Evaluation of mine water quality based on the PCA–PSO–BP model
To enhance the mining area's overall use of mine water in the arid area of Western China and mitigate the current water scarcity problem, this paper introduces an intelligent optimization algorithm and neural network for mine water quality evaluation and proposes a principal component analysis...
Ausführliche Beschreibung
Autor*in: |
Jiaqi Wang [verfasserIn] Yanli Huang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
particle swarm optimization (pso) |
---|
Übergeordnetes Werk: |
In: Journal of Water and Climate Change - IWA Publishing, 2021, 15(2024), 2, Seite 593-606 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2024 ; number:2 ; pages:593-606 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.2166/wcc.2023.604 |
---|
Katalog-ID: |
DOAJ09564587X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ09564587X | ||
003 | DE-627 | ||
005 | 20240413114930.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.2166/wcc.2023.604 |2 doi | |
035 | |a (DE-627)DOAJ09564587X | ||
035 | |a (DE-599)DOAJc56f48a54d9c441f8246dd98812bb2ed | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD1-1066 | |
050 | 0 | |a GE1-350 | |
100 | 0 | |a Jiaqi Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Evaluation of mine water quality based on the PCA–PSO–BP model |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a To enhance the mining area's overall use of mine water in the arid area of Western China and mitigate the current water scarcity problem, this paper introduces an intelligent optimization algorithm and neural network for mine water quality evaluation and proposes a principal component analysis (PCA)–particle swarm optimization (PSO)–back propagation (BP) mine water quality evaluation model. Firstly, the model uses PCA to identify the primary factors affecting mine water quality, then enhances the optimal weights and thresholds of the BP neural network based on the PSO algorithm, and the PCA–PSO–BP evaluation model with nine input layers, nine hidden layers, and one output layer is created. In addition, using the Shicaocun Mine as an example, the results demonstrate that the PCA–PSO–BP model has accurate mine water quality evaluation results, and the prediction accuracy reached 86.8255%. This exemplifies the PSO method's superiority to the BP neural network improvement. This study not only offers a novel theoretical framework for assessing and forecasting water quality in mining regions, but it also sets the stage for the possible broad use of state-of-the-art neural networks and optimization algorithms in the coal mining industry. HIGHLIGHTS Intelligent algorithms and neural networks are introduced into mine water quality evaluation.; Established a PCA–PSO–BP model for mine water quality evaluation.; Realized the accurate evaluation and reasonable prediction against the background of big data.; Provide reference for the in-depth research of optimization algorithms and neural networks in the field of water quality evaluation.; | ||
650 | 4 | |a bp neural network | |
650 | 4 | |a mine water quality evaluation | |
650 | 4 | |a particle swarm optimization (pso) | |
650 | 4 | |a principal component analysis (pca) | |
650 | 4 | |a pso–bp model | |
653 | 0 | |a Environmental technology. Sanitary engineering | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Yanli Huang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Water and Climate Change |d IWA Publishing, 2021 |g 15(2024), 2, Seite 593-606 |w (DE-627)62604703X |w (DE-600)2552186-X |x 24089354 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2024 |g number:2 |g pages:593-606 |
856 | 4 | 0 | |u https://doi.org/10.2166/wcc.2023.604 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c56f48a54d9c441f8246dd98812bb2ed |z kostenfrei |
856 | 4 | 0 | |u http://jwcc.iwaponline.com/content/15/2/593 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2040-2244 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2408-9354 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_4046 | ||
951 | |a AR | ||
952 | |d 15 |j 2024 |e 2 |h 593-606 |
author_variant |
j w jw y h yh |
---|---|
matchkey_str |
article:24089354:2024----::vlainfieaeqaiyaeot |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
TD |
publishDate |
2024 |
allfields |
