Study of the Relationships among the Reverse Torque, Vibration, and Input Parameters of Mud Pumps in Riserless Mud Recovery Drilling
Compared with traditional deepwater drilling, riserless mud recovery (RMR) drilling technology has the advantages of improving drilling efficiency, reducing risks, and minimizing environmental effects. Therefore, RMR drilling technology has been widely applied in recent years. This study primarily i...
Ausführliche Beschreibung
Autor*in: |
Guolei He [verfasserIn] Benchong Xu [verfasserIn] Haowen Chen [verfasserIn] Rulei Qin [verfasserIn] Changping Li [verfasserIn] Guoyue Yin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Applied Sciences - MDPI AG, 2012, 13(2023), 21, p 11878 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:21, p 11878 |
Links: |
---|
DOI / URN: |
10.3390/app132111878 |
---|
Katalog-ID: |
DOAJ095475869 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ095475869 | ||
003 | DE-627 | ||
005 | 20240413110441.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/app132111878 |2 doi | |
035 | |a (DE-627)DOAJ095475869 | ||
035 | |a (DE-599)DOAJc9a274b1170c4bcc93d1cfe68b209308 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Guolei He |e verfasserin |4 aut | |
245 | 1 | 0 | |a Study of the Relationships among the Reverse Torque, Vibration, and Input Parameters of Mud Pumps in Riserless Mud Recovery Drilling |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Compared with traditional deepwater drilling, riserless mud recovery (RMR) drilling technology has the advantages of improving drilling efficiency, reducing risks, and minimizing environmental effects. Therefore, RMR drilling technology has been widely applied in recent years. This study primarily investigates the relationships among reverse torque, vibration, and input parameters of mud pumps in riserless mud recovery drilling. Firstly, the operating principle and the structure of the mud pump module are analyzed, and an analytical model for the reverse torque and the vibration of the mud pump is established. Secondly, relevant data are derived from theoretical calculations and experiments, and the relationships among the reverse torque, vibration, and input parameters of the mud pump are analyzed using ANSYS (Version 2020 R1) software. Furthermore, the SVR (support vector regression) algorithm is employed to predict and analyze the amplitude of the mud pump’s vibration. Finally, the conclusions are drawn based on the findings of the relationships among the reverse torque, vibration, and input parameters of the mud pump. The findings show that the reverse torque of the mud pump increases approximately linearly with an increase in rotational speed, and the vibration of the mud pump increases and then decreases with an increase in rotational speed. The predicted values obtained through the prediction algorithm closely match the actual values. The findings provide a valuable reference for the application of RMR technology. | ||
650 | 4 | |a riserless mud recovery technology | |
650 | 4 | |a mud pump | |
650 | 4 | |a ANSYS software | |
650 | 4 | |a SVR algorithm | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Benchong Xu |e verfasserin |4 aut | |
700 | 0 | |a Haowen Chen |e verfasserin |4 aut | |
700 | 0 | |a Rulei Qin |e verfasserin |4 aut | |
700 | 0 | |a Changping Li |e verfasserin |4 aut | |
700 | 0 | |a Guoyue Yin |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Applied Sciences |d MDPI AG, 2012 |g 13(2023), 21, p 11878 |w (DE-627)737287640 |w (DE-600)2704225-X |x 20763417 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:21, p 11878 |
856 | 4 | 0 | |u https://doi.org/10.3390/app132111878 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c9a274b1170c4bcc93d1cfe68b209308 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3417/13/21/11878 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3417 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 21, p 11878 |
author_variant |
g h gh b x bx h c hc r q rq c l cl g y gy |
---|---|
matchkey_str |
article:20763417:2023----::tdoteeainhpaoghrvreoqeirtoadnuprmtromdup |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TA |
publishDate |
2023 |
allfields |
10.3390/app132111878 doi (DE-627)DOAJ095475869 (DE-599)DOAJc9a274b1170c4bcc93d1cfe68b209308 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Guolei He verfasserin aut Study of the Relationships among the Reverse Torque, Vibration, and Input Parameters of Mud Pumps in Riserless Mud Recovery Drilling 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Compared with traditional deepwater drilling, riserless mud recovery (RMR) drilling technology has the advantages of improving drilling efficiency, reducing risks, and minimizing environmental effects. Therefore, RMR drilling technology has been widely applied in recent years. This study primarily investigates the relationships among reverse torque, vibration, and input parameters of mud pumps in riserless mud recovery drilling. Firstly, the operating principle and the structure of the mud pump module are analyzed, and an analytical model for the reverse torque and the vibration of the mud pump is established. Secondly, relevant data are derived from theoretical calculations and experiments, and the relationships among the reverse torque, vibration, and input parameters