Background experiment of the low energy x-ray telescope detectors on insight-HXMT
The low energy x-ray telescope (LE) is one of the main instruments of the insight-hard x-ray modulation telescope, the first x-ray astronomical satellite of China. The scientific objectives of the LE focus on the scanning and pointed observations of the x-ray sources in the soft x-ray band (1–13 keV...
Ausführliche Beschreibung
Autor*in: |
Wei Li [verfasserIn] Jingbin Lu [verfasserIn] Yanji Yang [verfasserIn] Yifan Zhang [verfasserIn] Weiwei Cui [verfasserIn] Juan Wang [verfasserIn] Yong Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Übergeordnetes Werk: |
In: AIP Advances - AIP Publishing LLC, 2011, 14(2024), 2, Seite 025252-025252-12 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2024 ; number:2 ; pages:025252-025252-12 |
Links: |
---|
DOI / URN: |
10.1063/5.0193455 |
---|
Katalog-ID: |
DOAJ095572112 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ095572112 | ||
003 | DE-627 | ||
005 | 20240413113412.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1063/5.0193455 |2 doi | |
035 | |a (DE-627)DOAJ095572112 | ||
035 | |a (DE-599)DOAJ019a38dfe4ad4fd88090d8302a4552e1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC1-999 | |
100 | 0 | |a Wei Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a Background experiment of the low energy x-ray telescope detectors on insight-HXMT |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The low energy x-ray telescope (LE) is one of the main instruments of the insight-hard x-ray modulation telescope, the first x-ray astronomical satellite of China. The scientific objectives of the LE focus on the scanning and pointed observations of the x-ray sources in the soft x-ray band (1–13 keV). In order to complete the observation tasks and accurately analyze the background information of the LE, it is essential to obtain the background data of the detectors. Therefore, we designed an LE background experiment. The experiment began with an underground background experiment in the China Jinping Underground Laboratory with a rock of a thickness of 2400 m, followed by a ground background experiment. These two experiments lasted for a long time, and through comparison and analysis of the background data, it was found that underground laboratories significantly shielded cosmic rays. In addition, the background of detectors in the underground experiment was more than one order of magnitude lower than that in the ground experiment. The experiments also revealed multiple x-ray fluorescence peaks of various elements in the background, including silicon from the detector itself, erbium in the ceramic substrate, and copper in the mounting plate. The anti-coincidence design of detectors was observed to reduce the x-ray fluorescence peaks of silicon. By comparing the background flux obtained with the background flux in the orbit, it was found that the background generated by radioactive substances inside the LE detector is very low. Within the energy range of less than 7.5 keV, the flux in the orbit is about 0.012 counts/s/keV, the ground flux is ∼3 × 10−3 counts/s/keV, and the underground flux is about 1.5 × 10−4 counts/s/keV. However, the flux in the orbit significantly increases above 7.5 keV, which does not occur in both the ground and underground background experiments. These results provide reference and guidance for scientific teams and instrument teams to analyze the data of the low energy x-ray telescope. | ||
653 | 0 | |a Physics | |
700 | 0 | |a Jingbin Lu |e verfasserin |4 aut | |
700 | 0 | |a Yanji Yang |e verfasserin |4 aut | |
700 | 0 | |a Yifan Zhang |e verfasserin |4 aut | |
700 | 0 | |a Weiwei Cui |e verfasserin |4 aut | |
700 | 0 | |a Juan Wang |e verfasserin |4 aut | |
700 | 0 | |a Yong Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t AIP Advances |d AIP Publishing LLC, 2011 |g 14(2024), 2, Seite 025252-025252-12 |w (DE-627)641391706 |w (DE-600)2583909-3 |x 21583226 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2024 |g number:2 |g pages:025252-025252-12 |
856 | 4 | 0 | |u https://doi.org/10.1063/5.0193455 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/019a38dfe4ad4fd88090d8302a4552e1 |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1063/5.0193455 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2158-3226 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2024 |e 2 |h 025252-025252-12 |
author_variant |
w l wl j l jl y y yy y z yz w c wc j w jw y c yc |
---|---|
matchkey_str |
article:21583226:2024----::akrudxeietfhlwnryryeecpdt |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
QC |
publishDate |
2024 |
allfields |
