Designing and Fabrication of High Frequency Ultrawide Band Passive Phase Shifters with Single Layer Microstrip Structure and Unequal Source and Load Impedances
In this paper, a method is presented to design and implement ultra-wideband phase shifters, in frequency ranges higher than 10 GHz, with fractional bandwidth near a hundred percent. The phase shifter is constructed from microstrip transmission lines and short circuit stubs. In comparison with conven...
Ausführliche Beschreibung
Autor*in: |
Habibollah Zolfkhani [verfasserIn] Alireza Sharifi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: International Journal of Industrial Electronics, Control and Optimization - University of Sistan and Baluchestan, 2020, 7(2024), 1, Seite 73-84 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2024 ; number:1 ; pages:73-84 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.22111/ieco.2024.8241 |
---|
Katalog-ID: |
DOAJ095755756 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ095755756 | ||
003 | DE-627 | ||
005 | 20240413121530.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.22111/ieco.2024.8241 |2 doi | |
035 | |a (DE-627)DOAJ095755756 | ||
035 | |a (DE-599)DOAJaa7871ee88c948c089622eca18343b2b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK7800-8360 | |
050 | 0 | |a HD2321-4730.9 | |
100 | 0 | |a Habibollah Zolfkhani |e verfasserin |4 aut | |
245 | 1 | 0 | |a Designing and Fabrication of High Frequency Ultrawide Band Passive Phase Shifters with Single Layer Microstrip Structure and Unequal Source and Load Impedances |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, a method is presented to design and implement ultra-wideband phase shifters, in frequency ranges higher than 10 GHz, with fractional bandwidth near a hundred percent. The phase shifter is constructed from microstrip transmission lines and short circuit stubs. In comparison with conventional phase shifters which are composed of microstrip coupled lines and multilayer structures, the proposed phase shifter has advantages from the implementation and fabrication viewpoint. The design and optimization method is in such a way that arbitrary phase shift, source and load impedances may be considered in the design. To optimize the circuit dimension, a computer code is written, and two design examples are considered. The computer code is based on closed form equations for microstrip transmission lines and available circuit models for it and utilizes microwave network equations. Its results are then improved with electromagnetic full-wave packages to consider the parasitic effects of microstrip T-junctions. Two design cases are included, in the first design, the case of a 45 degrees phase shifter with a standard 50 ohms source and load impedances is investigated. In the second design case, the case of a 90 degrees phase shifter with 50 ohms input impedances and 75 ohm non-standard output impedances is considered. By observing the full-wave simulation results as well as the fabrication and measurement results in these examples, it is clear that the design goals are highly satisfied by this method. | ||
650 | 4 | |a transmission line | |
650 | 4 | |a scattering parameters | |
650 | 4 | |a theoretical analysis | |
653 | 0 | |a Electronics | |
653 | 0 | |a Industry | |
700 | 0 | |a Alireza Sharifi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t International Journal of Industrial Electronics, Control and Optimization |d University of Sistan and Baluchestan, 2020 |g 7(2024), 1, Seite 73-84 |w (DE-627)1747393851 |x 26453568 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2024 |g number:1 |g pages:73-84 |
856 | 4 | 0 | |u https://doi.org/10.22111/ieco.2024.8241 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/aa7871ee88c948c089622eca18343b2b |z kostenfrei |
856 | 4 | 0 | |u https://ieco.usb.ac.ir/article_8241_774657afc46ec1c73534046f48eb15f9.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2645-3517 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2645-3568 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2024 |e 1 |h 73-84 |
author_variant |
h z hz a s as |
---|---|
matchkey_str |
article:26453568:2024----::einnadarctoohgfeunylrwdbnpsiehssitrwtsnllyrirsrptut |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
TK |
publishDate |
2024 |
allfields |