of the mud pump are analyzed using ANSYS (Version 2020 R1) software. Furthermore, the SVR (support vector regression) algorithm is employed to predict and analyze the amplitude of the mud pump’s vibration. Finally, the conclusions are drawn based on the findings of the relationships among the reverse torque, vibration, and input parameters of the mud pump. The findings show that the reverse torque of the mud pump increases approximately linearly with an increase in rotational speed, and the vibration of the mud pump increases and then decreases with an increase in rotational speed. The predicted values obtained through the prediction algorithm closely match the actual values. The findings provide a valuable reference for the application of RMR technology. riserless mud recovery technology mud pump ANSYS software SVR algorithm Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Benchong Xu verfasserin aut Haowen Chen verfasserin aut Rulei Qin verfasserin aut Changping Li verfasserin aut Guoyue Yin verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 21, p 11878 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:21, p 11878 https://doi.org/10.3390/app132111878 kostenfrei https://doaj.org/article/c9a274b1170c4bcc93d1cfe68b209308 kostenfrei https://www.mdpi.com/2076-3417/13/21/11878 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 21, p 11878 |
spelling |
10.3390/app132111878 doi (DE-627)DOAJ095475869 (DE-599)DOAJc9a274b1170c4bcc93d1cfe68b209308 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Guolei He verfasserin aut Study of the Relationships among the Reverse Torque, Vibration, and Input Parameters of Mud Pumps in Riserless Mud Recovery Drilling 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Compared with traditional deepwater drilling, riserless mud recovery (RMR) drilling technology has the advantages of improving drilling efficiency, reducing risks, and minimizing environmental effects. Therefore, RMR drilling technology has been widely applied in recent years. This study primarily investigates the relationships among reverse torque, vibration, and input parameters of mud pumps in riserless mud recovery drilling. Firstly, the operating principle and the structure of the mud pump module are analyzed, and an analytical model for the reverse torque and the vibration of the mud pump is established. Secondly, relevant data are derived from theoretical calculations and experiments, and the relationships among the reverse torque, vibration, and input parameters of the mud pump are analyzed using ANSYS (Version 2020 R1) software. Furthermore, the SVR (support vector regression) algorithm is employed to predict and analyze the amplitude of the mud pump’s vibration. Finally, the conclusions are drawn based on the findings of the relationships among the reverse torque, vibration, and input parameters of the mud pump. The findings show that the reverse torque of the mud pump increases approximately linearly with an increase in rotational speed, and the vibration of the mud pump increases and then decreases with an increase in rotational speed. The predicted values obtained through the prediction algorithm closely match the actual values. The findings provide a valuable reference for the application of RMR technology. riserless mud recovery technology mud pump ANSYS software SVR algorithm Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Benchong Xu verfasserin aut Haowen Chen verfasserin aut Rulei Qin verfasserin aut Changping Li verfasserin aut Guoyue Yin verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 21, p 11878 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:21, p 11878 https://doi.org/10.3390/app132111878 kostenfrei https://doaj.org/article/c9a274b1170c4bcc93d1cfe68b209308 kostenfrei https://www.mdpi.com/2076-3417/13/21/11878 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 21, p 11878 |
allfields_unstemmed |
10.3390/app132111878 doi (DE-627)DOAJ095475869 (DE-599)DOAJc9a274b1170c4bcc93d1cfe68b209308 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Guolei He verfasserin aut Study of the Relationships among the Reverse Torque, Vibration, and Input Parameters of Mud Pumps in Riserless Mud Recovery Drilling 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Compared with traditional deepwater drilling, riserless mud recovery (RMR) drilling technology has the advantages of improving drilling efficiency, reducing risks, and minimizing environmental effects. Therefore, RMR drilling technology has been widely applied in recent years. This study primarily investigates the relationships among reverse torque, vibration, and input parameters of mud pumps in riserless mud recovery drilling. Firstly, the operating principle and the structure of the mud pump module are analyzed, and an analytical model for the reverse torque and the vibration of the mud pump is established. Secondly, relevant data are derived from theoretical calculations and experiments, and the relationships among the reverse torque, vibration, and input parameters of the mud pump are analyzed using ANSYS (Version 2020 R1) software. Furthermore, the SVR (support vector regression) algorithm is employed to predict and analyze the amplitude of the mud pump’s vibration. Finally, the conclusions are drawn based on the findings of the relationships