Subduction Initiation by Plume‐Plateau Interaction: Insights From Numerical Models
Abstract It has recently been demonstrated that the interaction of a mantle plume with sufficiently old oceanic lithosphere can initiate subduction. However, the existence of large lithospheric heterogeneities, such as a buoyant plateau, in proximity to a rising plume head may potentially hinder the...
Ausführliche Beschreibung
Autor*in: |
Marzieh Baes [verfasserIn] Stephan V. Sobolev [verfasserIn] Taras Gerya [verfasserIn] Sascha Brune [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Geochemistry, Geophysics, Geosystems ; 21(2020), 8, Seite n/a-n/a volume:21 ; year:2020 ; number:8 ; pages:n/a-n/a |
---|
Links: |
---|
DOI / URN: |
10.1029/2020GC009119 |
---|
Katalog-ID: |
DOAJ09538362X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ09538362X | ||
003 | DE-627 | ||
005 | 20240413104409.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1029/2020GC009119 |2 doi | |
035 | |a (DE-627)DOAJ09538362X | ||
035 | |a (DE-599)DOAJ1b92113917374642bb8be147da6020df | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC801-809 | |
050 | 0 | |a QE1-996.5 | |
100 | 0 | |a Marzieh Baes |e verfasserin |4 aut | |
245 | 1 | 0 | |a Subduction Initiation by Plume‐Plateau Interaction: Insights From Numerical Models |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract It has recently been demonstrated that the interaction of a mantle plume with sufficiently old oceanic lithosphere can initiate subduction. However, the existence of large lithospheric heterogeneities, such as a buoyant plateau, in proximity to a rising plume head may potentially hinder the formation of a new subduction zone. Here, we investigate this scenario by means of 3‐D numerical thermomechanical modeling. We explore how plume‐lithosphere interaction is affected by lithospheric age, relative location of plume head and plateau border, and the strength of the oceanic crust. Our numerical experiments suggest four different geodynamic regimes: (a) oceanic trench formation, (b) circular oceanic‐plateau trench formation, (c) plateau trench formation, and (d) no trench formation. We show that regardless of the age and crustal strength of the oceanic lithosphere, subduction can initiate when the plume head is either below the plateau border or at a distance less than the plume radius from the plateau edge. Crustal heterogeneity facilitates subduction initiation of old oceanic lithosphere. High crustal strength hampers the formation of a new subduction zone when the plume head is located below a young lithosphere containing a thick and strong plateau. We suggest that plume‐plateau interaction in the western margin of the Caribbean could have resulted in subduction initiation when the plume head impinged onto the oceanic lithosphere close to the border between plateau and oceanic crust. | ||
650 | 4 | |a subduction zone | |
650 | 4 | |a plume | |
650 | 4 | |a plateau | |
650 | 4 | |a numerical modeling | |
650 | 4 | |a plume‐induced subduction initiation (PISI) | |
653 | 0 | |a Geophysics. Cosmic physics | |
653 | 0 | |a Geology | |
700 | 0 | |a Stephan V. Sobolev |e verfasserin |4 aut | |
700 | 0 | |a Taras Gerya |e verfasserin |4 aut | |
700 | 0 | |a Sascha Brune |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Geochemistry, Geophysics, Geosystems |g 21(2020), 8, Seite n/a-n/a |
773 | 1 | 8 | |g volume:21 |g year:2020 |g number:8 |g pages:n/a-n/a |
856 | 4 | 0 | |u https://doi.org/10.1029/2020GC009119 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/1b92113917374642bb8be147da6020df |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1029/2020GC009119 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1525-2027 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
951 | |a AR | ||
952 | |d 21 |j 2020 |e 8 |h n/a-n/a |
author_variant |
m b mb s v s svs t g tg s b sb |
---|---|
matchkey_str |
marziehbaesstephanvsobolevtarasgeryasasc:2020----:udcinntainylmpaeuneatoisgtf |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QC |
publishDate |
2020 |
allfields |