10.22111/ieco.2024.8241 doi (DE-627)DOAJ095755756 (DE-599)DOAJaa7871ee88c948c089622eca18343b2b DE-627 ger DE-627 rakwb eng TK7800-8360 HD2321-4730.9 Habibollah Zolfkhani verfasserin aut Designing and Fabrication of High Frequency Ultrawide Band Passive Phase Shifters with Single Layer Microstrip Structure and Unequal Source and Load Impedances 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a method is presented to design and implement ultra-wideband phase shifters, in frequency ranges higher than 10 GHz, with fractional bandwidth near a hundred percent. The phase shifter is constructed from microstrip transmission lines and short circuit stubs. In comparison with conventional phase shifters which are composed of microstrip coupled lines and multilayer structures, the proposed phase shifter has advantages from the implementation and fabrication viewpoint. The design and optimization method is in such a way that arbitrary phase shift, source and load impedances may be considered in the design. To optimize the circuit dimension, a computer code is written, and two design examples are considered. The computer code is based on closed form equations for microstrip transmission lines and available circuit models for it and utilizes microwave network equations. Its results are then improved with electromagnetic full-wave packages to consider the parasitic effects of microstrip T-junctions. Two design cases are included, in the first design, the case of a 45 degrees phase shifter with a standard 50 ohms source and load impedances is investigated. In the second design case, the case of a 90 degrees phase shifter with 50 ohms input impedances and 75 ohm non-standard output impedances is considered. By observing the full-wave simulation results as well as the fabrication and measurement results in these examples, it is clear that the design goals are highly satisfied by this method. transmission line scattering parameters theoretical analysis Electronics Industry Alireza Sharifi verfasserin aut In International Journal of Industrial Electronics, Control and Optimization University of Sistan and Baluchestan, 2020 7(2024), 1, Seite 73-84 (DE-627)1747393851 26453568 nnns volume:7 year:2024 number:1 pages:73-84 https://doi.org/10.22111/ieco.2024.8241 kostenfrei https://doaj.org/article/aa7871ee88c948c089622eca18343b2b kostenfrei https://ieco.usb.ac.ir/article_8241_774657afc46ec1c73534046f48eb15f9.pdf kostenfrei https://doaj.org/toc/2645-3517 Journal toc kostenfrei https://doaj.org/toc/2645-3568 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2024 1 73-84 |
spelling |
10.22111/ieco.2024.8241 doi (DE-627)DOAJ095755756 (DE-599)DOAJaa7871ee88c948c089622eca18343b2b DE-627 ger DE-627 rakwb eng TK7800-8360 HD2321-4730.9 Habibollah Zolfkhani verfasserin aut Designing and Fabrication of High Frequency Ultrawide Band Passive Phase Shifters with Single Layer Microstrip Structure and Unequal Source and Load Impedances 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a method is presented to design and implement ultra-wideband phase shifters, in frequency ranges higher than 10 GHz, with fractional bandwidth near a hundred percent. The phase shifter is constructed from microstrip transmission lines and short circuit stubs. In comparison with conventional phase shifters which are composed of microstrip coupled lines and multilayer structures, the proposed phase shifter has advantages from the implementation and fabrication viewpoint. The design and optimization method is in such a way that arbitrary phase shift, source and load impedances may be considered in the design. To optimize the circuit dimension, a computer code is written, and two design examples are considered. The computer code is based on closed form equations for microstrip transmission lines and available circuit models for it and utilizes microwave network equations. Its results are then improved with electromagnetic full-wave packages to consider the parasitic effects of microstrip T-junctions. Two design cases are included, in the first design, the case of a 45 degrees phase shifter with a standard 50 ohms source and load impedances is investigated. In the second design case, the case of a 90 degrees phase shifter with 50 ohms input impedances and 75 ohm non-standard output impedances is considered. By observing the full-wave simulation results as well as the fabrication and measurement results in these examples, it is clear that the design goals are highly satisfied by this method. transmission line scattering parameters theoretical analysis Electronics Industry Alireza Sharifi verfasserin aut In International Journal of Industrial Electronics, Control and Optimization University of Sistan and Baluchestan, 2020 7(2024), 1, Seite 73-84 (DE-627)1747393851 26453568 nnns volume:7 year:2024 number:1 pages:73-84 https://doi.org/10.22111/ieco.2024.8241 kostenfrei https://doaj.org/article/aa7871ee88c948c089622eca18343b2b kostenfrei https://ieco.usb.ac.ir/article_8241_774657afc46ec1c73534046f48eb15f9.pdf kostenfrei https://doaj.org/toc/2645-3517 Journal toc kostenfrei https://doaj.org/toc/2645-3568 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2024 1 73-84 |
allfields_unstemmed |