10.2166/wcc.2023.604 doi (DE-627)DOAJ09564587X (DE-599)DOAJc56f48a54d9c441f8246dd98812bb2ed DE-627 ger DE-627 rakwb eng TD1-1066 GE1-350 Jiaqi Wang verfasserin aut Evaluation of mine water quality based on the PCA–PSO–BP model 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To enhance the mining area's overall use of mine water in the arid area of Western China and mitigate the current water scarcity problem, this paper introduces an intelligent optimization algorithm and neural network for mine water quality evaluation and proposes a principal component analysis (PCA)–particle swarm optimization (PSO)–back propagation (BP) mine water quality evaluation model. Firstly, the model uses PCA to identify the primary factors affecting mine water quality, then enhances the optimal weights and thresholds of the BP neural network based on the PSO algorithm, and the PCA–PSO–BP evaluation model with nine input layers, nine hidden layers, and one output layer is created. In addition, using the Shicaocun Mine as an example, the results demonstrate that the PCA–PSO–BP model has accurate mine water quality evaluation results, and the prediction accuracy reached 86.8255%. This exemplifies the PSO method's superiority to the BP neural network improvement. This study not only offers a novel theoretical framework for assessing and forecasting water quality in mining regions, but it also sets the stage for the possible broad use of state-of-the-art neural networks and optimization algorithms in the coal mining industry. HIGHLIGHTS Intelligent algorithms and neural networks are introduced into mine water quality evaluation.; Established a PCA–PSO–BP model for mine water quality evaluation.; Realized the accurate evaluation and reasonable prediction against the background of big data.; Provide reference for the in-depth research of optimization algorithms and neural networks in the field of water quality evaluation.; bp neural network mine water quality evaluation particle swarm optimization (pso) principal component analysis (pca) pso–bp model Environmental technology. Sanitary engineering Environmental sciences Yanli Huang verfasserin aut In Journal of Water and Climate Change IWA Publishing, 2021 15(2024), 2, Seite 593-606 (DE-627)62604703X (DE-600)2552186-X 24089354 nnns volume:15 year:2024 number:2 pages:593-606 https://doi.org/10.2166/wcc.2023.604 kostenfrei https://doaj.org/article/c56f48a54d9c441f8246dd98812bb2ed kostenfrei http://jwcc.iwaponline.com/content/15/2/593 kostenfrei https://doaj.org/toc/2040-2244 Journal toc kostenfrei https://doaj.org/toc/2408-9354 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_4046 AR 15 2024 2 593-606 |
spelling |
10.2166/wcc.2023.604 doi (DE-627)DOAJ09564587X (DE-599)DOAJc56f48a54d9c441f8246dd98812bb2ed DE-627 ger DE-627 rakwb eng TD1-1066 GE1-350 Jiaqi Wang verfasserin aut Evaluation of mine water quality based on the PCA–PSO–BP model 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To enhance the mining area's overall use of mine water in the arid area of Western China and mitigate the current water scarcity problem, this paper introduces an intelligent optimization algorithm and neural network for mine water quality evaluation and proposes a principal component analysis (PCA)–particle swarm optimization (PSO)–back propagation (BP) mine water quality evaluation model. Firstly, the model uses PCA to identify the primary factors affecting mine water quality, then enhances the optimal weights and thresholds of the BP neural network based on the PSO algorithm, and the PCA–PSO–BP evaluation model with nine input layers, nine hidden layers, and one output layer is created. In addition, using the Shicaocun Mine as an example, the results demonstrate that the PCA–PSO–BP model has accurate mine water quality evaluation results, and the prediction accuracy reached 86.8255%. This exemplifies the PSO method's superiority to the BP neural network improvement. This study not only offers a novel theoretical framework for assessing and forecasting water quality in mining regions, but it also sets the stage for the possible broad use of state-of-the-art neural networks and optimization algorithms in the coal mining industry. HIGHLIGHTS Intelligent algorithms and neural networks are introduced into mine water quality evaluation.; Established a PCA–PSO–BP model for mine water quality evaluation.; Realized the accurate evaluation and reasonable prediction against the background of big data.; Provide reference for the in-depth research of optimization algorithms and neural networks in the field of water quality evaluation.; bp neural network mine water quality evaluation particle swarm optimization (pso) principal component analysis (pca) pso–bp model Environmental technology. Sanitary engineering Environmental sciences Yanli Huang verfasserin aut In Journal of Water and Climate Change IWA Publishing, 2021 15(2024), 2, Seite 593-606 (DE-627)62604703X (DE-600)2552186-X 24089354 nnns volume:15 year:2024 number:2 pages:593-606 https://doi.org/10.2166/wcc.2023.604 kostenfrei https://doaj.org/article/c56f48a54d9c441f8246dd98812bb2ed kostenfrei http://jwcc.iwaponline.com/content/15/2/593 kostenfrei https://doaj.org/toc/2040-2244 Journal toc kostenfrei https://doaj.org/toc/2408-9354 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_4046 AR 15 2024 2 593-606 |
allfields_unstemmed |
