UAV mission scheduling with completion time, flight distance, and resource consumption constraints
Unmanned aerial vehicles (UAVs) are widely used in various military and civilian applications. UAV mission scheduling is a key issue in UAV applications and a central topic in UAV research. UAV task scheduling should include several constraints into consideration, such as completion time constraint,...
Ausführliche Beschreibung
Autor*in: |
Keqin Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Connection Science - Taylor & Francis Group, 2022, 35(2023), 1 |
---|---|
Übergeordnetes Werk: |
volume:35 ; year:2023 ; number:1 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1080/09540091.2023.2281250 |
---|
Katalog-ID: |
DOAJ095424679 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ095424679 | ||
003 | DE-627 | ||
005 | 20240413105344.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1080/09540091.2023.2281250 |2 doi | |
035 | |a (DE-627)DOAJ095424679 | ||
035 | |a (DE-599)DOAJa7399e6a4fdc4ff9a5639967c587bdd3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA75.5-76.95 | |
100 | 0 | |a Keqin Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a UAV mission scheduling with completion time, flight distance, and resource consumption constraints |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Unmanned aerial vehicles (UAVs) are widely used in various military and civilian applications. UAV mission scheduling is a key issue in UAV applications and a central topic in UAV research. UAV task scheduling should include several constraints into consideration, such as completion time constraint, flight distance constraint, and resource consumption constraint. Furthermore, UAV task scheduling should be studied within the traditional framework of combinatorial optimisation. In this paper, we consider optimal mission scheduling for heterogeneous UAVs with completion time, flight distance, and resource consumption constraints. The contributions of the paper are summarised as follows. We define two combinatorial optimisation problems, namely, the NFTM (number of finished tasks maximisation) problem and the RFTM (reward of finished tasks maximisation) problem. We construct an algorithmic framework for both NFTM and RFTM problems, so that our heuristic algorithms (four for NFTM and two for RFTM) can be presented in a unified way. We derive upper bounds for optimal solutions, so that our heuristic solutions can be compared with optimal solutions. We experimentally evaluate the performance of our heuristic algorithms. To the best of our knowledge, this is the first paper studying UAV mission scheduling with time, distance, and resource constraints as combinatorial optimisation problems. | ||
650 | 4 | |a Algorithmic framework | |
650 | 4 | |a combinatorial optimisation | |
650 | 4 | |a heterogeneous UAVs | |
650 | 4 | |a heuristic algorithm | |
650 | 4 | |a mission scheduling | |
653 | 0 | |a Electronic computers. Computer science | |
773 | 0 | 8 | |i In |t Connection Science |d Taylor & Francis Group, 2022 |g 35(2023), 1 |w (DE-627)306713276 |w (DE-600)1501040-5 |x 13600494 |7 nnns |
773 | 1 | 8 | |g volume:35 |g year:2023 |g number:1 |
856 | 4 | 0 | |u https://doi.org/10.1080/09540091.2023.2281250 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a7399e6a4fdc4ff9a5639967c587bdd3 |z kostenfrei |
856 | 4 | 0 | |u https://www.tandfonline.com/doi/10.1080/09540091.2023.2281250 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0954-0091 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1360-0494 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 35 |j 2023 |e 1 |
author_variant |
k l kl |
---|---|
matchkey_str |
article:13600494:2023----::amsinceuigihopeinielgtitnenrsuc |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QA |
publishDate |
2023 |
allfields |
10.1080/09540091.2023.2281250 doi (DE-627)DOAJ095424679 (DE-599)DOAJa7399e6a4fdc4ff9a5639967c587bdd3 DE-627 ger DE-627 rakwb eng QA75.5-76.95 Keqin Li verfasserin aut UAV mission scheduling with completion time, flight distance, and resource consumption constraints 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Unmanned aerial vehicles (UAVs) are widely used in various military and civilian applications. UAV mission scheduling is a key issue in UAV applications and a central topic in UAV research. UAV task scheduling should include several constraints into consideration, such as completion time constraint, flight distance constraint, and resource consumption constraint. Furthermore, UAV task scheduling should be studied within the traditional framework of combinatorial optimisation. In this paper, we consider optimal mission scheduling for heterogeneous UAVs with completion time, flight distance, and resource consumption constraints. The contributions of the paper are summarised as follows. We define two combinatorial optimisation problems, namely, the NFTM (number of finished tasks maximisation) problem and the RFTM (reward of finished tasks maximisation) problem. We