10.22111/ieco.2024.8241 doi (DE-627)DOAJ095755756 (DE-599)DOAJaa7871ee88c948c089622eca18343b2b DE-627 ger DE-627 rakwb eng TK7800-8360 HD2321-4730.9 Habibollah Zolfkhani verfasserin aut Designing and Fabrication of High Frequency Ultrawide Band Passive Phase Shifters with Single Layer Microstrip Structure and Unequal Source and Load Impedances 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a method is presented to design and implement ultra-wideband phase shifters, in frequency ranges higher than 10 GHz, with fractional bandwidth near a hundred percent. The phase shifter is constructed from microstrip transmission lines and short circuit stubs. In comparison with conventional phase shifters which are composed of microstrip coupled lines and multilayer structures, the proposed phase shifter has advantages from the implementation and fabrication viewpoint. The design and optimization method is in such a way that arbitrary phase shift, source and load impedances may be considered in the design. To optimize the circuit dimension, a computer code is written, and two design examples are considered. The computer code is based on closed form equations for microstrip transmission lines and available circuit models for it and utilizes microwave network equations. Its results are then improved with electromagnetic full-wave packages to consider the parasitic effects of microstrip T-junctions. Two design cases are included, in the first design, the case of a 45 degrees phase shifter with a standard 50 ohms source and load impedances is investigated. In the second design case, the case of a 90 degrees phase shifter with 50 ohms input impedances and 75 ohm non-standard output impedances is considered. By observing the full-wave simulation results as well as the fabrication and measurement results in these examples, it is clear that the design goals are highly satisfied by this method. transmission line scattering parameters theoretical analysis Electronics Industry Alireza Sharifi verfasserin aut In International Journal of Industrial Electronics, Control and Optimization University of Sistan and Baluchestan, 2020 7(2024), 1, Seite 73-84 (DE-627)1747393851 26453568 nnns volume:7 year:2024 number:1 pages:73-84 https://doi.org/10.22111/ieco.2024.8241 kostenfrei https://doaj.org/article/aa7871ee88c948c089622eca18343b2b kostenfrei https://ieco.usb.ac.ir/article_8241_774657afc46ec1c73534046f48eb15f9.pdf kostenfrei https://doaj.org/toc/2645-3517 Journal toc kostenfrei https://doaj.org/toc/2645-3568 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2024 1 73-84 |
allfieldsGer |
10.22111/ieco.2024.8241 doi (DE-627)DOAJ095755756 (DE-599)DOAJaa7871ee88c948c089622eca18343b2b DE-627 ger DE-627 rakwb eng TK7800-8360 HD2321-4730.9 Habibollah Zolfkhani verfasserin aut Designing and Fabrication of High Frequency Ultrawide Band Passive Phase Shifters with Single Layer Microstrip Structure and Unequal Source and Load Impedances 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a method is presented to design and implement ultra-wideband phase shifters, in frequency ranges higher than 10 GHz, with fractional bandwidth near a hundred percent. The phase shifter is constructed from microstrip transmission lines and short circuit stubs. In comparison with conventional phase shifters which are composed of microstrip coupled lines and multilayer structures, the proposed phase shifter has advantages from the implementation and fabrication viewpoint. The design and optimization method is in such a way that arbitrary phase shift, source and load impedances may be considered in the design. To optimize the circuit dimension, a computer code is written, and two design examples are considered. The computer code is based on closed form equations for microstrip transmission lines and available circuit models for it and utilizes microwave network equations. Its results are then improved with electromagnetic full-wave packages to consider the parasitic effects of microstrip T-junctions. Two design cases are included, in the first design, the case of a 45 degrees phase shifter with a standard 50 ohms source and load impedances is investigated. In the second design case, the case of a 90 degrees phase shifter with 50 ohms input impedances and 75 ohm non-standard output impedances is considered. By observing the full-wave simulation results as well as the fabrication and measurement results in these examples, it is clear that the design goals are highly satisfied by this method. transmission line scattering parameters theoretical analysis Electronics Industry Alireza Sharifi verfasserin aut In International Journal of Industrial Electronics, Control and Optimization University of Sistan and Baluchestan, 2020 7(2024), 1, Seite 73-84 (DE-627)1747393851 26453568 nnns volume:7 year:2024 number:1 pages:73-84 https://doi.org/10.22111/ieco.2024.8241 kostenfrei https://doaj.org/article/aa7871ee88c948c089622eca18343b2b kostenfrei https://ieco.usb.ac.ir/article_8241_774657afc46ec1c73534046f48eb15f9.pdf kostenfrei https://doaj.org/toc/2645-3517 Journal toc kostenfrei https://doaj.org/toc/2645-3568 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2024 1 73-84 |