10.2166/wcc.2023.604 doi (DE-627)DOAJ09564587X (DE-599)DOAJc56f48a54d9c441f8246dd98812bb2ed DE-627 ger DE-627 rakwb eng TD1-1066 GE1-350 Jiaqi Wang verfasserin aut Evaluation of mine water quality based on the PCA–PSO–BP model 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To enhance the mining area's overall use of mine water in the arid area of Western China and mitigate the current water scarcity problem, this paper introduces an intelligent optimization algorithm and neural network for mine water quality evaluation and proposes a principal component analysis (PCA)–particle swarm optimization (PSO)–back propagation (BP) mine water quality evaluation model. Firstly, the model uses PCA to identify the primary factors affecting mine water quality, then enhances the optimal weights and thresholds of the BP neural network based on the PSO algorithm, and the PCA–PSO–BP evaluation model with nine input layers, nine hidden layers, and one output layer is created. In addition, using the Shicaocun Mine as an example, the results demonstrate that the PCA–PSO–BP model has accurate mine water quality evaluation results, and the prediction accuracy reached 86.8255%. This exemplifies the PSO method's superiority to the BP neural network improvement. This study not only offers a novel theoretical framework for assessing and forecasting water quality in mining regions, but it also sets the stage for the possible broad use of state-of-the-art neural networks and optimization algorithms in the coal mining industry. HIGHLIGHTS Intelligent algorithms and neural networks are introduced into mine water quality evaluation.; Established a PCA–PSO–BP model for mine water quality evaluation.; Realized the accurate evaluation and reasonable prediction against the background of big data.; Provide reference for the in-depth research of optimization algorithms and neural networks in the field of water quality evaluation.; bp neural network mine water quality evaluation particle swarm optimization (pso) principal component analysis (pca) pso–bp model Environmental technology. Sanitary engineering Environmental sciences Yanli Huang verfasserin aut In Journal of Water and Climate Change IWA Publishing, 2021 15(2024), 2, Seite 593-606 (DE-627)62604703X (DE-600)2552186-X 24089354 nnns volume:15 year:2024 number:2 pages:593-606 https://doi.org/10.2166/wcc.2023.604 kostenfrei https://doaj.org/article/c56f48a54d9c441f8246dd98812bb2ed kostenfrei http://jwcc.iwaponline.com/content/15/2/593 kostenfrei https://doaj.org/toc/2040-2244 Journal toc kostenfrei https://doaj.org/toc/2408-9354 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_4046 AR 15 2024 2 593-606 |
allfieldsGer |
10.2166/wcc.2023.604 doi (DE-627)DOAJ09564587X (DE-599)DOAJc56f48a54d9c441f8246dd98812bb2ed DE-627 ger DE-627 rakwb eng TD1-1066 GE1-350 Jiaqi Wang verfasserin aut Evaluation of mine water quality based on the PCA–PSO–BP model 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To enhance the mining area's overall use of mine water in the arid area of Western China and mitigate the current water scarcity problem, this paper introduces an intelligent optimization algorithm and neural network for mine water quality evaluation and proposes a principal component analysis (PCA)–particle swarm optimization (PSO)–back propagation (BP) mine water quality evaluation model. Firstly, the model uses PCA to identify the primary factors affecting mine water quality, then enhances the optimal weights and thresholds of the BP neural network based on the PSO algorithm, and the PCA–PSO–BP evaluation model with nine input layers, nine hidden layers, and one output layer is created. In addition, using the Shicaocun Mine as an example, the results demonstrate that the PCA–PSO–BP model has accurate mine water quality evaluation results, and the prediction accuracy reached 86.8255%. This exemplifies the PSO method's superiority to the BP neural network improvement. This study not only offers a novel theoretical framework for assessing and forecasting water quality in mining regions, but it also sets the stage for the possible broad use of state-of-the-art neural networks and optimization algorithms in the coal mining industry. HIGHLIGHTS Intelligent algorithms and neural networks are introduced into mine water quality evaluation.; Established a PCA–PSO–BP model for mine water quality evaluation.; Realized the accurate evaluation and reasonable prediction against the background of big data.; Provide reference for the in-depth research of optimization algorithms and neural networks in the field of water quality evaluation.; bp neural network mine water quality evaluation particle swarm optimization (pso) principal component analysis (pca) pso–bp model Environmental technology. Sanitary engineering Environmental sciences Yanli Huang verfasserin aut In Journal of Water and Climate Change IWA Publishing, 2021 15(2024), 2, Seite 593-606 (DE-627)62604703X (DE-600)2552186-X 24089354 nnns volume:15 year:2024 number:2 pages:593-606 https://doi.org/10.2166/wcc.2023.604 kostenfrei https://doaj.org/article/c56f48a54d9c441f8246dd98812bb2ed kostenfrei http://jwcc.iwaponline.com/content/15/2/593 kostenfrei https://doaj.org/toc/2040-2244 Journal toc kostenfrei https://doaj.org/toc/2408-9354 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_4046 AR 15 2024 2 593-606 |
