Identification of endocrine-disrupting chemicals targeting key DCM-associated genes via bioinformatics and machine learning
Dilated cardiomyopathy (DCM) is a primary cause of heart failure (HF), with the incidence of HF increasing consistently in recent years. DCM pathogenesis involves a combination of inherited predisposition and environmental factors. Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that i...
Ausführliche Beschreibung
Autor*in: |
Shu Li [verfasserIn] Shuice Liu [verfasserIn] Xuefei Sun [verfasserIn] Liying Hao [verfasserIn] Qinghua Gao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Ecotoxicology and Environmental Safety - Elsevier, 2021, 274(2024), Seite 116168- |
---|---|
Übergeordnetes Werk: |
volume:274 ; year:2024 ; pages:116168- |
Links: |
---|
DOI / URN: |
10.1016/j.ecoenv.2024.116168 |
---|
Katalog-ID: |
DOAJ095592164 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ095592164 | ||
003 | DE-627 | ||
005 | 20240414132236.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ecoenv.2024.116168 |2 doi | |
035 | |a (DE-627)DOAJ095592164 | ||
035 | |a (DE-599)DOAJc55782f664dd4da1b9aecd7534fe8c34 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD172-193.5 | |
050 | 0 | |a GE1-350 | |
100 | 0 | |a Shu Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a Identification of endocrine-disrupting chemicals targeting key DCM-associated genes via bioinformatics and machine learning |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Dilated cardiomyopathy (DCM) is a primary cause of heart failure (HF), with the incidence of HF increasing consistently in recent years. DCM pathogenesis involves a combination of inherited predisposition and environmental factors. Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with endogenous hormone action and are capable of targeting various organs, including the heart. However, the impact of these disruptors on heart disease through their effects on genes remains underexplored. In this study, we aimed to explore key DCM-related genes using machine learning (ML) and the construction of a predictive model. Using the Gene Expression Omnibus (GEO) database, we screened differentially expressed genes (DEGs) and performed enrichment analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to DCM. Through ML techniques combining maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) logistic regression, we identified key genes for predicting DCM (IL1RL1, SEZ6L, SFRP4, COL22A1, RNASE2, HB). Based on these key genes, 79 EDCs with the potential to affect DCM were identified, among which 4 (3,4-dichloroaniline, fenitrothion, pyrene, and isoproturon) have not been previously associated with DCM. These findings establish a novel relationship between the EDCs mediated by key genes and the development of DCM. | ||
650 | 4 | |a Dilated cardiomyopathy | |
650 | 4 | |a Endocrine-disrupting chemicals | |
650 | 4 | |a Bioinformatics analysis | |
650 | 4 | |a Machine learning | |
650 | 4 | |a EDCs-genes-disease Interactions | |
653 | 0 | |a Environmental pollution | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Shuice Liu |e verfasserin |4 aut | |
700 | 0 | |a Xuefei Sun |e verfasserin |4 aut | |
700 | 0 | |a Liying Hao |e verfasserin |4 aut | |
700 | 0 | |a Qinghua Gao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Ecotoxicology and Environmental Safety |d Elsevier, 2021 |g 274(2024), Seite 116168- |w (DE-627)266018467 |w (DE-600)1466969-9 |x 10902414 |7 nnns |
773 | 1 | 8 | |g volume:274 |g year:2024 |g pages:116168- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ecoenv.2024.116168 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c55782f664dd4da1b9aecd7534fe8c34 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0147651324002434 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0147-6513 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 274 |j 2024 |h 116168- |
author_variant |
s l sl s l sl x s xs l h lh q g qg |
---|---|
matchkey_str |
article:10902414:2024----::dniiainfnorndsutnceiasagtnkycascaegnsibo |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
TD |
publishDate |
2024 |
allfields |
10.1016/j.ecoenv.2024.116168 doi (DE-627)DOAJ095592164 (DE-599)DOAJc55782f664dd4da1b9aecd7534fe8c34 DE-627 ger DE-627 rakwb eng TD172-193.5 GE1-350 Shu Li verfasserin aut Identification of endocrine-disrupting chemicals targeting key DCM-associated genes via bioinformatics and machine learning 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dilated cardiomyopathy (DCM) is a primary cause of heart failure (HF), with the incidence of HF increasing consistently in recent years. DCM pathogenesis involves a combination of inherited predisposition and environmental factors. Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with endogenous hormone action and are capable of targeting various organs, including the heart. However, the impact of these disruptors on heart disease through their effects on genes remains underexplored. In this study, we aimed to explore key DCM-related genes using machine learning (ML) and the construction of a predictive model. Using the Gene Expression Omnibus (GEO) database, we screened differentially expressed genes (DEGs) and performed enrichment analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to DCM. Through ML techniques combining maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) logistic regression, we identified key genes for predicting DCM (IL1RL1, SEZ6L, SFRP4, COL22A1, RNASE2, HB). Based on these key genes, 79 EDCs with the potential to affect DCM were identified, among which 4 (3,4-dichloroaniline, fenitrothion, pyrene, and isoproturon) have not been previously associated with DCM. These findings establish a novel relationship between the EDCs mediated by key genes and the development of DCM. Dilated cardiomyopathy Endocrine-disrupting chemicals Bioinformatics analysis Machine learning EDCs-genes-disease Interactions Environmental pollution Environmental sciences Shuice Liu verfasserin aut Xuefei Sun verfasserin aut Liying Hao verfasserin aut Qinghua Gao verfasserin aut In Ecotoxicology and Environmental Safety Elsevier, 2021 274(2024), Seite 116168- (DE-627)266018467 (DE-600)1466969-9 10902414 nnns volume:274 year:2024 pages:116168- https://doi.org/10.1016/j.ecoenv.2024.116168 kostenfrei https://doaj.org/article/c55782f664dd4da1b9aecd7534fe8c34 kostenfrei http://www.sciencedirect.com/science/article/pii/S0147651324002434 kostenfrei https://doaj.org/toc/0147-6513 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 274 2024 116168- |
spelling |
10.1016/j.ecoenv.2024.116168 doi (DE-627)DOAJ095592164 (DE-599)DOAJc55782f664dd4da1b9aecd7534fe8c34 DE-627 ger DE-627 rakwb eng TD172-193.5 GE1-350 Shu Li verfasserin aut Identification of endocrine-disrupting chemicals targeting key DCM-associated genes via bioinformatics and machine learning 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dilated cardiomyopathy (DCM) is a primary cause of heart failure (HF), with the incidence of HF increasing consistently in recent years. DCM pathogenesis involves a combination of inherited predisposition and environmental factors. Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with endogenous hormone action and are capable of targeting various organs, including the heart. However, the impact of these disruptors on heart disease through their effects on genes remains underexplored. In this study, we aimed to explore key DCM-related genes using machine learning (ML) and the construction of a predictive model. Using the Gene Expression Omnibus (GEO) database, we screened differentially expressed genes (DEGs) and performed enrichment analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to DCM. Through ML techniques combining maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) logistic regression, we identified key genes for predicting DCM (IL1RL1, SEZ6L, SFRP4, COL22A1, RNASE2, HB). Based on these key genes, 79 EDCs with the potential to affect DCM were identified, among which 4 (3,4-dichloroaniline, fenitrothion, pyrene, and isoproturon) have not been previously associated with DCM. These findings establish a novel relationship between the EDCs mediated by key genes and the development of DCM. Dilated cardiomyopathy Endocrine-disrupting chemicals Bioinformatics analysis Machine learning EDCs-genes-disease Interactions Environmental pollution Environmental sciences Shuice Liu verfasserin aut Xuefei Sun verfasserin aut Liying Hao verfasserin aut Qinghua Gao verfasserin aut In Ecotoxicology and Environmental Safety Elsevier, 2021 274(2024), Seite 116168- (DE-627)266018467 (DE-600)1466969-9 10902414 nnns volume:274 year:2024 pages:116168- https://doi.org/10.1016/j.ecoenv.2024.116168 kostenfrei https://doaj.org/article/c55782f664dd4da1b9aecd7534fe8c34 kostenfrei http://www.sciencedirect.com/science/article/pii/S0147651324002434 kostenfrei https://doaj.org/toc/0147-6513 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 274 2024 116168- |
allfields_unstemmed |
10.1016/j.ecoenv.2024.116168 doi (DE-627)DOAJ095592164 (DE-599)DOAJc55782f664dd4da1b9aecd7534fe8c34 DE-627 ger DE-627 rakwb eng TD172-193.5 GE1-350 Shu Li verfasserin aut Identification of endocrine-disrupting chemicals targeting key DCM-associated genes via bioinformatics and machine learning 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dilated cardiomyopathy (DCM) is a primary cause of heart failure (HF), with the incidence of HF increasing consistently in recent years. DCM pathogenesis involves a combination of inherited predisposition and environmental factors. Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with endogenous hormone action and are capable of targeting various organs, including the heart. However, the impact of these disruptors on heart disease through their effects on genes remains underexplored. In this study, we aimed to explore key DCM-related genes using machine learning (ML) and the construction of a predictive model. Using the Gene Expression Omnibus (GEO) database, we screened differentially expressed genes (DEGs) and performed enrichment analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to DCM. Through ML techniques combining maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) logistic regression, we identified key genes for predicting DCM (IL1RL1, SEZ6L, SFRP4, COL22A1, RNASE2, HB). Based on these key genes, 79 EDCs with the potential to affect DCM were identified, among which 4 (3,4-dichloroaniline, fenitrothion, pyrene, and isoproturon) have not been previously associated with DCM. These findings establish a novel relationship between the EDCs