allfieldsSound |
10.22111/ieco.2024.8241 doi (DE-627)DOAJ095755756 (DE-599)DOAJaa7871ee88c948c089622eca18343b2b DE-627 ger DE-627 rakwb eng TK7800-8360 HD2321-4730.9 Habibollah Zolfkhani verfasserin aut Designing and Fabrication of High Frequency Ultrawide Band Passive Phase Shifters with Single Layer Microstrip Structure and Unequal Source and Load Impedances 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a method is presented to design and implement ultra-wideband phase shifters, in frequency ranges higher than 10 GHz, with fractional bandwidth near a hundred percent. The phase shifter is constructed from microstrip transmission lines and short circuit stubs. In comparison with conventional phase shifters which are composed of microstrip coupled lines and multilayer structures, the proposed phase shifter has advantages from the implementation and fabrication viewpoint. The design and optimization method is in such a way that arbitrary phase shift, source and load impedances may be considered in the design. To optimize the circuit dimension, a computer code is written, and two design examples are considered. The computer code is based on closed form equations for microstrip transmission lines and available circuit models for it and utilizes microwave network equations. Its results are then improved with electromagnetic full-wave packages to consider the parasitic effects of microstrip T-junctions. Two design cases are included, in the first design, the case of a 45 degrees phase shifter with a standard 50 ohms source and load impedances is investigated. In the second design case, the case of a 90 degrees phase shifter with 50 ohms input impedances and 75 ohm non-standard output impedances is considered. By observing the full-wave simulation results as well as the fabrication and measurement results in these examples, it is clear that the design goals are highly satisfied by this method. transmission line scattering parameters theoretical analysis Electronics Industry Alireza Sharifi verfasserin aut In International Journal of Industrial Electronics, Control and Optimization University of Sistan and Baluchestan, 2020 7(2024), 1, Seite 73-84 (DE-627)1747393851 26453568 nnns volume:7 year:2024 number:1 pages:73-84 https://doi.org/10.22111/ieco.2024.8241 kostenfrei https://doaj.org/article/aa7871ee88c948c089622eca18343b2b kostenfrei https://ieco.usb.ac.ir/article_8241_774657afc46ec1c73534046f48eb15f9.pdf kostenfrei https://doaj.org/toc/2645-3517 Journal toc kostenfrei https://doaj.org/toc/2645-3568 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2024 1 73-84 |
language |
English |
source |
In International Journal of Industrial Electronics, Control and Optimization 7(2024), 1, Seite 73-84 volume:7 year:2024 number:1 pages:73-84 |
sourceStr |
In International Journal of Industrial Electronics, Control and Optimization 7(2024), 1, Seite 73-84 volume:7 year:2024 number:1 pages:73-84 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
transmission line scattering parameters theoretical analysis Electronics Industry |
isfreeaccess_bool |
true |
container_title |
International Journal of Industrial Electronics, Control and Optimization |
authorswithroles_txt_mv |
Habibollah Zolfkhani @@aut@@ Alireza Sharifi @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
1747393851 |
id |
DOAJ095755756 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ095755756</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413121530.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.22111/ieco.2024.8241</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ095755756</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJaa7871ee88c948c089622eca18343b2b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HD2321-4730.9</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Habibollah Zolfkhani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Designing and Fabrication of High Frequency Ultrawide Band Passive Phase Shifters with Single Layer Microstrip Structure and Unequal Source and Load Impedances</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a method is presented to design and implement ultra-wideband phase shifters, in frequency ranges higher than 10 GHz, with fractional bandwidth near a hundred percent. The phase shifter is constructed from microstrip transmission lines and short