10.1063/5.0193455 doi (DE-627)DOAJ095572112 (DE-599)DOAJ019a38dfe4ad4fd88090d8302a4552e1 DE-627 ger DE-627 rakwb eng QC1-999 Wei Li verfasserin aut Background experiment of the low energy x-ray telescope detectors on insight-HXMT 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The low energy x-ray telescope (LE) is one of the main instruments of the insight-hard x-ray modulation telescope, the first x-ray astronomical satellite of China. The scientific objectives of the LE focus on the scanning and pointed observations of the x-ray sources in the soft x-ray band (1–13 keV). In order to complete the observation tasks and accurately analyze the background information of the LE, it is essential to obtain the background data of the detectors. Therefore, we designed an LE background experiment. The experiment began with an underground background experiment in the China Jinping Underground Laboratory with a rock of a thickness of 2400 m, followed by a ground background experiment. These two experiments lasted for a long time, and through comparison and analysis of the background data, it was found that underground laboratories significantly shielded cosmic rays. In addition, the background of detectors in the underground experiment was more than one order of magnitude lower than that in the ground experiment. The experiments also revealed multiple x-ray fluorescence peaks of various elements in the background, including silicon from the detector itself, erbium in the ceramic substrate, and copper in the mounting plate. The anti-coincidence design of detectors was observed to reduce the x-ray fluorescence peaks of silicon. By comparing the background flux obtained with the background flux in the orbit, it was found that the background generated by radioactive substances inside the LE detector is very low. Within the energy range of less than 7.5 keV, the flux in the orbit is about 0.012 counts/s/keV, the ground flux is ∼3 × 10−3 counts/s/keV, and the underground flux is about 1.5 × 10−4 counts/s/keV. However, the flux in the orbit significantly increases above 7.5 keV, which does not occur in both the ground and underground background experiments. These results provide reference and guidance for scientific teams and instrument teams to analyze the data of the low energy x-ray telescope. Physics Jingbin Lu verfasserin aut Yanji Yang verfasserin aut Yifan Zhang verfasserin aut Weiwei Cui verfasserin aut Juan Wang verfasserin aut Yong Chen verfasserin aut In AIP Advances AIP Publishing LLC, 2011 14(2024), 2, Seite 025252-025252-12 (DE-627)641391706 (DE-600)2583909-3 21583226 nnns volume:14 year:2024 number:2 pages:025252-025252-12 https://doi.org/10.1063/5.0193455 kostenfrei https://doaj.org/article/019a38dfe4ad4fd88090d8302a4552e1 kostenfrei http://dx.doi.org/10.1063/5.0193455 kostenfrei https://doaj.org/toc/2158-3226 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 2 025252-025252-12 |
spelling |
10.1063/5.0193455 doi (DE-627)DOAJ095572112 (DE-599)DOAJ019a38dfe4ad4fd88090d8302a4552e1 DE-627 ger DE-627 rakwb eng QC1-999 Wei Li verfasserin aut Background experiment of the low energy x-ray telescope detectors on insight-HXMT 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The low energy x-ray telescope (LE) is one of the main instruments of the insight-hard x-ray modulation telescope, the first x-ray astronomical satellite of China. The scientific objectives of the LE focus on the scanning and pointed observations of the x-ray sources in the soft x-ray band (1–13 keV). In order to complete the observation tasks and accurately analyze the background information of the LE, it is essential to obtain the background data of the detectors. Therefore, we designed an LE background experiment. The experiment began with an underground background experiment in the China Jinping Underground Laboratory with a rock of a thickness of 2400 m, followed by a ground background experiment. These two experiments lasted for a long time, and through comparison and analysis of the background data, it was found that underground laboratories significantly shielded cosmic rays. In addition, the background of detectors in the underground experiment was more than one order of magnitude lower than that in the ground experiment. The experiments also revealed multiple x-ray fluorescence peaks of various elements in the background, including silicon from the detector itself, erbium in the ceramic substrate, and copper in the mounting plate. The anti-coincidence design of detectors was observed to reduce the x-ray fluorescence peaks of silicon. By comparing the background flux obtained with the background flux in the orbit, it was found that the background generated by radioactive substances inside the LE detector is very low. Within the energy range of less than 7.5 keV, the flux in the orbit is about 0.012 counts/s/keV, the ground flux is ∼3 × 10−3 counts/s/keV, and the underground flux is about 1.5 × 10−4 counts/s/keV. However, the flux in the orbit significantly increases above 7.5 keV, which does not occur in both the ground and underground background experiments. These results provide reference and guidance for scientific teams and instrument teams to analyze the data of the low energy x-ray telescope. Physics Jingbin Lu verfasserin aut Yanji Yang verfasserin aut Yifan Zhang verfasserin aut Weiwei Cui verfasserin aut Juan Wang verfasserin aut Yong Chen verfasserin aut In AIP Advances AIP Publishing LLC, 2011 14(2024), 2, Seite 025252-025252-12 (DE-627)641391706 (DE-600)2583909-3 21583226 nnns volume:14 year:2024 number:2 pages:025252-025252-12 https://doi.org/10.1063/5.0193455 kostenfrei https://doaj.org/article/019a38dfe4ad4fd88090d8302a4552e1 kostenfrei http://dx.doi.org/10.1063/5.0193455 kostenfrei https://doaj.org/toc/2158-3226 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 2 025252-025252-12 |