among the reverse torque, vibration, and input parameters of the mud pump. The findings show that the reverse torque of the mud pump increases approximately linearly with an increase in rotational speed, and the vibration of the mud pump increases and then decreases with an increase in rotational speed. The predicted values obtained through the prediction algorithm closely match the actual values. The findings provide a valuable reference for the application of RMR technology. riserless mud recovery technology mud pump ANSYS software SVR algorithm Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Benchong Xu verfasserin aut Haowen Chen verfasserin aut Rulei Qin verfasserin aut Changping Li verfasserin aut Guoyue Yin verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 21, p 11878 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:21, p 11878 https://doi.org/10.3390/app132111878 kostenfrei https://doaj.org/article/c9a274b1170c4bcc93d1cfe68b209308 kostenfrei https://www.mdpi.com/2076-3417/13/21/11878 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 21, p 11878 |
allfieldsGer |
10.3390/app132111878 doi (DE-627)DOAJ095475869 (DE-599)DOAJc9a274b1170c4bcc93d1cfe68b209308 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Guolei He verfasserin aut Study of the Relationships among the Reverse Torque, Vibration, and Input Parameters of Mud Pumps in Riserless Mud Recovery Drilling 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Compared with traditional deepwater drilling, riserless mud recovery (RMR) drilling technology has the advantages of improving drilling efficiency, reducing risks, and minimizing environmental effects. Therefore, RMR drilling technology has been widely applied in recent years. This study primarily investigates the relationships among reverse torque, vibration, and input parameters of mud pumps in riserless mud recovery drilling. Firstly, the operating principle and the structure of the mud pump module are analyzed, and an analytical model for the reverse torque and the vibration of the mud pump is established. Secondly, relevant data are derived from theoretical calculations and experiments, and the relationships among the reverse torque, vibration, and input parameters of the mud pump are analyzed using ANSYS (Version 2020 R1) software. Furthermore, the SVR (support vector regression) algorithm is employed to predict and analyze the amplitude of the mud pump’s vibration. Finally, the conclusions are drawn based on the findings of the relationships among the reverse torque, vibration, and input parameters of the mud pump. The findings show that the reverse torque of the mud pump increases approximately linearly with an increase in rotational speed, and the vibration of the mud pump increases and then decreases with an increase in rotational speed. The predicted values obtained through the prediction algorithm closely match the actual values. The findings provide a valuable reference for the application of RMR technology. riserless mud recovery technology mud pump ANSYS software SVR algorithm Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Benchong Xu verfasserin aut Haowen Chen verfasserin aut Rulei Qin verfasserin aut Changping Li verfasserin aut Guoyue Yin verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 21, p 11878 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:21, p 11878 https://doi.org/10.3390/app132111878 kostenfrei https://doaj.org/article/c9a274b1170c4bcc93d1cfe68b209308 kostenfrei https://www.mdpi.com/2076-3417/13/21/11878 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 21, p 11878 |
allfieldsSound |
10.3390/app132111878 doi (DE-627)DOAJ095475869 (DE-599)DOAJc9a274b1170c4bcc93d1cfe68b209308 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Guolei He verfasserin aut Study of the Relationships among the Reverse Torque, Vibration, and Input Parameters of Mud Pumps in Riserless Mud Recovery Drilling 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Compared with traditional deepwater drilling, riserless mud recovery (RMR) drilling technology has the advantages of improving drilling efficiency, reducing risks, and minimizing environmental effects. Therefore, RMR drilling technology has been widely applied in recent years. This study primarily investigates the relationships among reverse torque, vibration, and input parameters of mud pumps in riserless mud recovery drilling. Firstly, the operating principle and the structure of the mud pump module are analyzed, and an analytical model for the reverse torque and the vibration of the mud pump is established. Secondly, relevant data are derived from theoretical calculations and experiments, and the relationships among the reverse torque, vibration, and input parameters of the mud pump are analyzed using ANSYS (Version 2020 R1) software. Furthermore, the SVR (support vector regression) algorithm is employed to predict and analyze the amplitude of the mud pump’s vibration. Finally, the conclusions are drawn based on the findings of the relationships among the reverse torque, vibration, and input parameters of the mud pump. The findings show that the reverse torque of the mud pump increases approximately linearly with an increase in rotational speed, and the vibration of the mud pump increases and then decreases with an increase