10.1029/2020GC009119 doi (DE-627)DOAJ09538362X (DE-599)DOAJ1b92113917374642bb8be147da6020df DE-627 ger DE-627 rakwb eng QC801-809 QE1-996.5 Marzieh Baes verfasserin aut Subduction Initiation by Plume‐Plateau Interaction: Insights From Numerical Models 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract It has recently been demonstrated that the interaction of a mantle plume with sufficiently old oceanic lithosphere can initiate subduction. However, the existence of large lithospheric heterogeneities, such as a buoyant plateau, in proximity to a rising plume head may potentially hinder the formation of a new subduction zone. Here, we investigate this scenario by means of 3‐D numerical thermomechanical modeling. We explore how plume‐lithosphere interaction is affected by lithospheric age, relative location of plume head and plateau border, and the strength of the oceanic crust. Our numerical experiments suggest four different geodynamic regimes: (a) oceanic trench formation, (b) circular oceanic‐plateau trench formation, (c) plateau trench formation, and (d) no trench formation. We show that regardless of the age and crustal strength of the oceanic lithosphere, subduction can initiate when the plume head is either below the plateau border or at a distance less than the plume radius from the plateau edge. Crustal heterogeneity facilitates subduction initiation of old oceanic lithosphere. High crustal strength hampers the formation of a new subduction zone when the plume head is located below a young lithosphere containing a thick and strong plateau. We suggest that plume‐plateau interaction in the western margin of the Caribbean could have resulted in subduction initiation when the plume head impinged onto the oceanic lithosphere close to the border between plateau and oceanic crust. subduction zone plume plateau numerical modeling plume‐induced subduction initiation (PISI) Geophysics. Cosmic physics Geology Stephan V. Sobolev verfasserin aut Taras Gerya verfasserin aut Sascha Brune verfasserin aut In Geochemistry, Geophysics, Geosystems 21(2020), 8, Seite n/a-n/a volume:21 year:2020 number:8 pages:n/a-n/a https://doi.org/10.1029/2020GC009119 kostenfrei https://doaj.org/article/1b92113917374642bb8be147da6020df kostenfrei https://doi.org/10.1029/2020GC009119 kostenfrei https://doaj.org/toc/1525-2027 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 21 2020 8 n/a-n/a |
spelling |
10.1029/2020GC009119 doi (DE-627)DOAJ09538362X (DE-599)DOAJ1b92113917374642bb8be147da6020df DE-627 ger DE-627 rakwb eng QC801-809 QE1-996.5 Marzieh Baes verfasserin aut Subduction Initiation by Plume‐Plateau Interaction: Insights From Numerical Models 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract It has recently been demonstrated that the interaction of a mantle plume with sufficiently old oceanic lithosphere can initiate subduction. However, the existence of large lithospheric heterogeneities, such as a buoyant plateau, in proximity to a rising plume head may potentially hinder the formation of a new subduction zone. Here, we investigate this scenario by means of 3‐D numerical thermomechanical modeling. We explore how plume‐lithosphere interaction is affected by lithospheric age, relative location of plume head and plateau border, and the strength of the oceanic crust. Our numerical experiments suggest four different geodynamic regimes: (a) oceanic trench formation, (b) circular oceanic‐plateau trench formation, (c) plateau trench formation, and (d) no trench formation. We show that regardless of the age and crustal strength of the oceanic lithosphere, subduction can initiate when the plume head is either below the plateau border or at a distance less than the plume radius from the plateau edge. Crustal heterogeneity facilitates subduction initiation of old oceanic lithosphere. High crustal strength hampers the formation of a new subduction zone when the plume head is located below a young lithosphere containing a thick and strong plateau. We suggest that plume‐plateau interaction in the western margin of the Caribbean could have resulted in subduction initiation when the plume head impinged onto the oceanic lithosphere close to the border between plateau and oceanic crust. subduction zone plume plateau numerical modeling plume‐induced subduction initiation (PISI) Geophysics. Cosmic physics Geology Stephan V. Sobolev verfasserin aut Taras Gerya verfasserin aut Sascha Brune verfasserin aut In Geochemistry, Geophysics, Geosystems 21(2020), 8, Seite n/a-n/a volume:21 year:2020 number:8 pages:n/a-n/a https://doi.org/10.1029/2020GC009119 kostenfrei https://doaj.org/article/1b92113917374642bb8be147da6020df kostenfrei https://doi.org/10.1029/2020GC009119 kostenfrei https://doaj.org/toc/1525-2027 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 21 2020 8 n/a-n/a |
allfields_unstemmed |