allfields_unstemmed |
10.1063/5.0193455 doi (DE-627)DOAJ095572112 (DE-599)DOAJ019a38dfe4ad4fd88090d8302a4552e1 DE-627 ger DE-627 rakwb eng QC1-999 Wei Li verfasserin aut Background experiment of the low energy x-ray telescope detectors on insight-HXMT 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The low energy x-ray telescope (LE) is one of the main instruments of the insight-hard x-ray modulation telescope, the first x-ray astronomical satellite of China. The scientific objectives of the LE focus on the scanning and pointed observations of the x-ray sources in the soft x-ray band (1–13 keV). In order to complete the observation tasks and accurately analyze the background information of the LE, it is essential to obtain the background data of the detectors. Therefore, we designed an LE background experiment. The experiment began with an underground background experiment in the China Jinping Underground Laboratory with a rock of a thickness of 2400 m, followed by a ground background experiment. These two experiments lasted for a long time, and through comparison and analysis of the background data, it was found that underground laboratories significantly shielded cosmic rays. In addition, the background of detectors in the underground experiment was more than one order of magnitude lower than that in the ground experiment. The experiments also revealed multiple x-ray fluorescence peaks of various elements in the background, including silicon from the detector itself, erbium in the ceramic substrate, and copper in the mounting plate. The anti-coincidence design of detectors was observed to reduce the x-ray fluorescence peaks of silicon. By comparing the background flux obtained with the background flux in the orbit, it was found that the background generated by radioactive substances inside the LE detector is very low. Within the energy range of less than 7.5 keV, the flux in the orbit is about 0.012 counts/s/keV, the ground flux is ∼3 × 10−3 counts/s/keV, and the underground flux is about 1.5 × 10−4 counts/s/keV. However, the flux in the orbit significantly increases above 7.5 keV, which does not occur in both the ground and underground background experiments. These results provide reference and guidance for scientific teams and instrument teams to analyze the data of the low energy x-ray telescope. Physics Jingbin Lu verfasserin aut Yanji Yang verfasserin aut Yifan Zhang verfasserin aut Weiwei Cui verfasserin aut Juan Wang verfasserin aut Yong Chen verfasserin aut In AIP Advances AIP Publishing LLC, 2011 14(2024), 2, Seite 025252-025252-12 (DE-627)641391706 (DE-600)2583909-3 21583226 nnns volume:14 year:2024 number:2 pages:025252-025252-12 https://doi.org/10.1063/5.0193455 kostenfrei https://doaj.org/article/019a38dfe4ad4fd88090d8302a4552e1 kostenfrei http://dx.doi.org/10.1063/5.0193455 kostenfrei https://doaj.org/toc/2158-3226 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 2 025252-025252-12 |
allfieldsGer |
10.1063/5.0193455 doi (DE-627)DOAJ095572112 (DE-599)DOAJ019a38dfe4ad4fd88090d8302a4552e1 DE-627 ger DE-627 rakwb eng QC1-999 Wei Li verfasserin aut Background experiment of the low energy x-ray telescope detectors on insight-HXMT 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The low energy x-ray telescope (LE) is one of the main instruments of the insight-hard x-ray modulation telescope, the first x-ray astronomical satellite of China. The scientific objectives of the LE focus on the scanning and pointed observations of the x-ray sources in the soft x-ray band (1–13 keV). In order to complete the observation tasks and accurately analyze the background information of the LE, it is essential to obtain the background data of the detectors. Therefore, we designed an LE background experiment. The experiment began with an underground background experiment in the China Jinping Underground Laboratory with a rock of a thickness of 2400 m, followed by a ground background experiment. These two experiments lasted for a long time, and through comparison and analysis of the background data, it was found that underground laboratories significantly shielded cosmic rays. In addition, the background of detectors in the underground experiment was more than one order of magnitude lower than that in the ground experiment. The experiments also revealed multiple x-ray fluorescence peaks of various elements in the background, including silicon from the detector itself, erbium in the ceramic substrate, and copper in the mounting plate. The anti-coincidence design of detectors was observed to reduce the x-ray fluorescence peaks of silicon. By comparing the background flux obtained with the background flux in the orbit, it was found that the background generated by radioactive substances inside the LE detector is very low. Within the energy range of less than 7.5 keV, the flux in the orbit is about 0.012 counts/s/keV, the ground flux is ∼3 × 10−3 counts/s/keV, and the underground flux