mediated by key genes and the development of DCM. Dilated cardiomyopathy Endocrine-disrupting chemicals Bioinformatics analysis Machine learning EDCs-genes-disease Interactions Environmental pollution Environmental sciences Shuice Liu verfasserin aut Xuefei Sun verfasserin aut Liying Hao verfasserin aut Qinghua Gao verfasserin aut In Ecotoxicology and Environmental Safety Elsevier, 2021 274(2024), Seite 116168- (DE-627)266018467 (DE-600)1466969-9 10902414 nnns volume:274 year:2024 pages:116168- https://doi.org/10.1016/j.ecoenv.2024.116168 kostenfrei https://doaj.org/article/c55782f664dd4da1b9aecd7534fe8c34 kostenfrei http://www.sciencedirect.com/science/article/pii/S0147651324002434 kostenfrei https://doaj.org/toc/0147-6513 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 274 2024 116168- |
allfieldsGer |
10.1016/j.ecoenv.2024.116168 doi (DE-627)DOAJ095592164 (DE-599)DOAJc55782f664dd4da1b9aecd7534fe8c34 DE-627 ger DE-627 rakwb eng TD172-193.5 GE1-350 Shu Li verfasserin aut Identification of endocrine-disrupting chemicals targeting key DCM-associated genes via bioinformatics and machine learning 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dilated cardiomyopathy (DCM) is a primary cause of heart failure (HF), with the incidence of HF increasing consistently in recent years. DCM pathogenesis involves a combination of inherited predisposition and environmental factors. Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with endogenous hormone action and are capable of targeting various organs, including the heart. However, the impact of these disruptors on heart disease through their effects on genes remains underexplored. In this study, we aimed to explore key DCM-related genes using machine learning (ML) and the construction of a predictive model. Using the Gene Expression Omnibus (GEO) database, we screened differentially expressed genes (DEGs) and performed enrichment analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to DCM. Through ML techniques combining maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) logistic regression, we identified key genes for predicting DCM (IL1RL1, SEZ6L, SFRP4, COL22A1, RNASE2, HB). Based on these key genes, 79 EDCs with the potential to affect DCM were identified, among which 4 (3,4-dichloroaniline, fenitrothion, pyrene, and isoproturon) have not been previously associated with DCM. These findings establish a novel relationship between the EDCs mediated by key genes and the development of DCM. Dilated cardiomyopathy Endocrine-disrupting chemicals Bioinformatics analysis Machine learning EDCs-genes-disease Interactions Environmental pollution Environmental sciences Shuice Liu verfasserin aut Xuefei Sun verfasserin aut Liying Hao verfasserin aut Qinghua Gao verfasserin aut In Ecotoxicology and Environmental Safety Elsevier, 2021 274(2024), Seite 116168- (DE-627)266018467 (DE-600)1466969-9 10902414 nnns volume:274 year:2024 pages:116168- https://doi.org/10.1016/j.ecoenv.2024.116168 kostenfrei https://doaj.org/article/c55782f664dd4da1b9aecd7534fe8c34 kostenfrei http://www.sciencedirect.com/science/article/pii/S0147651324002434 kostenfrei https://doaj.org/toc/0147-6513 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 274 2024 116168- |
allfieldsSound |
10.1016/j.ecoenv.2024.116168 doi (DE-627)DOAJ095592164 (DE-599)DOAJc55782f664dd4da1b9aecd7534fe8c34 DE-627 ger DE-627 rakwb eng TD172-193.5 GE1-350 Shu Li verfasserin aut Identification of endocrine-disrupting chemicals targeting key DCM-associated genes via bioinformatics and machine learning 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dilated cardiomyopathy (DCM) is a primary cause of heart failure (HF), with the incidence of HF increasing consistently in recent years. DCM pathogenesis involves a combination of inherited predisposition and environmental factors. Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with endogenous hormone action and are capable of targeting various organs, including the heart. However, the impact of these disruptors on heart disease through their effects on genes remains underexplored. In this study, we aimed to explore key DCM-related genes using machine learning (ML) and the construction of a predictive model. Using the Gene Expression Omnibus (GEO) database, we screened differentially expressed genes (DEGs) and performed enrichment analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to DCM. Through ML techniques combining maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) logistic regression, we identified key genes for predicting DCM (IL1RL1, SEZ6L, SFRP4, COL22A1, RNASE2, HB). Based on these key genes, 79 EDCs with the potential to affect DCM were identified, among which 4 (3,4-dichloroaniline, fenitrothion, pyrene, and isoproturon) have not been previously associated with DCM. These findings establish a novel relationship between the EDCs mediated by key genes and the development of DCM. Dilated cardiomyopathy Endocrine-disrupting chemicals Bioinformatics analysis Machine learning EDCs-genes-disease Interactions Environmental pollution Environmental sciences Shuice Liu verfasserin aut Xuefei Sun verfasserin aut Liying Hao verfasserin aut Qinghua Gao verfasserin aut In Ecotoxicology and Environmental Safety Elsevier, 2021 274(2024), Seite 116168- (DE-627)266018467 (DE-600)1466969-9 10902414 nnns volume:274 year:2024 pages:116168- https://doi.org/10.1016/j.ecoenv.2024.116168 kostenfrei https://doaj.org/article/c55782f664dd4da1b9aecd7534fe8c34 kostenfrei http://www.sciencedirect.com/science/article/pii/S0147651324002434 kostenfrei https://doaj.org/toc/0147-6513 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 274 2024 116168- |