10.1029/2020GC009119 doi (DE-627)DOAJ09538362X (DE-599)DOAJ1b92113917374642bb8be147da6020df DE-627 ger DE-627 rakwb eng QC801-809 QE1-996.5 Marzieh Baes verfasserin aut Subduction Initiation by Plume‐Plateau Interaction: Insights From Numerical Models 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract It has recently been demonstrated that the interaction of a mantle plume with sufficiently old oceanic lithosphere can initiate subduction. However, the existence of large lithospheric heterogeneities, such as a buoyant plateau, in proximity to a rising plume head may potentially hinder the formation of a new subduction zone. Here, we investigate this scenario by means of 3‐D numerical thermomechanical modeling. We explore how plume‐lithosphere interaction is affected by lithospheric age, relative location of plume head and plateau border, and the strength of the oceanic crust. Our numerical experiments suggest four different geodynamic regimes: (a) oceanic trench formation, (b) circular oceanic‐plateau trench formation, (c) plateau trench formation, and (d) no trench formation. We show that regardless of the age and crustal strength of the oceanic lithosphere, subduction can initiate when the plume head is either below the plateau border or at a distance less than the plume radius from the plateau edge. Crustal heterogeneity facilitates subduction initiation of old oceanic lithosphere. High crustal strength hampers the formation of a new subduction zone when the plume head is located below a young lithosphere containing a thick and strong plateau. We suggest that plume‐plateau interaction in the western margin of the Caribbean could have resulted in subduction initiation when the plume head impinged onto the oceanic lithosphere close to the border between plateau and oceanic crust. subduction zone plume plateau numerical modeling plume‐induced subduction initiation (PISI) Geophysics. Cosmic physics Geology Stephan V. Sobolev verfasserin aut Taras Gerya verfasserin aut Sascha Brune verfasserin aut In Geochemistry, Geophysics, Geosystems 21(2020), 8, Seite n/a-n/a volume:21 year:2020 number:8 pages:n/a-n/a https://doi.org/10.1029/2020GC009119 kostenfrei https://doaj.org/article/1b92113917374642bb8be147da6020df kostenfrei https://doi.org/10.1029/2020GC009119 kostenfrei https://doaj.org/toc/1525-2027 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 21 2020 8 n/a-n/a |
allfieldsGer |
10.1029/2020GC009119 doi (DE-627)DOAJ09538362X (DE-599)DOAJ1b92113917374642bb8be147da6020df DE-627 ger DE-627 rakwb eng QC801-809 QE1-996.5 Marzieh Baes verfasserin aut Subduction Initiation by Plume‐Plateau Interaction: Insights From Numerical Models 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract It has recently been demonstrated that the interaction of a mantle plume with sufficiently old oceanic lithosphere can initiate subduction. However, the existence of large lithospheric heterogeneities, such as a buoyant plateau, in proximity to a rising plume head may potentially hinder the formation of a new subduction zone. Here, we investigate this scenario by means of 3‐D numerical thermomechanical modeling. We explore how plume‐lithosphere interaction is affected by lithospheric age, relative location of plume head and plateau border, and the strength of the oceanic crust. Our numerical experiments suggest four different geodynamic regimes: (a) oceanic trench formation, (b) circular oceanic‐plateau trench formation, (c) plateau trench formation, and (d) no trench formation. We show that regardless of the age and crustal strength of the oceanic lithosphere, subduction can initiate when the plume head is either below the plateau border or at a distance less than the plume radius from the plateau edge. Crustal heterogeneity facilitates subduction initiation of old oceanic lithosphere. High crustal strength hampers the formation of a new subduction zone when the plume head is located below a young lithosphere containing a thick and strong plateau. We suggest that plume‐plateau interaction in the western margin of the Caribbean could have resulted in subduction initiation when the plume head impinged onto the oceanic lithosphere close to the border between plateau and oceanic crust. subduction zone plume plateau numerical modeling plume‐induced subduction initiation (PISI) Geophysics. Cosmic physics Geology Stephan V. Sobolev verfasserin aut Taras Gerya verfasserin aut Sascha Brune verfasserin aut In Geochemistry, Geophysics, Geosystems 21(2020), 8, Seite n/a-n/a volume:21 year:2020 number:8 pages:n/a-n/a https://doi.org/10.1029/2020GC009119 kostenfrei https://doaj.org/article/1b92113917374642bb8be147da6020df kostenfrei https://doi.org/10.1029/2020GC009119 kostenfrei https://doaj.org/toc/1525-2027 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 21 2020 8 n/a-n/a |