construct an algorithmic framework for both NFTM and RFTM problems, so that our heuristic algorithms (four for NFTM and two for RFTM) can be presented in a unified way. We derive upper bounds for optimal solutions, so that our heuristic solutions can be compared with optimal solutions. We experimentally evaluate the performance of our heuristic algorithms. To the best of our knowledge, this is the first paper studying UAV mission scheduling with time, distance, and resource constraints as combinatorial optimisation problems. Algorithmic framework combinatorial optimisation heterogeneous UAVs heuristic algorithm mission scheduling Electronic computers. Computer science In Connection Science Taylor & Francis Group, 2022 35(2023), 1 (DE-627)306713276 (DE-600)1501040-5 13600494 nnns volume:35 year:2023 number:1 https://doi.org/10.1080/09540091.2023.2281250 kostenfrei https://doaj.org/article/a7399e6a4fdc4ff9a5639967c587bdd3 kostenfrei https://www.tandfonline.com/doi/10.1080/09540091.2023.2281250 kostenfrei https://doaj.org/toc/0954-0091 Journal toc kostenfrei https://doaj.org/toc/1360-0494 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 35 2023 1 |
spelling |
10.1080/09540091.2023.2281250 doi (DE-627)DOAJ095424679 (DE-599)DOAJa7399e6a4fdc4ff9a5639967c587bdd3 DE-627 ger DE-627 rakwb eng QA75.5-76.95 Keqin Li verfasserin aut UAV mission scheduling with completion time, flight distance, and resource consumption constraints 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Unmanned aerial vehicles (UAVs) are widely used in various military and civilian applications. UAV mission scheduling is a key issue in UAV applications and a central topic in UAV research. UAV task scheduling should include several constraints into consideration, such as completion time constraint, flight distance constraint, and resource consumption constraint. Furthermore, UAV task scheduling should be studied within the traditional framework of combinatorial optimisation. In this paper, we consider optimal mission scheduling for heterogeneous UAVs with completion time, flight distance, and resource consumption constraints. The contributions of the paper are summarised as follows. We define two combinatorial optimisation problems, namely, the NFTM (number of finished tasks maximisation) problem and the RFTM (reward of finished tasks maximisation) problem. We construct an algorithmic framework for both NFTM and RFTM problems, so that our heuristic algorithms (four for NFTM and two for RFTM) can be presented in a unified way. We derive upper bounds for optimal solutions, so that our heuristic solutions can be compared with optimal solutions. We experimentally evaluate the performance of our heuristic algorithms. To the best of our knowledge, this is the first paper studying UAV mission scheduling with time, distance, and resource constraints as combinatorial optimisation problems. Algorithmic framework combinatorial optimisation heterogeneous UAVs heuristic algorithm mission scheduling Electronic computers. Computer science In Connection Science Taylor & Francis Group, 2022 35(2023), 1 (DE-627)306713276 (DE-600)1501040-5 13600494 nnns volume:35 year:2023 number:1 https://doi.org/10.1080/09540091.2023.2281250 kostenfrei https://doaj.org/article/a7399e6a4fdc4ff9a5639967c587bdd3 kostenfrei https://www.tandfonline.com/doi/10.1080/09540091.2023.2281250 kostenfrei https://doaj.org/toc/0954-0091 Journal toc kostenfrei https://doaj.org/toc/1360-0494 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 35 2023 1 |
allfields_unstemmed |
10.1080/09540091.2023.2281250 doi (DE-627)DOAJ095424679 (DE-599)DOAJa7399e6a4fdc4ff9a5639967c587bdd3 DE-627 ger DE-627 rakwb eng QA75.5-76.95 Keqin Li verfasserin aut UAV mission scheduling with completion time, flight distance, and resource consumption constraints 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Unmanned aerial vehicles (UAVs) are widely used in various military and civilian applications. UAV mission scheduling is a key issue in UAV applications and a central topic in UAV research. UAV task scheduling should include several constraints into consideration, such as completion time constraint, flight distance constraint, and resource consumption constraint. Furthermore, UAV task scheduling should be studied within the traditional framework of combinatorial optimisation. In this paper, we consider optimal mission scheduling for heterogeneous UAVs with completion time, flight distance, and resource consumption constraints. The contributions of the paper are summarised as follows. We define two combinatorial optimisation problems, namely, the NFTM (number of finished tasks maximisation) problem and the RFTM (reward of finished tasks maximisation) problem. We construct an algorithmic framework for both NFTM and RFTM problems, so that our heuristic algorithms (four for NFTM and two for RFTM) can be presented in a unified way. We derive upper bounds for optimal solutions, so that our heuristic solutions can be compared