concentration', i.e. the lowest concentration where a notable change in the response in comparison to the control is observed. In high-throughput gene expression experiments, e.g. based on microarray or RNA-seq technology, concentration-response profiles can be measured for thousands of genes simultaneously. One approach for determining the alert concentration is given by fitting a parametric model to the data which allows interpolation between the tested concentrations. It is well known that the quality of a model fit improves with the number of measured data points. However, adding new replicates for existing concentrations or even several replicates for new concentrations is time-consuming and expensive. Here, we propose an empirical Bayes approach to information sharing across genes, where in essence a weighted mean of the individual estimate for one specific parameter of a fitted model and the mean of all estimates of the entire set of genes is calculated as a result. Results of a controlled plasmode simulation study show that for many genes a notable improvement in terms of the mean squared error (MSE) between estimate and true underlying value of the parameter can be observed. However, for some genes, the MSE increases, and this cannot be prevented by using a more sophisticated prior distribution in the Bayesian approach. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10, p e0293180 |
title_short |
Information sharing in high-dimensional gene expression data for improved parameter estimation in concentration-response modelling. |
url |
https://doi.org/10.1371/journal.pone.0293180 https://doaj.org/article/c6cb078f932c456b99b41455f5029951 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0293180&type=printable https://doaj.org/toc/1932-6203 |
remote_bool |
true |
author2 |
Jörg Rahnenführer |
author2Str |
Jörg Rahnenführer |
ppnlink |
523574592 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1371/journal.pone.0293180 |
up_date |
2024-07-03T14:13:01.371Z |
_version_ |
1803567477695709184 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ095360166</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413103917.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1371/journal.pone.0293180</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ095360166</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc6cb078f932c456b99b41455f5029951</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Franziska Kappenberg</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Information sharing in high-dimensional gene expression data for improved parameter estimation in concentration-response modelling.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In toxicological concentration-response studies, a frequent goal is the determination of an 'alert concentration', i.e. the lowest concentration where a notable change in the response in comparison to the control is observed. In high-throughput gene expression experiments, e.g. based on microarray or RNA-seq technology, concentration-response profiles can be measured for thousands of genes simultaneously. One approach for determining the alert concentration is given by fitting a parametric model to the data which allows interpolation between the tested concentrations. It is well known that the quality of a model fit improves with the number of measured data points. However, adding new replicates for existing concentrations or even several replicates for new concentrations is time-consuming and expensive. Here, we propose an empirical Bayes approach to information sharing across genes, where in essence a weighted mean of the individual estimate for one specific parameter of a fitted model and the mean of all estimates of the entire set of genes is calculated as a result. Results of a controlled plasmode simulation study show that for many genes a notable improvement in terms of the mean squared error (MSE) between estimate and true underlying value of the parameter can be observed. However, for some genes, the MSE increases, and this cannot be prevented by using a more sophisticated prior distribution in the Bayesian approach.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jörg Rahnenführer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PLoS ONE</subfield><subfield code="d">Public Library of Science (PLoS), 2007</subfield><subfield code="g">18(2023), 10, p e0293180</subfield><subfield code="w">(DE-627)523574592</subfield><subfield code="w">(DE-600)2267670-3</subfield><subfield code="x">19326203</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:10, p e0293180</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pone.0293180</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c6cb078f932c456b99b41455f5029951</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0293180&type=printable</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1932-6203</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_235</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2023</subfield><subfield code="e">10, p e0293180</subfield></datafield></record></collection>
|
score |
7.402439 |