allfieldsSound |
10.2166/wcc.2023.604 doi (DE-627)DOAJ09564587X (DE-599)DOAJc56f48a54d9c441f8246dd98812bb2ed DE-627 ger DE-627 rakwb eng TD1-1066 GE1-350 Jiaqi Wang verfasserin aut Evaluation of mine water quality based on the PCA–PSO–BP model 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To enhance the mining area's overall use of mine water in the arid area of Western China and mitigate the current water scarcity problem, this paper introduces an intelligent optimization algorithm and neural network for mine water quality evaluation and proposes a principal component analysis (PCA)–particle swarm optimization (PSO)–back propagation (BP) mine water quality evaluation model. Firstly, the model uses PCA to identify the primary factors affecting mine water quality, then enhances the optimal weights and thresholds of the BP neural network based on the PSO algorithm, and the PCA–PSO–BP evaluation model with nine input layers, nine hidden layers, and one output layer is created. In addition, using the Shicaocun Mine as an example, the results demonstrate that the PCA–PSO–BP model has accurate mine water quality evaluation results, and the prediction accuracy reached 86.8255%. This exemplifies the PSO method's superiority to the BP neural network improvement. This study not only offers a novel theoretical framework for assessing and forecasting water quality in mining regions, but it also sets the stage for the possible broad use of state-of-the-art neural networks and optimization algorithms in the coal mining industry. HIGHLIGHTS Intelligent algorithms and neural networks are introduced into mine water quality evaluation.; Established a PCA–PSO–BP model for mine water quality evaluation.; Realized the accurate evaluation and reasonable prediction against the background of big data.; Provide reference for the in-depth research of optimization algorithms and neural networks in the field of water quality evaluation.; bp neural network mine water quality evaluation particle swarm optimization (pso) principal component analysis (pca) pso–bp model Environmental technology. Sanitary engineering Environmental sciences Yanli Huang verfasserin aut In Journal of Water and Climate Change IWA Publishing, 2021 15(2024), 2, Seite 593-606 (DE-627)62604703X (DE-600)2552186-X 24089354 nnns volume:15 year:2024 number:2 pages:593-606 https://doi.org/10.2166/wcc.2023.604 kostenfrei https://doaj.org/article/c56f48a54d9c441f8246dd98812bb2ed kostenfrei http://jwcc.iwaponline.com/content/15/2/593 kostenfrei https://doaj.org/toc/2040-2244 Journal toc kostenfrei https://doaj.org/toc/2408-9354 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_4046 AR 15 2024 2 593-606 |
language |
English |
source |
In Journal of Water and Climate Change 15(2024), 2, Seite 593-606 volume:15 year:2024 number:2 pages:593-606 |
sourceStr |
In Journal of Water and Climate Change 15(2024), 2, Seite 593-606 volume:15 year:2024 number:2 pages:593-606 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
bp neural network mine water quality evaluation particle swarm optimization (pso) principal component analysis (pca) pso–bp model Environmental technology. Sanitary engineering Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Journal of Water and Climate Change |
authorswithroles_txt_mv |
Jiaqi Wang @@aut@@ Yanli Huang @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
62604703X |
id |
DOAJ09564587X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ09564587X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413114930.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2166/wcc.2023.604</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09564587X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc56f48a54d9c441f8246dd98812bb2ed</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD1-1066</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiaqi Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of mine water quality based on the PCA–PSO–BP model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To enhance the mining area's overall use of mine water in the arid area of Western China and mitigate the current water scarcity problem, this paper introduces an intelligent optimization algorithm and neural network for mine water quality evaluation and proposes a principal component analysis (PCA)–particle swarm optimization (PSO)–back propagation (BP) mine water quality evaluation model. Firstly, the model uses PCA to identify the primary factors affecting mine water