with optimal solutions. We experimentally evaluate the performance of our heuristic algorithms. To the best of our knowledge, this is the first paper studying UAV mission scheduling with time, distance, and resource constraints as combinatorial optimisation problems. Algorithmic framework combinatorial optimisation heterogeneous UAVs heuristic algorithm mission scheduling Electronic computers. Computer science In Connection Science Taylor & Francis Group, 2022 35(2023), 1 (DE-627)306713276 (DE-600)1501040-5 13600494 nnns volume:35 year:2023 number:1 https://doi.org/10.1080/09540091.2023.2281250 kostenfrei https://doaj.org/article/a7399e6a4fdc4ff9a5639967c587bdd3 kostenfrei https://www.tandfonline.com/doi/10.1080/09540091.2023.2281250 kostenfrei https://doaj.org/toc/0954-0091 Journal toc kostenfrei https://doaj.org/toc/1360-0494 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 35 2023 1 |
allfieldsGer |
10.1080/09540091.2023.2281250 doi (DE-627)DOAJ095424679 (DE-599)DOAJa7399e6a4fdc4ff9a5639967c587bdd3 DE-627 ger DE-627 rakwb eng QA75.5-76.95 Keqin Li verfasserin aut UAV mission scheduling with completion time, flight distance, and resource consumption constraints 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Unmanned aerial vehicles (UAVs) are widely used in various military and civilian applications. UAV mission scheduling is a key issue in UAV applications and a central topic in UAV research. UAV task scheduling should include several constraints into consideration, such as completion time constraint, flight distance constraint, and resource consumption constraint. Furthermore, UAV task scheduling should be studied within the traditional framework of combinatorial optimisation. In this paper, we consider optimal mission scheduling for heterogeneous UAVs with completion time, flight distance, and resource consumption constraints. The contributions of the paper are summarised as follows. We define two combinatorial optimisation problems, namely, the NFTM (number of finished tasks maximisation) problem and the RFTM (reward of finished tasks maximisation) problem. We construct an algorithmic framework for both NFTM and RFTM problems, so that our heuristic algorithms (four for NFTM and two for RFTM) can be presented in a unified way. We derive upper bounds for optimal solutions, so that our heuristic solutions can be compared with optimal solutions. We experimentally evaluate the performance of our heuristic algorithms. To the best of our knowledge, this is the first paper studying UAV mission scheduling with time, distance, and resource constraints as combinatorial optimisation problems. Algorithmic framework combinatorial optimisation heterogeneous UAVs heuristic algorithm mission scheduling Electronic computers. Computer science In Connection Science Taylor & Francis Group, 2022 35(2023), 1 (DE-627)306713276 (DE-600)1501040-5 13600494 nnns volume:35 year:2023 number:1 https://doi.org/10.1080/09540091.2023.2281250 kostenfrei https://doaj.org/article/a7399e6a4fdc4ff9a5639967c587bdd3 kostenfrei https://www.tandfonline.com/doi/10.1080/09540091.2023.2281250 kostenfrei https://doaj.org/toc/0954-0091 Journal toc kostenfrei https://doaj.org/toc/1360-0494 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 35 2023 1 |
allfieldsSound |
10.1080/09540091.2023.2281250 doi (DE-627)DOAJ095424679 (DE-599)DOAJa7399e6a4fdc4ff9a5639967c587bdd3 DE-627 ger DE-627 rakwb eng QA75.5-76.95 Keqin Li verfasserin aut UAV mission scheduling with completion time, flight distance, and resource consumption constraints 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Unmanned aerial vehicles (UAVs) are widely used in various military and civilian applications. UAV mission scheduling is a key issue in UAV applications and a central topic in UAV research. UAV task scheduling should include several constraints into consideration, such as completion time constraint, flight distance constraint, and resource consumption constraint. Furthermore, UAV task scheduling should be studied within the traditional framework of combinatorial optimisation. In this paper, we consider optimal mission scheduling for heterogeneous UAVs with completion time, flight distance, and resource consumption constraints. The contributions of the paper are summarised as follows. We define two combinatorial optimisation problems, namely, the NFTM (number of finished tasks maximisation) problem and the RFTM (reward of finished tasks maximisation) problem. We construct an algorithmic framework for both NFTM and RFTM problems, so that our heuristic algorithms (four for NFTM and two for RFTM) can be presented in a unified way. We derive upper bounds for optimal solutions, so that our heuristic solutions can be compared with optimal solutions. We experimentally evaluate the performance of our heuristic algorithms. To the best of our knowledge, this is the first paper studying UAV mission scheduling with time, distance, and resource constraints as combinatorial optimisation problems. Algorithmic framework combinatorial optimisation heterogeneous UAVs heuristic algorithm mission scheduling Electronic computers. Computer science In Connection Science Taylor & Francis Group, 2022 35(2023), 1 (DE-627)306713276 (DE-600)1501040-5 13600494 nnns volume:35 year:2023 number:1 https://doi.org/10.1080/09540091.2023.2281250 kostenfrei https://doaj.org/article/a7399e6a4fdc4ff9a5639967c587bdd3 kostenfrei https://www.tandfonline.com/doi/10.1080/09540091.2023.2281250 kostenfrei https://doaj.org/toc/0954-0091 Journal toc kostenfrei https://doaj.org/toc/1360-0494 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 35 2023 1 |