is about 1.5 × 10−4 counts/s/keV. However, the flux in the orbit significantly increases above 7.5 keV, which does not occur in both the ground and underground background experiments. These results provide reference and guidance for scientific teams and instrument teams to analyze the data of the low energy x-ray telescope. Physics Jingbin Lu verfasserin aut Yanji Yang verfasserin aut Yifan Zhang verfasserin aut Weiwei Cui verfasserin aut Juan Wang verfasserin aut Yong Chen verfasserin aut In AIP Advances AIP Publishing LLC, 2011 14(2024), 2, Seite 025252-025252-12 (DE-627)641391706 (DE-600)2583909-3 21583226 nnns volume:14 year:2024 number:2 pages:025252-025252-12 https://doi.org/10.1063/5.0193455 kostenfrei https://doaj.org/article/019a38dfe4ad4fd88090d8302a4552e1 kostenfrei http://dx.doi.org/10.1063/5.0193455 kostenfrei https://doaj.org/toc/2158-3226 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 2 025252-025252-12 |
allfieldsSound |
10.1063/5.0193455 doi (DE-627)DOAJ095572112 (DE-599)DOAJ019a38dfe4ad4fd88090d8302a4552e1 DE-627 ger DE-627 rakwb eng QC1-999 Wei Li verfasserin aut Background experiment of the low energy x-ray telescope detectors on insight-HXMT 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The low energy x-ray telescope (LE) is one of the main instruments of the insight-hard x-ray modulation telescope, the first x-ray astronomical satellite of China. The scientific objectives of the LE focus on the scanning and pointed observations of the x-ray sources in the soft x-ray band (1–13 keV). In order to complete the observation tasks and accurately analyze the background information of the LE, it is essential to obtain the background data of the detectors. Therefore, we designed an LE background experiment. The experiment began with an underground background experiment in the China Jinping Underground Laboratory with a rock of a thickness of 2400 m, followed by a ground background experiment. These two experiments lasted for a long time, and through comparison and analysis of the background data, it was found that underground laboratories significantly shielded cosmic rays. In addition, the background of detectors in the underground experiment was more than one order of magnitude lower than that in the ground experiment. The experiments also revealed multiple x-ray fluorescence peaks of various elements in the background, including silicon from the detector itself, erbium in the ceramic substrate, and copper in the mounting plate. The anti-coincidence design of detectors was observed to reduce the x-ray fluorescence peaks of silicon. By comparing the background flux obtained with the background flux in the orbit, it was found that the background generated by radioactive substances inside the LE detector is very low. Within the energy range of less than 7.5 keV, the flux in the orbit is about 0.012 counts/s/keV, the ground flux is ∼3 × 10−3 counts/s/keV, and the underground flux is about 1.5 × 10−4 counts/s/keV. However, the flux in the orbit significantly increases above 7.5 keV, which does not occur in both the ground and underground background experiments. These results provide reference and guidance for scientific teams and instrument teams to analyze the data of the low energy x-ray telescope. Physics Jingbin Lu verfasserin aut Yanji Yang verfasserin aut Yifan Zhang verfasserin aut Weiwei Cui verfasserin aut Juan Wang verfasserin aut Yong Chen verfasserin aut In AIP Advances AIP Publishing LLC, 2011 14(2024), 2, Seite 025252-025252-12 (DE-627)641391706 (DE-600)2583909-3 21583226 nnns volume:14 year:2024 number:2 pages:025252-025252-12 https://doi.org/10.1063/5.0193455 kostenfrei https://doaj.org/article/019a38dfe4ad4fd88090d8302a4552e1 kostenfrei http://dx.doi.org/10.1063/5.0193455 kostenfrei https://doaj.org/toc/2158-3226 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 2 025252-025252-12 |
language |
English |
source |
In AIP Advances 14(2024), 2, Seite 025252-025252-12 volume:14 year:2024 number:2 pages:025252-025252-12 |
sourceStr |
In AIP Advances 14(2024), 2, Seite 025252-025252-12 volume:14 year:2024 number:2 pages:025252-025252-12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Physics |
isfreeaccess_bool |
true |
container_title |
AIP Advances |
authorswithroles_txt_mv |
Wei Li @@aut@@ Jingbin Lu @@aut@@ Yanji Yang @@aut@@ Yifan Zhang @@aut@@ Weiwei Cui @@aut@@ Juan Wang @@aut@@ Yong Chen @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
641391706 |
id |