in rotational speed. The predicted values obtained through the prediction algorithm closely match the actual values. The findings provide a valuable reference for the application of RMR technology. riserless mud recovery technology mud pump ANSYS software SVR algorithm Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Benchong Xu verfasserin aut Haowen Chen verfasserin aut Rulei Qin verfasserin aut Changping Li verfasserin aut Guoyue Yin verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 21, p 11878 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:21, p 11878 https://doi.org/10.3390/app132111878 kostenfrei https://doaj.org/article/c9a274b1170c4bcc93d1cfe68b209308 kostenfrei https://www.mdpi.com/2076-3417/13/21/11878 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 21, p 11878 |
language |
English |
source |
In Applied Sciences 13(2023), 21, p 11878 volume:13 year:2023 number:21, p 11878 |
sourceStr |
In Applied Sciences 13(2023), 21, p 11878 volume:13 year:2023 number:21, p 11878 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
riserless mud recovery technology mud pump ANSYS software SVR algorithm Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Applied Sciences |
authorswithroles_txt_mv |
Guolei He @@aut@@ Benchong Xu @@aut@@ Haowen Chen @@aut@@ Rulei Qin @@aut@@ Changping Li @@aut@@ Guoyue Yin @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
737287640 |
id |
DOAJ095475869 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ095475869</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413110441.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app132111878</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ095475869</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc9a274b1170c4bcc93d1cfe68b209308</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Guolei He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study of the Relationships among the Reverse Torque, Vibration, and Input Parameters of Mud Pumps in Riserless Mud Recovery Drilling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Compared with traditional deepwater drilling, riserless mud recovery (RMR) drilling technology has the advantages of improving drilling efficiency, reducing risks, and minimizing environmental effects. Therefore, RMR drilling technology has been widely applied in recent years. This study primarily investigates the relationships among reverse torque, vibration, and input parameters of mud pumps in riserless mud recovery drilling. Firstly, the operating principle and the structure of the mud pump module are analyzed, and an analytical model for the reverse torque and the vibration of the mud pump is established. Secondly, relevant data are derived from theoretical calculations and experiments, and the relationships among the reverse torque, vibration, and input parameters of the mud pump are analyzed using ANSYS (Version 2020 R1) software. Furthermore, the SVR (support vector regression) algorithm is employed to predict and analyze the amplitude of the mud pump’s vibration. Finally, the conclusions are drawn based on the findings of the relationships among the reverse torque, vibration, and input parameters of the mud pump. The findings show that the reverse torque of the mud pump increases approximately linearly with an increase in rotational speed, and the vibration of the mud pump increases and then decreases with an increase in rotational speed. The predicted values obtained through the prediction algorithm closely match the actual values. The findings provide a valuable reference for the application of RMR technology.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">riserless mud recovery technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mud pump</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ANSYS software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SVR algorithm</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Benchong Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haowen Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rulei Qin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Changping Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guoyue Yin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 21, p 11878</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:21, p 11878</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app132111878</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c9a274b1170c4bcc93d1cfe68b209308</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/13/21/11878</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">21, p 11878</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Guolei He |
spellingShingle |
Guolei He misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc riserless mud recovery technology misc mud pump misc ANSYS software misc SVR algorithm misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry Study of the Relationships among the Reverse Torque, Vibration, and Input Parameters of Mud Pumps in Riserless Mud Recovery Drilling |
authorStr |
Guolei He |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287640 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20763417 |
topic_title |