circuit stubs. In comparison with conventional phase shifters which are composed of microstrip coupled lines and multilayer structures, the proposed phase shifter has advantages from the implementation and fabrication viewpoint. The design and optimization method is in such a way that arbitrary phase shift, source and load impedances may be considered in the design. To optimize the circuit dimension, a computer code is written, and two design examples are considered. The computer code is based on closed form equations for microstrip transmission lines and available circuit models for it and utilizes microwave network equations. Its results are then improved with electromagnetic full-wave packages to consider the parasitic effects of microstrip T-junctions. Two design cases are included, in the first design, the case of a 45 degrees phase shifter with a standard 50 ohms source and load impedances is investigated. In the second design case, the case of a 90 degrees phase shifter with 50 ohms input impedances and 75 ohm non-standard output impedances is considered. By observing the full-wave simulation results as well as the fabrication and measurement results in these examples, it is clear that the design goals are highly satisfied by this method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transmission line</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">scattering parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">theoretical analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Industry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alireza Sharifi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Industrial Electronics, Control and Optimization</subfield><subfield code="d">University of Sistan and Baluchestan, 2020</subfield><subfield code="g">7(2024), 1, Seite 73-84</subfield><subfield code="w">(DE-627)1747393851</subfield><subfield code="x">26453568</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:73-84</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.22111/ieco.2024.8241</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/aa7871ee88c948c089622eca18343b2b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieco.usb.ac.ir/article_8241_774657afc46ec1c73534046f48eb15f9.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2645-3517</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2645-3568</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="h">73-84</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Habibollah Zolfkhani |
spellingShingle |
Habibollah Zolfkhani misc TK7800-8360 misc HD2321-4730.9 misc transmission line misc scattering parameters misc theoretical analysis misc Electronics misc Industry Designing and Fabrication of High Frequency Ultrawide Band Passive Phase Shifters with Single Layer Microstrip Structure and Unequal Source and Load Impedances |
authorStr |
Habibollah Zolfkhani |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1747393851 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK7800-8360 |
illustrated |
Not Illustrated |
issn |
26453568 |
topic_title |
TK7800-8360 HD2321-4730.9 Designing and Fabrication of High Frequency Ultrawide Band Passive Phase Shifters with Single Layer Microstrip Structure and Unequal Source and Load Impedances transmission line scattering parameters theoretical analysis |
topic |
misc TK7800-8360 misc HD2321-4730.9 misc transmission line misc scattering parameters misc theoretical analysis misc Electronics misc Industry |
topic_unstemmed |
misc TK7800-8360 misc HD2321-4730.9 misc transmission line misc scattering parameters misc theoretical analysis misc Electronics misc Industry |
topic_browse |
misc TK7800-8360 misc HD2321-4730.9 misc transmission line misc scattering parameters misc theoretical analysis misc Electronics misc Industry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Industrial Electronics, Control and Optimization |
hierarchy_parent_id |
1747393851 |
hierarchy_top_title |
International Journal of Industrial Electronics, Control and Optimization |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1747393851 |
title |
Designing and Fabrication of High Frequency Ultrawide Band Passive Phase Shifters with Single Layer Microstrip Structure and Unequal Source and Load Impedances |
ctrlnum |
(DE-627)DOAJ095755756 (DE-599)DOAJaa7871ee88c948c089622eca18343b2b |
title_full |
Designing and Fabrication of High Frequency Ultrawide Band Passive Phase Shifters with Single Layer Microstrip Structure and Unequal Source and Load Impedances |
author_sort |
Habibollah Zolfkhani |
journal |
International Journal of Industrial Electronics, Control and Optimization |
journalStr |
International Journal of Industrial Electronics, Control and Optimization |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