DOAJ095572112 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ095572112</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413113412.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1063/5.0193455</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ095572112</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ019a38dfe4ad4fd88090d8302a4552e1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wei Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Background experiment of the low energy x-ray telescope detectors on insight-HXMT</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The low energy x-ray telescope (LE) is one of the main instruments of the insight-hard x-ray modulation telescope, the first x-ray astronomical satellite of China. The scientific objectives of the LE focus on the scanning and pointed observations of the x-ray sources in the soft x-ray band (1–13 keV). In order to complete the observation tasks and accurately analyze the background information of the LE, it is essential to obtain the background data of the detectors. Therefore, we designed an LE background experiment. The experiment began with an underground background experiment in the China Jinping Underground Laboratory with a rock of a thickness of 2400 m, followed by a ground background experiment. These two experiments lasted for a long time, and through comparison and analysis of the background data, it was found that underground laboratories significantly shielded cosmic rays. In addition, the background of detectors in the underground experiment was more than one order of magnitude lower than that in the ground experiment. The experiments also revealed multiple x-ray fluorescence peaks of various elements in the background, including silicon from the detector itself, erbium in the ceramic substrate, and copper in the mounting plate. The anti-coincidence design of detectors was observed to reduce the x-ray fluorescence peaks of silicon. By comparing the background flux obtained with the background flux in the orbit, it was found that the background generated by radioactive substances inside the LE detector is very low. Within the energy range of less than 7.5 keV, the flux in the orbit is about 0.012 counts/s/keV, the ground flux is ∼3 × 10−3 counts/s/keV, and the underground flux is about 1.5 × 10−4 counts/s/keV. However, the flux in the orbit significantly increases above 7.5 keV, which does not occur in both the ground and underground background experiments. These results provide reference and guidance for scientific teams and instrument teams to analyze the data of the low energy x-ray telescope.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingbin Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanji Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yifan Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weiwei Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juan Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yong Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">AIP Advances</subfield><subfield code="d">AIP Publishing LLC, 2011</subfield><subfield code="g">14(2024), 2, Seite 025252-025252-12</subfield><subfield code="w">(DE-627)641391706</subfield><subfield code="w">(DE-600)2583909-3</subfield><subfield code="x">21583226</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:025252-025252-12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1063/5.0193455</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/019a38dfe4ad4fd88090d8302a4552e1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1063/5.0193455</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2158-3226</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2024</subfield><subfield code="e">2</subfield><subfield code="h">025252-025252-12</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Wei Li |
spellingShingle |
Wei Li misc QC1-999 misc Physics Background experiment of the low energy x-ray telescope detectors on insight-HXMT |
authorStr |
Wei Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)641391706 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC1-999 |
illustrated |
Not Illustrated |
issn |
21583226 |
topic_title |
QC1-999 Background experiment of the low energy x-ray telescope detectors on insight-HXMT |
topic |
misc QC1-999 misc Physics |
topic_unstemmed |
misc QC1-999 misc Physics |
topic_browse |
misc QC1-999 misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
AIP Advances |
hierarchy_parent_id |
641391706 |
hierarchy_top_title |
AIP Advances |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)641391706 (DE-600)2583909-3 |
title |
Background experiment of the low energy x-ray telescope detectors on insight-HXMT |
ctrlnum |
(DE-627)DOAJ095572112 (DE-599)DOAJ019a38dfe4ad4fd88090d8302a4552e1 |
title_full |
Background experiment of the low energy x-ray telescope detectors on insight-HXMT |
author_sort |
Wei Li |
journal |
AIP Advances |
journalStr |
AIP Advances |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
container_start_page |
025252 |
author_browse |
Wei Li Jingbin Lu Yanji Yang Yifan Zhang Weiwei Cui Juan Wang Yong Chen |
container_volume |
14 |
class |
QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Wei Li |
doi_str_mv |
10.1063/5.0193455 |
author2-role |
verfasserin |
title_sort |
background experiment of the low energy x-ray telescope detectors on insight-hxmt |
callnumber |
QC1-999 |
title_auth |
Background experiment of the low energy x-ray telescope detectors on insight-HXMT |
abstract |