TA1-2040 QH301-705.5 QC1-999 QD1-999 Study of the Relationships among the Reverse Torque, Vibration, and Input Parameters of Mud Pumps in Riserless Mud Recovery Drilling riserless mud recovery technology mud pump ANSYS software SVR algorithm |
topic |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc riserless mud recovery technology misc mud pump misc ANSYS software misc SVR algorithm misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_unstemmed |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc riserless mud recovery technology misc mud pump misc ANSYS software misc SVR algorithm misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_browse |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc riserless mud recovery technology misc mud pump misc ANSYS software misc SVR algorithm misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied Sciences |
hierarchy_parent_id |
737287640 |
hierarchy_top_title |
Applied Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287640 (DE-600)2704225-X |
title |
Study of the Relationships among the Reverse Torque, Vibration, and Input Parameters of Mud Pumps in Riserless Mud Recovery Drilling |
ctrlnum |
(DE-627)DOAJ095475869 (DE-599)DOAJc9a274b1170c4bcc93d1cfe68b209308 |
title_full |
Study of the Relationships among the Reverse Torque, Vibration, and Input Parameters of Mud Pumps in Riserless Mud Recovery Drilling |
author_sort |
Guolei He |
journal |
Applied Sciences |
journalStr |
Applied Sciences |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Guolei He Benchong Xu Haowen Chen Rulei Qin Changping Li Guoyue Yin |
container_volume |
13 |
class |
TA1-2040 QH301-705.5 QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Guolei He |
doi_str_mv |
10.3390/app132111878 |
author2-role |
verfasserin |
title_sort |
study of the relationships among the reverse torque, vibration, and input parameters of mud pumps in riserless mud recovery drilling |
callnumber |
TA1-2040 |
title_auth |
Study of the Relationships among the Reverse Torque, Vibration, and Input Parameters of Mud Pumps in Riserless Mud Recovery Drilling |
abstract |
Compared with traditional deepwater drilling, riserless mud recovery (RMR) drilling technology has the advantages of improving drilling efficiency, reducing risks, and minimizing environmental effects. Therefore, RMR drilling technology has been widely applied in recent years. This study primarily investigates the relationships among reverse torque, vibration, and input parameters of mud pumps in riserless mud recovery drilling. Firstly, the operating principle and the structure of the mud pump module are analyzed, and an analytical model for the reverse torque and the vibration of the mud pump is established. Secondly, relevant data are derived from theoretical calculations and experiments, and the relationships among the reverse torque, vibration, and input parameters of the mud pump are analyzed using ANSYS (Version 2020 R1) software. Furthermore, the SVR (support vector regression) algorithm is employed to predict and analyze the amplitude of the mud pump’s vibration. Finally, the conclusions are drawn based on the findings of the relationships among the reverse torque, vibration, and input parameters of the mud pump. The findings show that the reverse torque of the mud pump increases approximately linearly with an increase in rotational speed, and the vibration of the mud pump increases and then decreases with an increase in rotational speed. The predicted values obtained through the prediction algorithm closely match the actual values. The findings provide a valuable reference for the application of RMR technology. |
abstractGer |
Compared with traditional deepwater drilling, riserless mud recovery (RMR) drilling technology has the advantages of improving drilling efficiency, reducing risks, and minimizing environmental effects. Therefore, RMR drilling technology has been widely applied in recent years. This study primarily investigates the relationships among reverse torque, vibration, and input parameters of mud pumps in riserless mud recovery drilling. Firstly, the operating principle and the structure of the mud pump module are analyzed, and an analytical model for the reverse torque and the vibration of the mud pump is established. Secondly, relevant data are derived from theoretical calculations and experiments, and the relationships among the reverse torque, vibration, and input parameters of the mud pump are analyzed using ANSYS (Version 2020 R1) software. Furthermore, the SVR (support vector regression) algorithm is employed to predict and analyze the amplitude of the mud pump’s vibration. Finally, the conclusions are drawn based on the findings of the relationships among the reverse torque, vibration, and input parameters of the mud pump. The findings show that the reverse torque of the mud pump increases approximately linearly with an increase in rotational speed, and the vibration of the mud pump increases and then decreases with an increase in rotational speed. The predicted values obtained through the prediction algorithm closely match the actual values. The findings provide a valuable reference for the application of RMR technology. |
abstract_unstemmed |