language |
English |
source |
In Ecotoxicology and Environmental Safety 274(2024), Seite 116168- volume:274 year:2024 pages:116168- |
sourceStr |
In Ecotoxicology and Environmental Safety 274(2024), Seite 116168- volume:274 year:2024 pages:116168- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Dilated cardiomyopathy Endocrine-disrupting chemicals Bioinformatics analysis Machine learning EDCs-genes-disease Interactions Environmental pollution Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Ecotoxicology and Environmental Safety |
authorswithroles_txt_mv |
Shu Li @@aut@@ Shuice Liu @@aut@@ Xuefei Sun @@aut@@ Liying Hao @@aut@@ Qinghua Gao @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
266018467 |
id |
DOAJ095592164 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ095592164</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414132236.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecoenv.2024.116168</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ095592164</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc55782f664dd4da1b9aecd7534fe8c34</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD172-193.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shu Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identification of endocrine-disrupting chemicals targeting key DCM-associated genes via bioinformatics and machine learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dilated cardiomyopathy (DCM) is a primary cause of heart failure (HF), with the incidence of HF increasing consistently in recent years. DCM pathogenesis involves a combination of inherited predisposition and environmental factors. Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with endogenous hormone action and are capable of targeting various organs, including the heart. However, the impact of these disruptors on heart disease through their effects on genes remains underexplored. In this study, we aimed to explore key DCM-related genes using machine learning (ML) and the construction of a predictive model. Using the Gene Expression Omnibus (GEO) database, we screened differentially expressed genes (DEGs) and performed enrichment analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to DCM. Through ML techniques combining maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) logistic regression, we identified key genes for predicting DCM (IL1RL1, SEZ6L, SFRP4, COL22A1, RNASE2, HB). Based on these key genes, 79 EDCs with the potential to affect DCM were identified, among which 4 (3,4-dichloroaniline, fenitrothion, pyrene, and isoproturon) have not been previously associated with DCM. These findings establish a novel relationship between the EDCs mediated by key genes and the development of DCM.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dilated cardiomyopathy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Endocrine-disrupting chemicals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bioinformatics analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EDCs-genes-disease Interactions</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental pollution</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuice Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuefei Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liying Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qinghua Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecotoxicology and Environmental Safety</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">274(2024), Seite 116168-</subfield><subfield code="w">(DE-627)266018467</subfield><subfield code="w">(DE-600)1466969-9</subfield><subfield code="x">10902414</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:274</subfield><subfield code="g">year:2024</subfield><subfield code="g">pages:116168-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecoenv.2024.116168</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c55782f664dd4da1b9aecd7534fe8c34</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0147651324002434</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0147-6513</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">274</subfield><subfield code="j">2024</subfield><subfield code="h">116168-</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Shu Li |
spellingShingle |
Shu Li misc TD172-193.5 misc GE1-350 misc Dilated cardiomyopathy misc Endocrine-disrupting chemicals misc Bioinformatics analysis misc Machine learning misc EDCs-genes-disease Interactions misc Environmental pollution misc Environmental sciences Identification of endocrine-disrupting chemicals targeting key DCM-associated genes via bioinformatics and machine learning |
authorStr |
Shu Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)266018467 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD172-193 |
illustrated |
Not Illustrated |
issn |
10902414 |
topic_title |