quality, then enhances the optimal weights and thresholds of the BP neural network based on the PSO algorithm, and the PCA–PSO–BP evaluation model with nine input layers, nine hidden layers, and one output layer is created. In addition, using the Shicaocun Mine as an example, the results demonstrate that the PCA–PSO–BP model has accurate mine water quality evaluation results, and the prediction accuracy reached 86.8255%. This exemplifies the PSO method's superiority to the BP neural network improvement. This study not only offers a novel theoretical framework for assessing and forecasting water quality in mining regions, but it also sets the stage for the possible broad use of state-of-the-art neural networks and optimization algorithms in the coal mining industry. HIGHLIGHTS Intelligent algorithms and neural networks are introduced into mine water quality evaluation.; Established a PCA–PSO–BP model for mine water quality evaluation.; Realized the accurate evaluation and reasonable prediction against the background of big data.; Provide reference for the in-depth research of optimization algorithms and neural networks in the field of water quality evaluation.;</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bp neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mine water quality evaluation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">particle swarm optimization (pso)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">principal component analysis (pca)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pso–bp model</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental technology. Sanitary engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanli Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Water and Climate Change</subfield><subfield code="d">IWA Publishing, 2021</subfield><subfield code="g">15(2024), 2, Seite 593-606</subfield><subfield code="w">(DE-627)62604703X</subfield><subfield code="w">(DE-600)2552186-X</subfield><subfield code="x">24089354</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:593-606</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2166/wcc.2023.604</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c56f48a54d9c441f8246dd98812bb2ed</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://jwcc.iwaponline.com/content/15/2/593</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2040-2244</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2408-9354</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2024</subfield><subfield code="e">2</subfield><subfield code="h">593-606</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jiaqi Wang |
spellingShingle |
Jiaqi Wang misc TD1-1066 misc GE1-350 misc bp neural network misc mine water quality evaluation misc particle swarm optimization (pso) misc principal component analysis (pca) misc pso–bp model misc Environmental technology. Sanitary engineering misc Environmental sciences Evaluation of mine water quality based on the PCA–PSO–BP model |
authorStr |
Jiaqi Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)62604703X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD1-1066 |
illustrated |
Not Illustrated |
issn |
24089354 |
topic_title |
TD1-1066 GE1-350 Evaluation of mine water quality based on the PCA–PSO–BP model bp neural network mine water quality evaluation particle swarm optimization (pso) principal component analysis (pca) pso–bp model |
topic |
misc TD1-1066 misc GE1-350 misc bp neural network misc mine water quality evaluation misc particle swarm optimization (pso) misc principal component analysis (pca) misc pso–bp model misc Environmental technology. Sanitary engineering misc Environmental sciences |
topic_unstemmed |
misc TD1-1066 misc GE1-350 misc bp neural network misc mine water quality evaluation misc particle swarm optimization (pso) misc principal component analysis (pca) misc pso–bp model misc Environmental technology. Sanitary engineering misc Environmental sciences |
topic_browse |
misc TD1-1066 misc GE1-350 misc bp neural network misc mine water quality evaluation misc particle swarm optimization (pso) misc principal component analysis (pca) misc pso–bp model misc Environmental technology. Sanitary engineering misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Water and Climate Change |
hierarchy_parent_id |
62604703X |
hierarchy_top_title |
Journal of Water and Climate Change |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)62604703X (DE-600)2552186-X |
title |
Evaluation of mine water quality based on the PCA–PSO–BP model |
ctrlnum |
(DE-627)DOAJ09564587X (DE-599)DOAJc56f48a54d9c441f8246dd98812bb2ed |
title_full |
Evaluation of mine water quality based on the PCA–PSO–BP model |
author_sort |
Jiaqi Wang |
journal |
Journal of Water and Climate Change |
journalStr |
Journal of Water and Climate Change |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