allfieldsSound |
10.1029/2020GC009119 doi (DE-627)DOAJ09538362X (DE-599)DOAJ1b92113917374642bb8be147da6020df DE-627 ger DE-627 rakwb eng QC801-809 QE1-996.5 Marzieh Baes verfasserin aut Subduction Initiation by Plume‐Plateau Interaction: Insights From Numerical Models 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract It has recently been demonstrated that the interaction of a mantle plume with sufficiently old oceanic lithosphere can initiate subduction. However, the existence of large lithospheric heterogeneities, such as a buoyant plateau, in proximity to a rising plume head may potentially hinder the formation of a new subduction zone. Here, we investigate this scenario by means of 3‐D numerical thermomechanical modeling. We explore how plume‐lithosphere interaction is affected by lithospheric age, relative location of plume head and plateau border, and the strength of the oceanic crust. Our numerical experiments suggest four different geodynamic regimes: (a) oceanic trench formation, (b) circular oceanic‐plateau trench formation, (c) plateau trench formation, and (d) no trench formation. We show that regardless of the age and crustal strength of the oceanic lithosphere, subduction can initiate when the plume head is either below the plateau border or at a distance less than the plume radius from the plateau edge. Crustal heterogeneity facilitates subduction initiation of old oceanic lithosphere. High crustal strength hampers the formation of a new subduction zone when the plume head is located below a young lithosphere containing a thick and strong plateau. We suggest that plume‐plateau interaction in the western margin of the Caribbean could have resulted in subduction initiation when the plume head impinged onto the oceanic lithosphere close to the border between plateau and oceanic crust. subduction zone plume plateau numerical modeling plume‐induced subduction initiation (PISI) Geophysics. Cosmic physics Geology Stephan V. Sobolev verfasserin aut Taras Gerya verfasserin aut Sascha Brune verfasserin aut In Geochemistry, Geophysics, Geosystems 21(2020), 8, Seite n/a-n/a volume:21 year:2020 number:8 pages:n/a-n/a https://doi.org/10.1029/2020GC009119 kostenfrei https://doaj.org/article/1b92113917374642bb8be147da6020df kostenfrei https://doi.org/10.1029/2020GC009119 kostenfrei https://doaj.org/toc/1525-2027 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 21 2020 8 n/a-n/a |
language |
English |
source |
In Geochemistry, Geophysics, Geosystems 21(2020), 8, Seite n/a-n/a volume:21 year:2020 number:8 pages:n/a-n/a |
sourceStr |
In Geochemistry, Geophysics, Geosystems 21(2020), 8, Seite n/a-n/a volume:21 year:2020 number:8 pages:n/a-n/a |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
subduction zone plume plateau numerical modeling plume‐induced subduction initiation (PISI) Geophysics. Cosmic physics Geology |
isfreeaccess_bool |
true |
container_title |
Geochemistry, Geophysics, Geosystems |
authorswithroles_txt_mv |
Marzieh Baes @@aut@@ Stephan V. Sobolev @@aut@@ Taras Gerya @@aut@@ Sascha Brune @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
id |
DOAJ09538362X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ09538362X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413104409.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1029/2020GC009119</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09538362X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1b92113917374642bb8be147da6020df</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC801-809</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE1-996.