language |
English |
source |
In Connection Science 35(2023), 1 volume:35 year:2023 number:1 |
sourceStr |
In Connection Science 35(2023), 1 volume:35 year:2023 number:1 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Algorithmic framework combinatorial optimisation heterogeneous UAVs heuristic algorithm mission scheduling Electronic computers. Computer science |
isfreeaccess_bool |
true |
container_title |
Connection Science |
authorswithroles_txt_mv |
Keqin Li @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
306713276 |
id |
DOAJ095424679 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ095424679</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413105344.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/09540091.2023.2281250</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ095424679</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa7399e6a4fdc4ff9a5639967c587bdd3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Keqin Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">UAV mission scheduling with completion time, flight distance, and resource consumption constraints</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Unmanned aerial vehicles (UAVs) are widely used in various military and civilian applications. UAV mission scheduling is a key issue in UAV applications and a central topic in UAV research. UAV task scheduling should include several constraints into consideration, such as completion time constraint, flight distance constraint, and resource consumption constraint. Furthermore, UAV task scheduling should be studied within the traditional framework of combinatorial optimisation. In this paper, we consider optimal mission scheduling for heterogeneous UAVs with completion time, flight distance, and resource consumption constraints. The contributions of the paper are summarised as follows. We define two combinatorial optimisation problems, namely, the NFTM (number of finished tasks maximisation) problem and the RFTM (reward of finished tasks maximisation) problem. We construct an algorithmic framework for both NFTM and RFTM problems, so that our heuristic algorithms (four for NFTM and two for RFTM) can be presented in a unified way. We derive upper bounds for optimal solutions, so that our heuristic solutions can be compared with optimal solutions. We experimentally evaluate the performance of our heuristic algorithms. To the best of our knowledge, this is the first paper studying UAV mission scheduling with time, distance, and resource constraints as combinatorial optimisation problems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithmic framework</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">combinatorial optimisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heterogeneous UAVs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heuristic algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mission scheduling</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Connection Science</subfield><subfield code="d">Taylor & Francis Group, 2022</subfield><subfield code="g">35(2023), 1</subfield><subfield code="w">(DE-627)306713276</subfield><subfield code="w">(DE-600)1501040-5</subfield><subfield code="x">13600494</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:35</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/09540091.2023.2281250</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a7399e6a4fdc4ff9a5639967c587bdd3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.tandfonline.com/doi/10.1080/09540091.2023.2281250</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0954-0091</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1360-0494</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">35</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Keqin Li |
spellingShingle |
Keqin Li misc QA75.5-76.95 misc Algorithmic framework misc combinatorial optimisation misc heterogeneous UAVs misc heuristic algorithm misc mission scheduling misc Electronic computers. Computer science UAV mission scheduling with completion time, flight distance, and resource consumption constraints |
authorStr |
Keqin Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306713276 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA75 |
illustrated |
Not Illustrated |
issn |
13600494 |
topic_title |