TD172-193.5 GE1-350 Identification of endocrine-disrupting chemicals targeting key DCM-associated genes via bioinformatics and machine learning Dilated cardiomyopathy Endocrine-disrupting chemicals Bioinformatics analysis Machine learning EDCs-genes-disease Interactions |
topic |
misc TD172-193.5 misc GE1-350 misc Dilated cardiomyopathy misc Endocrine-disrupting chemicals misc Bioinformatics analysis misc Machine learning misc EDCs-genes-disease Interactions misc Environmental pollution misc Environmental sciences |
topic_unstemmed |
misc TD172-193.5 misc GE1-350 misc Dilated cardiomyopathy misc Endocrine-disrupting chemicals misc Bioinformatics analysis misc Machine learning misc EDCs-genes-disease Interactions misc Environmental pollution misc Environmental sciences |
topic_browse |
misc TD172-193.5 misc GE1-350 misc Dilated cardiomyopathy misc Endocrine-disrupting chemicals misc Bioinformatics analysis misc Machine learning misc EDCs-genes-disease Interactions misc Environmental pollution misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ecotoxicology and Environmental Safety |
hierarchy_parent_id |
266018467 |
hierarchy_top_title |
Ecotoxicology and Environmental Safety |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)266018467 (DE-600)1466969-9 |
title |
Identification of endocrine-disrupting chemicals targeting key DCM-associated genes via bioinformatics and machine learning |
ctrlnum |
(DE-627)DOAJ095592164 (DE-599)DOAJc55782f664dd4da1b9aecd7534fe8c34 |
title_full |
Identification of endocrine-disrupting chemicals targeting key DCM-associated genes via bioinformatics and machine learning |
author_sort |
Shu Li |
journal |
Ecotoxicology and Environmental Safety |
journalStr |
Ecotoxicology and Environmental Safety |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
container_start_page |
116168 |
author_browse |
Shu Li Shuice Liu Xuefei Sun Liying Hao Qinghua Gao |
container_volume |
274 |
class |
TD172-193.5 GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Shu Li |
doi_str_mv |
10.1016/j.ecoenv.2024.116168 |
author2-role |
verfasserin |
title_sort |
identification of endocrine-disrupting chemicals targeting key dcm-associated genes via bioinformatics and machine learning |
callnumber |
TD172-193.5 |
title_auth |
Identification of endocrine-disrupting chemicals targeting key DCM-associated genes via bioinformatics and machine learning |
abstract |
Dilated cardiomyopathy (DCM) is a primary cause of heart failure (HF), with the incidence of HF increasing consistently in recent years. DCM pathogenesis involves a combination of inherited predisposition and environmental factors. Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with endogenous hormone action and are capable of targeting various organs, including the heart. However, the impact of these disruptors on heart disease through their effects on genes remains underexplored. In this study, we aimed to explore key DCM-related genes using machine learning (ML) and the construction of a predictive model. Using the Gene Expression Omnibus (GEO) database, we screened differentially expressed genes (DEGs) and performed enrichment analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to DCM. Through ML techniques combining maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) logistic regression, we identified key genes for predicting DCM (IL1RL1, SEZ6L, SFRP4, COL22A1, RNASE2, HB). Based on these key genes, 79 EDCs with the potential to affect DCM were identified, among which 4 (3,4-dichloroaniline, fenitrothion, pyrene, and isoproturon) have not been previously associated with DCM. These findings establish a novel relationship between the EDCs mediated by key genes and the development of DCM. |
abstractGer |
Dilated cardiomyopathy (DCM) is a primary cause of heart failure (HF), with the incidence of HF increasing consistently in recent years. DCM pathogenesis involves a combination of inherited predisposition and environmental factors. Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with endogenous hormone action and are capable of targeting various organs, including the heart. However, the impact of these disruptors on heart disease through their effects on genes remains underexplored. In this study, we aimed to explore key DCM-related genes using machine learning (ML) and the construction of a predictive model. Using the Gene Expression Omnibus (GEO) database, we screened differentially expressed genes (DEGs) and performed enrichment analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to DCM. Through ML techniques combining maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) logistic regression, we identified key genes for predicting DCM (IL1RL1, SEZ6L, SFRP4, COL22A1, RNASE2, HB). Based on these key genes, 79 EDCs with the potential to affect DCM were identified, among which 4 (3,4-dichloroaniline, fenitrothion, pyrene, and isoproturon) have not been previously associated with DCM. These findings establish a novel relationship between the EDCs mediated by key genes and the development of DCM. |
abstract_unstemmed |