container_start_page |
593 |
author_browse |
Jiaqi Wang Yanli Huang |
container_volume |
15 |
class |
TD1-1066 GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Jiaqi Wang |
doi_str_mv |
10.2166/wcc.2023.604 |
author2-role |
verfasserin |
title_sort |
evaluation of mine water quality based on the pca–pso–bp model |
callnumber |
TD1-1066 |
title_auth |
Evaluation of mine water quality based on the PCA–PSO–BP model |
abstract |
To enhance the mining area's overall use of mine water in the arid area of Western China and mitigate the current water scarcity problem, this paper introduces an intelligent optimization algorithm and neural network for mine water quality evaluation and proposes a principal component analysis (PCA)–particle swarm optimization (PSO)–back propagation (BP) mine water quality evaluation model. Firstly, the model uses PCA to identify the primary factors affecting mine water quality, then enhances the optimal weights and thresholds of the BP neural network based on the PSO algorithm, and the PCA–PSO–BP evaluation model with nine input layers, nine hidden layers, and one output layer is created. In addition, using the Shicaocun Mine as an example, the results demonstrate that the PCA–PSO–BP model has accurate mine water quality evaluation results, and the prediction accuracy reached 86.8255%. This exemplifies the PSO method's superiority to the BP neural network improvement. This study not only offers a novel theoretical framework for assessing and forecasting water quality in mining regions, but it also sets the stage for the possible broad use of state-of-the-art neural networks and optimization algorithms in the coal mining industry. HIGHLIGHTS Intelligent algorithms and neural networks are introduced into mine water quality evaluation.; Established a PCA–PSO–BP model for mine water quality evaluation.; Realized the accurate evaluation and reasonable prediction against the background of big data.; Provide reference for the in-depth research of optimization algorithms and neural networks in the field of water quality evaluation.; |
abstractGer |
To enhance the mining area's overall use of mine water in the arid area of Western China and mitigate the current water scarcity problem, this paper introduces an intelligent optimization algorithm and neural network for mine water quality evaluation and proposes a principal component analysis (PCA)–particle swarm optimization (PSO)–back propagation (BP) mine water quality evaluation model. Firstly, the model uses PCA to identify the primary factors affecting mine water quality, then enhances the optimal weights and thresholds of the BP neural network based on the PSO algorithm, and the PCA–PSO–BP evaluation model with nine input layers, nine hidden layers, and one output layer is created. In addition, using the Shicaocun Mine as an example, the results demonstrate that the PCA–PSO–BP model has accurate mine water quality evaluation results, and the prediction accuracy reached 86.8255%. This exemplifies the PSO method's superiority to the BP neural network improvement. This study not only offers a novel theoretical framework for assessing and forecasting water quality in mining regions, but it also sets the stage for the possible broad use of state-of-the-art neural networks and optimization algorithms in the coal mining industry. HIGHLIGHTS Intelligent algorithms and neural networks are introduced into mine water quality evaluation.; Established a PCA–PSO–BP model for mine water quality evaluation.; Realized the accurate evaluation and reasonable prediction against the background of big data.; Provide reference for the in-depth research of optimization algorithms and neural networks in the field of water quality evaluation.; |
abstract_unstemmed |
To enhance the mining area's overall use of mine water in the arid area of Western China and mitigate the current water scarcity problem, this paper introduces an intelligent optimization algorithm and neural network for mine water quality evaluation and proposes a principal component analysis (PCA)–particle swarm optimization (PSO)–back propagation (BP) mine water quality evaluation model. Firstly, the model uses PCA to identify the primary factors affecting mine water quality, then enhances the optimal weights and thresholds of the BP neural network based on the PSO algorithm, and the PCA–PSO–BP evaluation model with nine input layers, nine hidden layers, and one output layer is created. In addition, using the Shicaocun Mine as an example, the results demonstrate that the PCA–PSO–BP model has accurate mine water quality evaluation results, and the prediction accuracy reached 86.8255%. This exemplifies the PSO method's superiority to the BP neural network improvement. This study not only offers a novel theoretical framework for assessing and forecasting water quality in mining regions, but it also sets the stage for the possible broad use of state-of-the-art neural networks and optimization algorithms in the coal mining industry. HIGHLIGHTS Intelligent algorithms and neural networks are introduced into mine water quality evaluation.; Established a PCA–PSO–BP model for mine water quality evaluation.; Realized the accurate evaluation and reasonable prediction against the background of big data.; Provide reference for the in-depth research of optimization algorithms and neural networks in the field of water quality evaluation.; |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_4046 |