The low energy x-ray telescope (LE) is one of the main instruments of the insight-hard x-ray modulation telescope, the first x-ray astronomical satellite of China. The scientific objectives of the LE focus on the scanning and pointed observations of the x-ray sources in the soft x-ray band (1–13 keV). In order to complete the observation tasks and accurately analyze the background information of the LE, it is essential to obtain the background data of the detectors. Therefore, we designed an LE background experiment. The experiment began with an underground background experiment in the China Jinping Underground Laboratory with a rock of a thickness of 2400 m, followed by a ground background experiment. These two experiments lasted for a long time, and through comparison and analysis of the background data, it was found that underground laboratories significantly shielded cosmic rays. In addition, the background of detectors in the underground experiment was more than one order of magnitude lower than that in the ground experiment. The experiments also revealed multiple x-ray fluorescence peaks of various elements in the background, including silicon from the detector itself, erbium in the ceramic substrate, and copper in the mounting plate. The anti-coincidence design of detectors was observed to reduce the x-ray fluorescence peaks of silicon. By comparing the background flux obtained with the background flux in the orbit, it was found that the background generated by radioactive substances inside the LE detector is very low. Within the energy range of less than 7.5 keV, the flux in the orbit is about 0.012 counts/s/keV, the ground flux is ∼3 × 10−3 counts/s/keV, and the underground flux is about 1.5 × 10−4 counts/s/keV. However, the flux in the orbit significantly increases above 7.5 keV, which does not occur in both the ground and underground background experiments. These results provide reference and guidance for scientific teams and instrument teams to analyze the data of the low energy x-ray telescope. |
abstractGer |
The low energy x-ray telescope (LE) is one of the main instruments of the insight-hard x-ray modulation telescope, the first x-ray astronomical satellite of China. The scientific objectives of the LE focus on the scanning and pointed observations of the x-ray sources in the soft x-ray band (1–13 keV). In order to complete the observation tasks and accurately analyze the background information of the LE, it is essential to obtain the background data of the detectors. Therefore, we designed an LE background experiment. The experiment began with an underground background experiment in the China Jinping Underground Laboratory with a rock of a thickness of 2400 m, followed by a ground background experiment. These two experiments lasted for a long time, and through comparison and analysis of the background data, it was found that underground laboratories significantly shielded cosmic rays. In addition, the background of detectors in the underground experiment was more than one order of magnitude lower than that in the ground experiment. The experiments also revealed multiple x-ray fluorescence peaks of various elements in the background, including silicon from the detector itself, erbium in the ceramic substrate, and copper in the mounting plate. The anti-coincidence design of detectors was observed to reduce the x-ray fluorescence peaks of silicon. By comparing the background flux obtained with the background flux in the orbit, it was found that the background generated by radioactive substances inside the LE detector is very low. Within the energy range of less than 7.5 keV, the flux in the orbit is about 0.012 counts/s/keV, the ground flux is ∼3 × 10−3 counts/s/keV, and the underground flux is about 1.5 × 10−4 counts/s/keV. However, the flux in the orbit significantly increases above 7.5 keV, which does not occur in both the ground and underground background experiments. These results provide reference and guidance for scientific teams and instrument teams to analyze the data of the low energy x-ray telescope. |
abstract_unstemmed |
The low energy x-ray telescope (LE) is one of the main instruments of the insight-hard x-ray modulation telescope, the first x-ray astronomical satellite of China. The scientific objectives of the LE focus on the scanning and pointed observations of the x-ray sources in the soft x-ray band (1–13 keV). In order to complete the observation tasks and accurately analyze the background information of the LE, it is essential to obtain the background data of the detectors. Therefore, we designed an LE background experiment. The experiment began with an underground background experiment in the China Jinping Underground Laboratory with a rock of a thickness of 2400 m, followed by a ground background experiment. These two experiments lasted for a long time, and through comparison and analysis of the background data, it was found that underground laboratories significantly shielded cosmic rays. In addition, the background of detectors in the underground experiment was more than one order of magnitude lower than that in the ground experiment. The experiments also revealed multiple x-ray fluorescence peaks of various elements in the background, including silicon from the detector itself, erbium in the ceramic substrate, and copper in the mounting plate. The anti-coincidence design of detectors was observed to reduce the x-ray fluorescence peaks of silicon. By comparing the background flux obtained with the background flux in the orbit, it was found that the background generated by radioactive substances inside the LE detector is very low. Within the energy range of less than 7.5 keV, the flux in the orbit is about 0.012 counts/s/keV, the ground flux is ∼3 × 10−3 counts/s/keV, and the underground flux is about 1.5 × 10−4 counts/s/keV. However, the flux in the orbit significantly increases above 7.5 keV, which does not occur in both the ground and underground background experiments. These results provide reference and guidance for scientific teams and instrument teams to analyze the data of the low energy x-ray telescope. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Background experiment of the low energy x-ray telescope detectors on insight-HXMT |
url |
https://doi.org/10.1063/5.0193455 https://doaj.org/article/019a38dfe4ad4fd88090d8302a4552e1 http://dx.doi.org/10.1063/5.0193455 https://doaj.org/toc/2158-3226 |
remote_bool |
true |
author2 |
Jingbin Lu Yanji Yang Yifan Zhang Weiwei Cui Juan Wang Yong Chen |
author2Str |
Jingbin Lu Yanji Yang Yifan Zhang Weiwei Cui Juan Wang Yong Chen |
ppnlink |
641391706 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1063/5.0193455 |
callnumber-a |
QC1-999 |
up_date |
2024-07-03T15:21:11.783Z |
_version_ |
1803571766795173888 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ095572112</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413113412.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1063/5.0193455</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ095572112</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ019a38dfe4ad4fd88090d8302a4552e1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wei Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Background experiment of the low energy x-ray telescope detectors on insight-HXMT</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The low energy x-ray telescope (LE) is one of the main instruments of the insight-hard x-ray modulation telescope, the first x-ray astronomical satellite of China. The scientific objectives of the LE focus on the scanning and pointed observations of the x-ray sources in the soft x-ray band (1–13 keV). In order to complete the observation tasks and accurately analyze the background information of the LE, it is essential to obtain the background data of the detectors. Therefore, we designed an LE background experiment. The experiment began with an underground background experiment in the China Jinping Underground Laboratory with a rock of a thickness of 2400 m, followed by a ground background experiment. These two experiments lasted for a long time, and through comparison and analysis of the background data, it was found that underground laboratories significantly shielded cosmic rays. In addition, the background of detectors in the underground experiment was more than one order of magnitude lower than that in the ground experiment. The experiments also revealed multiple x-ray fluorescence peaks of various elements in the background, including silicon from the detector itself, erbium in the ceramic substrate, and copper in the mounting plate. The anti-coincidence design of detectors was observed to reduce the x-ray fluorescence peaks of silicon. By comparing the background flux obtained with the background flux in the orbit, it was found that the background generated by radioactive substances inside the LE detector is very low. Within the energy range of less than 7.5 keV, the flux in the orbit is about 0.012 counts/s/keV, the ground flux is ∼3 × 10−3 counts/s/keV, and the underground flux is about 1.5 × 10−4 counts/s/keV. However, the flux in the orbit significantly increases above 7.5 keV, which does not occur in both the ground and underground background experiments. These results provide reference and guidance for scientific teams and instrument teams to analyze the data of the low energy x-ray telescope.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingbin Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanji Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yifan Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weiwei Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juan Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yong Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">AIP Advances</subfield><subfield code="d">AIP Publishing LLC, 2011</subfield><subfield code="g">14(2024), 2, Seite 025252-025252-12</subfield><subfield code="w">(DE-627)641391706</subfield><subfield code="w">(DE-600)2583909-3</subfield><subfield code="x">21583226</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:025252-025252-12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1063/5.0193455</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/019a38dfe4ad4fd88090d8302a4552e1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1063/5.0193455</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2158-3226</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2024</subfield><subfield code="e">2</subfield><subfield code="h">025252-025252-12</subfield></datafield></record></collection>
|
score |
7.402667 |