QA75.5-76.95 UAV mission scheduling with completion time, flight distance, and resource consumption constraints Algorithmic framework combinatorial optimisation heterogeneous UAVs heuristic algorithm mission scheduling |
topic |
misc QA75.5-76.95 misc Algorithmic framework misc combinatorial optimisation misc heterogeneous UAVs misc heuristic algorithm misc mission scheduling misc Electronic computers. Computer science |
topic_unstemmed |
misc QA75.5-76.95 misc Algorithmic framework misc combinatorial optimisation misc heterogeneous UAVs misc heuristic algorithm misc mission scheduling misc Electronic computers. Computer science |
topic_browse |
misc QA75.5-76.95 misc Algorithmic framework misc combinatorial optimisation misc heterogeneous UAVs misc heuristic algorithm misc mission scheduling misc Electronic computers. Computer science |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Connection Science |
hierarchy_parent_id |
306713276 |
hierarchy_top_title |
Connection Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)306713276 (DE-600)1501040-5 |
title |
UAV mission scheduling with completion time, flight distance, and resource consumption constraints |
ctrlnum |
(DE-627)DOAJ095424679 (DE-599)DOAJa7399e6a4fdc4ff9a5639967c587bdd3 |
title_full |
UAV mission scheduling with completion time, flight distance, and resource consumption constraints |
author_sort |
Keqin Li |
journal |
Connection Science |
journalStr |
Connection Science |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Keqin Li |
container_volume |
35 |
class |
QA75.5-76.95 |
format_se |
Elektronische Aufsätze |
author-letter |
Keqin Li |
doi_str_mv |
10.1080/09540091.2023.2281250 |
title_sort |
uav mission scheduling with completion time, flight distance, and resource consumption constraints |
callnumber |
QA75.5-76.95 |
title_auth |
UAV mission scheduling with completion time, flight distance, and resource consumption constraints |
abstract |
Unmanned aerial vehicles (UAVs) are widely used in various military and civilian applications. UAV mission scheduling is a key issue in UAV applications and a central topic in UAV research. UAV task scheduling should include several constraints into consideration, such as completion time constraint, flight distance constraint, and resource consumption constraint. Furthermore, UAV task scheduling should be studied within the traditional framework of combinatorial optimisation. In this paper, we consider optimal mission scheduling for heterogeneous UAVs with completion time, flight distance, and resource consumption constraints. The contributions of the paper are summarised as follows. We define two combinatorial optimisation problems, namely, the NFTM (number of finished tasks maximisation) problem and the RFTM (reward of finished tasks maximisation) problem. We construct an algorithmic framework for both NFTM and RFTM problems, so that our heuristic algorithms (four for NFTM and two for RFTM) can be presented in a unified way. We derive upper bounds for optimal solutions, so that our heuristic solutions can be compared with optimal solutions. We experimentally evaluate the performance of our heuristic algorithms. To the best of our knowledge, this is the first paper studying UAV mission scheduling with time, distance, and resource constraints as combinatorial optimisation problems. |
abstractGer |
Unmanned aerial vehicles (UAVs) are widely used in various military and civilian applications. UAV mission scheduling is a key issue in UAV applications and a central topic in UAV research. UAV task scheduling should include several constraints into consideration, such as completion time constraint, flight distance constraint, and resource consumption constraint. Furthermore, UAV task scheduling should be studied within the traditional framework of combinatorial optimisation. In this paper, we consider optimal mission scheduling for heterogeneous UAVs with completion time, flight distance, and resource consumption constraints. The contributions of the paper are summarised as follows. We define two combinatorial optimisation problems, namely, the NFTM (number of finished tasks maximisation) problem and the RFTM (reward of finished tasks maximisation) problem. We construct an algorithmic framework for both NFTM and RFTM problems, so that our heuristic algorithms (four for NFTM and two for RFTM) can be presented in a unified way. We derive upper bounds for optimal solutions, so that our heuristic solutions can be compared with optimal solutions. We experimentally evaluate the performance of our heuristic algorithms. To the best of our knowledge, this is the first paper studying UAV mission scheduling with time, distance, and resource constraints as combinatorial optimisation problems. |
abstract_unstemmed |