container_issue |
2 |
title_short |
Evaluation of mine water quality based on the PCA–PSO–BP model |
url |
https://doi.org/10.2166/wcc.2023.604 https://doaj.org/article/c56f48a54d9c441f8246dd98812bb2ed http://jwcc.iwaponline.com/content/15/2/593 https://doaj.org/toc/2040-2244 https://doaj.org/toc/2408-9354 |
remote_bool |
true |
author2 |
Yanli Huang |
author2Str |
Yanli Huang |
ppnlink |
62604703X |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.2166/wcc.2023.604 |
callnumber-a |
TD1-1066 |
up_date |
2024-07-03T15:45:14.814Z |
_version_ |
1803573279922847744 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ09564587X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413114930.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2166/wcc.2023.604</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09564587X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc56f48a54d9c441f8246dd98812bb2ed</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD1-1066</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiaqi Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of mine water quality based on the PCA–PSO–BP model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To enhance the mining area's overall use of mine water in the arid area of Western China and mitigate the current water scarcity problem, this paper introduces an intelligent optimization algorithm and neural network for mine water quality evaluation and proposes a principal component analysis (PCA)–particle swarm optimization (PSO)–back propagation (BP) mine water quality evaluation model. Firstly, the model uses PCA to identify the primary factors affecting mine water quality, then enhances the optimal weights and thresholds of the BP neural network based on the PSO algorithm, and the PCA–PSO–BP evaluation model with nine input layers, nine hidden layers, and one output layer is created. In addition, using the Shicaocun Mine as an example, the results demonstrate that the PCA–PSO–BP model has accurate mine water quality evaluation results, and the prediction accuracy reached 86.8255%. This exemplifies the PSO method's superiority to the BP neural network improvement. This study not only offers a novel theoretical framework for assessing and forecasting water quality in mining regions, but it also sets the stage for the possible broad use of state-of-the-art neural networks and optimization algorithms in the coal mining industry. HIGHLIGHTS Intelligent algorithms and neural networks are introduced into mine water quality evaluation.; Established a PCA–PSO–BP model for mine water quality evaluation.; Realized the accurate evaluation and reasonable prediction against the background of big data.; Provide reference for the in-depth research of optimization algorithms and neural networks in the field of water quality evaluation.;</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bp neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mine water quality evaluation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">particle swarm optimization (pso)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">principal component analysis (pca)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pso–bp model</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental technology. Sanitary engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanli Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Water and Climate Change</subfield><subfield code="d">IWA Publishing, 2021</subfield><subfield code="g">15(2024), 2, Seite 593-606</subfield><subfield code="w">(DE-627)62604703X</subfield><subfield code="w">(DE-600)2552186-X</subfield><subfield code="x">24089354</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:593-606</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2166/wcc.2023.604</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c56f48a54d9c441f8246dd98812bb2ed</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://jwcc.iwaponline.com/content/15/2/593</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2040-2244</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2408-9354</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2024</subfield><subfield code="e">2</subfield><subfield code="h">593-606</subfield></datafield></record></collection>
|
score |
7.400528 |