container_start_page |
73 |
author_browse |
Habibollah Zolfkhani Alireza Sharifi |
container_volume |
7 |
class |
TK7800-8360 HD2321-4730.9 |
format_se |
Elektronische Aufsätze |
author-letter |
Habibollah Zolfkhani |
doi_str_mv |
10.22111/ieco.2024.8241 |
author2-role |
verfasserin |
title_sort |
designing and fabrication of high frequency ultrawide band passive phase shifters with single layer microstrip structure and unequal source and load impedances |
callnumber |
TK7800-8360 |
title_auth |
Designing and Fabrication of High Frequency Ultrawide Band Passive Phase Shifters with Single Layer Microstrip Structure and Unequal Source and Load Impedances |
abstract |
In this paper, a method is presented to design and implement ultra-wideband phase shifters, in frequency ranges higher than 10 GHz, with fractional bandwidth near a hundred percent. The phase shifter is constructed from microstrip transmission lines and short circuit stubs. In comparison with conventional phase shifters which are composed of microstrip coupled lines and multilayer structures, the proposed phase shifter has advantages from the implementation and fabrication viewpoint. The design and optimization method is in such a way that arbitrary phase shift, source and load impedances may be considered in the design. To optimize the circuit dimension, a computer code is written, and two design examples are considered. The computer code is based on closed form equations for microstrip transmission lines and available circuit models for it and utilizes microwave network equations. Its results are then improved with electromagnetic full-wave packages to consider the parasitic effects of microstrip T-junctions. Two design cases are included, in the first design, the case of a 45 degrees phase shifter with a standard 50 ohms source and load impedances is investigated. In the second design case, the case of a 90 degrees phase shifter with 50 ohms input impedances and 75 ohm non-standard output impedances is considered. By observing the full-wave simulation results as well as the fabrication and measurement results in these examples, it is clear that the design goals are highly satisfied by this method. |
abstractGer |
In this paper, a method is presented to design and implement ultra-wideband phase shifters, in frequency ranges higher than 10 GHz, with fractional bandwidth near a hundred percent. The phase shifter is constructed from microstrip transmission lines and short circuit stubs. In comparison with conventional phase shifters which are composed of microstrip coupled lines and multilayer structures, the proposed phase shifter has advantages from the implementation and fabrication viewpoint. The design and optimization method is in such a way that arbitrary phase shift, source and load impedances may be considered in the design. To optimize the circuit dimension, a computer code is written, and two design examples are considered. The computer code is based on closed form equations for microstrip transmission lines and available circuit models for it and utilizes microwave network equations. Its results are then improved with electromagnetic full-wave packages to consider the parasitic effects of microstrip T-junctions. Two design cases are included, in the first design, the case of a 45 degrees phase shifter with a standard 50 ohms source and load impedances is investigated. In the second design case, the case of a 90 degrees phase shifter with 50 ohms input impedances and 75 ohm non-standard output impedances is considered. By observing the full-wave simulation results as well as the fabrication and measurement results in these examples, it is clear that the design goals are highly satisfied by this method. |
abstract_unstemmed |
In this paper, a method is presented to design and implement ultra-wideband phase shifters, in frequency ranges higher than 10 GHz, with fractional bandwidth near a hundred percent. The phase shifter is constructed from microstrip transmission lines and short circuit stubs. In comparison with conventional phase shifters which are composed of microstrip coupled lines and multilayer structures, the proposed phase shifter has advantages from the implementation and fabrication viewpoint. The design and optimization method is in such a way that arbitrary phase shift, source and load impedances may be considered in the design. To optimize the circuit dimension, a computer code is written, and two design examples are considered. The computer code is based on closed form equations for microstrip transmission lines and available circuit models for it and utilizes microwave network equations. Its results are then improved with electromagnetic full-wave packages to consider the parasitic effects of microstrip T-junctions. Two design cases are included, in the first design, the case of a 45 degrees phase shifter with a standard 50 ohms source and load impedances is investigated. In the second design case, the case of a 90 degrees phase shifter with 50 ohms input impedances and 75 ohm non-standard output impedances is considered. By observing the full-wave simulation results as well as the fabrication and measurement results in these examples, it is clear that the design goals are highly satisfied by this method. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Designing and Fabrication of High Frequency Ultrawide Band Passive Phase Shifters with Single Layer Microstrip Structure and Unequal Source and Load Impedances |
url |
https://doi.org/10.22111/ieco.2024.8241 https://doaj.org/article/aa7871ee88c948c089622eca18343b2b https://ieco.usb.ac.ir/article_8241_774657afc46ec1c73534046f48eb15f9.pdf https://doaj.org/toc/2645-3517 https://doaj.org/toc/2645-3568 |
remote_bool |
true |
author2 |
Alireza Sharifi |
author2Str |
Alireza Sharifi |
ppnlink |
1747393851 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.22111/ieco.2024.8241 |
callnumber-a |
TK7800-8360 |
up_date |
2024-07-03T16:25:34.513Z |
_version_ |
1803575817159049217 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ095755756</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413121530.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.22111/ieco.2024.8241</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ095755756</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJaa7871ee88c948c089622eca18343b2b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HD2321-4730.9</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Habibollah Zolfkhani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Designing and Fabrication of High Frequency Ultrawide Band Passive Phase Shifters with Single Layer Microstrip Structure and Unequal Source and Load Impedances</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a method is presented to design and implement ultra-wideband phase shifters, in frequency ranges higher than 10 GHz, with fractional bandwidth near a hundred percent. The phase shifter is constructed from microstrip transmission lines and short circuit stubs. In comparison with conventional phase shifters which are composed of microstrip coupled lines and multilayer structures, the proposed phase shifter has advantages from the implementation and fabrication viewpoint. The design and optimization method is in such a way that arbitrary phase shift, source and load impedances may be considered in the design. To optimize the circuit dimension, a computer code is written, and two design examples are considered. The computer code is based on closed form equations for microstrip transmission lines and available circuit models for it and utilizes microwave network equations. Its results are then improved with electromagnetic full-wave packages to consider the parasitic effects of microstrip T-junctions. Two design cases are included, in the first design, the case of a 45 degrees phase shifter with a standard 50 ohms source and load impedances is investigated. In the second design case, the case of a 90 degrees phase shifter with 50 ohms input impedances and 75 ohm non-standard output impedances is considered. By observing the full-wave simulation results as well as the fabrication and measurement results in these examples, it is clear that the design goals are highly satisfied by this method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transmission line</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">scattering parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">theoretical analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Industry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alireza Sharifi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Industrial Electronics, Control and Optimization</subfield><subfield code="d">University of Sistan and Baluchestan, 2020</subfield><subfield code="g">7(2024), 1, Seite 73-84</subfield><subfield code="w">(DE-627)1747393851</subfield><subfield code="x">26453568</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:73-84</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.22111/ieco.2024.8241</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/aa7871ee88c948c089622eca18343b2b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieco.usb.ac.ir/article_8241_774657afc46ec1c73534046f48eb15f9.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2645-3517</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2645-3568</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="h">73-84</subfield></datafield></record></collection>
|
score |
7.401717 |