Compared with traditional deepwater drilling, riserless mud recovery (RMR) drilling technology has the advantages of improving drilling efficiency, reducing risks, and minimizing environmental effects. Therefore, RMR drilling technology has been widely applied in recent years. This study primarily investigates the relationships among reverse torque, vibration, and input parameters of mud pumps in riserless mud recovery drilling. Firstly, the operating principle and the structure of the mud pump module are analyzed, and an analytical model for the reverse torque and the vibration of the mud pump is established. Secondly, relevant data are derived from theoretical calculations and experiments, and the relationships among the reverse torque, vibration, and input parameters of the mud pump are analyzed using ANSYS (Version 2020 R1) software. Furthermore, the SVR (support vector regression) algorithm is employed to predict and analyze the amplitude of the mud pump’s vibration. Finally, the conclusions are drawn based on the findings of the relationships among the reverse torque, vibration, and input parameters of the mud pump. The findings show that the reverse torque of the mud pump increases approximately linearly with an increase in rotational speed, and the vibration of the mud pump increases and then decreases with an increase in rotational speed. The predicted values obtained through the prediction algorithm closely match the actual values. The findings provide a valuable reference for the application of RMR technology. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
21, p 11878 |
title_short |
Study of the Relationships among the Reverse Torque, Vibration, and Input Parameters of Mud Pumps in Riserless Mud Recovery Drilling |
url |
https://doi.org/10.3390/app132111878 https://doaj.org/article/c9a274b1170c4bcc93d1cfe68b209308 https://www.mdpi.com/2076-3417/13/21/11878 https://doaj.org/toc/2076-3417 |
remote_bool |
true |
author2 |
Benchong Xu Haowen Chen Rulei Qin Changping Li Guoyue Yin |
author2Str |
Benchong Xu Haowen Chen Rulei Qin Changping Li Guoyue Yin |
ppnlink |
737287640 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/app132111878 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T14:53:29.246Z |
_version_ |
1803570023497728000 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ095475869</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413110441.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app132111878</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ095475869</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc9a274b1170c4bcc93d1cfe68b209308</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Guolei He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study of the Relationships among the Reverse Torque, Vibration, and Input Parameters of Mud Pumps in Riserless Mud Recovery Drilling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Compared with traditional deepwater drilling, riserless mud recovery (RMR) drilling technology has the advantages of improving drilling efficiency, reducing risks, and minimizing environmental effects. Therefore, RMR drilling technology has been widely applied in recent years. This study primarily investigates the relationships among reverse torque, vibration, and input parameters of mud pumps in riserless mud recovery drilling. Firstly, the operating principle and the structure of the mud pump module are analyzed, and an analytical model for the reverse torque and the vibration of the mud pump is established. Secondly, relevant data are derived from theoretical calculations and experiments, and the relationships among the reverse torque, vibration, and input parameters of the mud pump are analyzed using ANSYS (Version 2020 R1) software. Furthermore, the SVR (support vector regression) algorithm is employed to predict and analyze the amplitude of the mud pump’s vibration. Finally, the conclusions are drawn based on the findings of the relationships among the reverse torque, vibration, and input parameters of the mud pump. The findings show that the reverse torque of the mud pump increases approximately linearly with an increase in rotational speed, and the vibration of the mud pump increases and then decreases with an increase in rotational speed. The predicted values obtained through the prediction algorithm closely match the actual values. The findings provide a valuable reference for the application of RMR technology.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">riserless mud recovery technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mud pump</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ANSYS software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SVR algorithm</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Benchong Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haowen Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rulei Qin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Changping Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guoyue Yin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 21, p 11878</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:21, p 11878</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app132111878</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c9a274b1170c4bcc93d1cfe68b209308</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/13/21/11878</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">21, p 11878</subfield></datafield></record></collection>
|
score |
7.398264 |