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Marzieh Baes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Subduction Initiation by Plume‐Plateau Interaction: Insights From Numerical Models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It has recently been demonstrated that the interaction of a mantle plume with sufficiently old oceanic lithosphere can initiate subduction. However, the existence of large lithospheric heterogeneities, such as a buoyant plateau, in proximity to a rising plume head may potentially hinder the formation of a new subduction zone. Here, we investigate this scenario by means of 3‐D numerical thermomechanical modeling. We explore how plume‐lithosphere interaction is affected by lithospheric age, relative location of plume head and plateau border, and the strength of the oceanic crust. Our numerical experiments suggest four different geodynamic regimes: (a) oceanic trench formation, (b) circular oceanic‐plateau trench formation, (c) plateau trench formation, and (d) no trench formation. We show that regardless of the age and crustal strength of the oceanic lithosphere, subduction can initiate when the plume head is either below the plateau border or at a distance less than the plume radius from the plateau edge. Crustal heterogeneity facilitates subduction initiation of old oceanic lithosphere. High crustal strength hampers the formation of a new subduction zone when the plume head is located below a young lithosphere containing a thick and strong plateau. We suggest that plume‐plateau interaction in the western margin of the Caribbean could have resulted in subduction initiation when the plume head impinged onto the oceanic lithosphere close to the border between plateau and oceanic crust.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subduction zone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plume</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plateau</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plume‐induced subduction initiation (PISI)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geophysics. Cosmic physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stephan V. Sobolev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Taras Gerya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sascha Brune</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Geochemistry, Geophysics, Geosystems</subfield><subfield code="g">21(2020), 8, Seite n/a-n/a</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:n/a-n/a</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1029/2020GC009119</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1b92113917374642bb8be147da6020df</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1029/2020GC009119</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1525-2027</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2020</subfield><subfield code="e">8</subfield><subfield code="h">n/a-n/a</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Marzieh Baes |
spellingShingle |
Marzieh Baes misc QC801-809 misc QE1-996.5 misc subduction zone misc plume misc plateau misc numerical modeling misc plume‐induced subduction initiation (PISI) misc Geophysics. Cosmic physics misc Geology Subduction Initiation by Plume‐Plateau Interaction: Insights From Numerical Models |
authorStr |
Marzieh Baes |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC801-809 |
illustrated |
Not Illustrated |
topic_title |
QC801-809 QE1-996.5 Subduction Initiation by Plume‐Plateau Interaction: Insights From Numerical Models subduction zone plume plateau numerical modeling plume‐induced subduction initiation (PISI) |
topic |
misc QC801-809 misc QE1-996.5 misc subduction zone misc plume misc plateau misc numerical modeling misc plume‐induced subduction initiation (PISI) misc Geophysics. Cosmic physics misc Geology |
topic_unstemmed |
misc QC801-809 misc QE1-996.5 misc subduction zone misc plume misc plateau misc numerical modeling misc plume‐induced subduction initiation (PISI) misc Geophysics. Cosmic physics misc Geology |
topic_browse |
misc QC801-809 misc QE1-996.5 misc subduction zone misc plume misc plateau misc numerical modeling misc plume‐induced subduction initiation (PISI) misc Geophysics. Cosmic physics misc Geology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Geochemistry, Geophysics, Geosystems |
hierarchy_top_title |
Geochemistry, Geophysics, Geosystems |
isfreeaccess_txt |
true |
title |
Subduction Initiation by Plume‐Plateau Interaction: Insights From Numerical Models |
ctrlnum |
(DE-627)DOAJ09538362X (DE-599)DOAJ1b92113917374642bb8be147da6020df |
title_full |
Subduction Initiation by Plume‐Plateau Interaction: Insights From Numerical Models |
author_sort |
Marzieh Baes |
journal |
Geochemistry, Geophysics, Geosystems |
journalStr |
Geochemistry, Geophysics, Geosystems |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Marzieh Baes Stephan V. Sobolev Taras Gerya Sascha Brune |
container_volume |
21 |
class |
QC801-809 QE1-996.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Marzieh Baes |