Dilated cardiomyopathy (DCM) is a primary cause of heart failure (HF), with the incidence of HF increasing consistently in recent years. DCM pathogenesis involves a combination of inherited predisposition and environmental factors. Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with endogenous hormone action and are capable of targeting various organs, including the heart. However, the impact of these disruptors on heart disease through their effects on genes remains underexplored. In this study, we aimed to explore key DCM-related genes using machine learning (ML) and the construction of a predictive model. Using the Gene Expression Omnibus (GEO) database, we screened differentially expressed genes (DEGs) and performed enrichment analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to DCM. Through ML techniques combining maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) logistic regression, we identified key genes for predicting DCM (IL1RL1, SEZ6L, SFRP4, COL22A1, RNASE2, HB). Based on these key genes, 79 EDCs with the potential to affect DCM were identified, among which 4 (3,4-dichloroaniline, fenitrothion, pyrene, and isoproturon) have not been previously associated with DCM. These findings establish a novel relationship between the EDCs mediated by key genes and the development of DCM. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Identification of endocrine-disrupting chemicals targeting key DCM-associated genes via bioinformatics and machine learning |
url |
https://doi.org/10.1016/j.ecoenv.2024.116168 https://doaj.org/article/c55782f664dd4da1b9aecd7534fe8c34 http://www.sciencedirect.com/science/article/pii/S0147651324002434 https://doaj.org/toc/0147-6513 |
remote_bool |
true |
author2 |
Shuice Liu Xuefei Sun Liying Hao Qinghua Gao |
author2Str |
Shuice Liu Xuefei Sun Liying Hao Qinghua Gao |
ppnlink |
266018467 |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ecoenv.2024.116168 |
callnumber-a |
TD172-193.5 |
up_date |
2024-07-03T15:28:38.375Z |
_version_ |
1803572235077681152 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ095592164</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414132236.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecoenv.2024.116168</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ095592164</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc55782f664dd4da1b9aecd7534fe8c34</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD172-193.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shu Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identification of endocrine-disrupting chemicals targeting key DCM-associated genes via bioinformatics and machine learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dilated cardiomyopathy (DCM) is a primary cause of heart failure (HF), with the incidence of HF increasing consistently in recent years. DCM pathogenesis involves a combination of inherited predisposition and environmental factors. Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with endogenous hormone action and are capable of targeting various organs, including the heart. However, the impact of these disruptors on heart disease through their effects on genes remains underexplored. In this study, we aimed to explore key DCM-related genes using machine learning (ML) and the construction of a predictive model. Using the Gene Expression Omnibus (GEO) database, we screened differentially expressed genes (DEGs) and performed enrichment analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to DCM. Through ML techniques combining maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) logistic regression, we identified key genes for predicting DCM (IL1RL1, SEZ6L, SFRP4, COL22A1, RNASE2, HB). Based on these key genes, 79 EDCs with the potential to affect DCM were identified, among which 4 (3,4-dichloroaniline, fenitrothion, pyrene, and isoproturon) have not been previously associated with DCM. These findings establish a novel relationship between the EDCs mediated by key genes and the development of DCM.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dilated cardiomyopathy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Endocrine-disrupting chemicals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bioinformatics analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EDCs-genes-disease Interactions</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental pollution</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuice Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuefei Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liying Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qinghua Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecotoxicology and Environmental Safety</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">274(2024), Seite 116168-</subfield><subfield code="w">(DE-627)266018467</subfield><subfield code="w">(DE-600)1466969-9</subfield><subfield code="x">10902414</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:274</subfield><subfield code="g">year:2024</subfield><subfield code="g">pages:116168-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecoenv.2024.116168</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c55782f664dd4da1b9aecd7534fe8c34</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0147651324002434</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0147-6513</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">274</subfield><subfield code="j">2024</subfield><subfield code="h">116168-</subfield></datafield></record></collection>
|
score |
7.402272 |