Unmanned aerial vehicles (UAVs) are widely used in various military and civilian applications. UAV mission scheduling is a key issue in UAV applications and a central topic in UAV research. UAV task scheduling should include several constraints into consideration, such as completion time constraint, flight distance constraint, and resource consumption constraint. Furthermore, UAV task scheduling should be studied within the traditional framework of combinatorial optimisation. In this paper, we consider optimal mission scheduling for heterogeneous UAVs with completion time, flight distance, and resource consumption constraints. The contributions of the paper are summarised as follows. We define two combinatorial optimisation problems, namely, the NFTM (number of finished tasks maximisation) problem and the RFTM (reward of finished tasks maximisation) problem. We construct an algorithmic framework for both NFTM and RFTM problems, so that our heuristic algorithms (four for NFTM and two for RFTM) can be presented in a unified way. We derive upper bounds for optimal solutions, so that our heuristic solutions can be compared with optimal solutions. We experimentally evaluate the performance of our heuristic algorithms. To the best of our knowledge, this is the first paper studying UAV mission scheduling with time, distance, and resource constraints as combinatorial optimisation problems. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
UAV mission scheduling with completion time, flight distance, and resource consumption constraints |
url |
https://doi.org/10.1080/09540091.2023.2281250 https://doaj.org/article/a7399e6a4fdc4ff9a5639967c587bdd3 https://www.tandfonline.com/doi/10.1080/09540091.2023.2281250 https://doaj.org/toc/0954-0091 https://doaj.org/toc/1360-0494 |
remote_bool |
true |
ppnlink |
306713276 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1080/09540091.2023.2281250 |
callnumber-a |
QA75.5-76.95 |
up_date |
2024-07-03T14:34:17.991Z |
_version_ |
1803568816319365120 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ095424679</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413105344.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/09540091.2023.2281250</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ095424679</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa7399e6a4fdc4ff9a5639967c587bdd3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Keqin Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">UAV mission scheduling with completion time, flight distance, and resource consumption constraints</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Unmanned aerial vehicles (UAVs) are widely used in various military and civilian applications. UAV mission scheduling is a key issue in UAV applications and a central topic in UAV research. UAV task scheduling should include several constraints into consideration, such as completion time constraint, flight distance constraint, and resource consumption constraint. Furthermore, UAV task scheduling should be studied within the traditional framework of combinatorial optimisation. In this paper, we consider optimal mission scheduling for heterogeneous UAVs with completion time, flight distance, and resource consumption constraints. The contributions of the paper are summarised as follows. We define two combinatorial optimisation problems, namely, the NFTM (number of finished tasks maximisation) problem and the RFTM (reward of finished tasks maximisation) problem. We construct an algorithmic framework for both NFTM and RFTM problems, so that our heuristic algorithms (four for NFTM and two for RFTM) can be presented in a unified way. We derive upper bounds for optimal solutions, so that our heuristic solutions can be compared with optimal solutions. We experimentally evaluate the performance of our heuristic algorithms. To the best of our knowledge, this is the first paper studying UAV mission scheduling with time, distance, and resource constraints as combinatorial optimisation problems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithmic framework</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">combinatorial optimisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heterogeneous UAVs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heuristic algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mission scheduling</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Connection Science</subfield><subfield code="d">Taylor & Francis Group, 2022</subfield><subfield code="g">35(2023), 1</subfield><subfield code="w">(DE-627)306713276</subfield><subfield code="w">(DE-600)1501040-5</subfield><subfield code="x">13600494</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:35</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/09540091.2023.2281250</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a7399e6a4fdc4ff9a5639967c587bdd3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.tandfonline.com/doi/10.1080/09540091.2023.2281250</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0954-0091</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1360-0494</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">35</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
score |
7.4013834 |