doi_str_mv |
10.1029/2020GC009119 |
author2-role |
verfasserin |
title_sort |
subduction initiation by plume‐plateau interaction: insights from numerical models |
callnumber |
QC801-809 |
title_auth |
Subduction Initiation by Plume‐Plateau Interaction: Insights From Numerical Models |
abstract |
Abstract It has recently been demonstrated that the interaction of a mantle plume with sufficiently old oceanic lithosphere can initiate subduction. However, the existence of large lithospheric heterogeneities, such as a buoyant plateau, in proximity to a rising plume head may potentially hinder the formation of a new subduction zone. Here, we investigate this scenario by means of 3‐D numerical thermomechanical modeling. We explore how plume‐lithosphere interaction is affected by lithospheric age, relative location of plume head and plateau border, and the strength of the oceanic crust. Our numerical experiments suggest four different geodynamic regimes: (a) oceanic trench formation, (b) circular oceanic‐plateau trench formation, (c) plateau trench formation, and (d) no trench formation. We show that regardless of the age and crustal strength of the oceanic lithosphere, subduction can initiate when the plume head is either below the plateau border or at a distance less than the plume radius from the plateau edge. Crustal heterogeneity facilitates subduction initiation of old oceanic lithosphere. High crustal strength hampers the formation of a new subduction zone when the plume head is located below a young lithosphere containing a thick and strong plateau. We suggest that plume‐plateau interaction in the western margin of the Caribbean could have resulted in subduction initiation when the plume head impinged onto the oceanic lithosphere close to the border between plateau and oceanic crust. |
abstractGer |
Abstract It has recently been demonstrated that the interaction of a mantle plume with sufficiently old oceanic lithosphere can initiate subduction. However, the existence of large lithospheric heterogeneities, such as a buoyant plateau, in proximity to a rising plume head may potentially hinder the formation of a new subduction zone. Here, we investigate this scenario by means of 3‐D numerical thermomechanical modeling. We explore how plume‐lithosphere interaction is affected by lithospheric age, relative location of plume head and plateau border, and the strength of the oceanic crust. Our numerical experiments suggest four different geodynamic regimes: (a) oceanic trench formation, (b) circular oceanic‐plateau trench formation, (c) plateau trench formation, and (d) no trench formation. We show that regardless of the age and crustal strength of the oceanic lithosphere, subduction can initiate when the plume head is either below the plateau border or at a distance less than the plume radius from the plateau edge. Crustal heterogeneity facilitates subduction initiation of old oceanic lithosphere. High crustal strength hampers the formation of a new subduction zone when the plume head is located below a young lithosphere containing a thick and strong plateau. We suggest that plume‐plateau interaction in the western margin of the Caribbean could have resulted in subduction initiation when the plume head impinged onto the oceanic lithosphere close to the border between plateau and oceanic crust. |
abstract_unstemmed |
Abstract It has recently been demonstrated that the interaction of a mantle plume with sufficiently old oceanic lithosphere can initiate subduction. However, the existence of large lithospheric heterogeneities, such as a buoyant plateau, in proximity to a rising plume head may potentially hinder the formation of a new subduction zone. Here, we investigate this scenario by means of 3‐D numerical thermomechanical modeling. We explore how plume‐lithosphere interaction is affected by lithospheric age, relative location of plume head and plateau border, and the strength of the oceanic crust. Our numerical experiments suggest four different geodynamic regimes: (a) oceanic trench formation, (b) circular oceanic‐plateau trench formation, (c) plateau trench formation, and (d) no trench formation. We show that regardless of the age and crustal strength of the oceanic lithosphere, subduction can initiate when the plume head is either below the plateau border or at a distance less than the plume radius from the plateau edge. Crustal heterogeneity facilitates subduction initiation of old oceanic lithosphere. High crustal strength hampers the formation of a new subduction zone when the plume head is located below a young lithosphere containing a thick and strong plateau. We suggest that plume‐plateau interaction in the western margin of the Caribbean could have resulted in subduction initiation when the plume head impinged onto the oceanic lithosphere close to the border between plateau and oceanic crust. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ |
container_issue |
8 |
title_short |
Subduction Initiation by Plume‐Plateau Interaction: Insights From Numerical Models |
url |
https://doi.org/10.1029/2020GC009119 https://doaj.org/article/1b92113917374642bb8be147da6020df https://doaj.org/toc/1525-2027 |
remote_bool |
true |
author2 |
Stephan V. Sobolev Taras Gerya Sascha Brune |
author2Str |
Stephan V. Sobolev Taras Gerya Sascha Brune |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1029/2020GC009119 |
callnumber-a |
QC801-809 |
up_date |
2024-07-03T14:20:02.363Z |
_version_ |
1803567919124185088 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ09538362X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413104409.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1029/2020GC009119</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09538362X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1b92113917374642bb8be147da6020df</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC801-809</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE1-996.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Marzieh Baes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Subduction Initiation by Plume‐Plateau Interaction: Insights From Numerical Models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It has recently been demonstrated that the interaction of a mantle plume with sufficiently old oceanic lithosphere can initiate subduction. However, the existence of large lithospheric heterogeneities, such as a buoyant plateau, in proximity to a rising plume head may potentially hinder the formation of a new subduction zone. Here, we investigate this scenario by means of 3‐D numerical thermomechanical modeling. We explore how plume‐lithosphere interaction is affected by lithospheric age, relative location of plume head and plateau border, and the strength of the oceanic crust. Our numerical experiments suggest four different geodynamic regimes: (a) oceanic trench formation, (b) circular oceanic‐plateau trench formation, (c) plateau trench formation, and (d) no trench formation. We show that regardless of the age and crustal strength of the oceanic lithosphere, subduction can initiate when the plume head is either below the plateau border or at a distance less than the plume radius from the plateau edge. Crustal heterogeneity facilitates subduction initiation of old oceanic lithosphere. High crustal strength hampers the formation of a new subduction zone when the plume head is located below a young lithosphere containing a thick and strong plateau. We suggest that plume‐plateau interaction in the western margin of the Caribbean could have resulted in subduction initiation when the plume head impinged onto the oceanic lithosphere close to the border between plateau and oceanic crust.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subduction zone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plume</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plateau</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plume‐induced subduction initiation (PISI)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geophysics. Cosmic physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stephan V. Sobolev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Taras Gerya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sascha Brune</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Geochemistry, Geophysics, Geosystems</subfield><subfield code="g">21(2020), 8, Seite n/a-n/a</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:n/a-n/a</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1029/2020GC009119</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1b92113917374642bb8be147da6020df</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1029/2020GC009119</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1525-2027</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2020</subfield><subfield code="e">8</subfield><subfield code="h">n/a-n/a</subfield></datafield></record></collection>
|
score |
7.399042 |