Predicting the Behavior of Concrete Dams Using Artificial Neural Networks (Case study of Dez Dam)
Large dams store a significant amount of water behind them. Therefore, their safety and stability control have a special place. Changes in temperature and hydrostatic pressure are the most important factors that affect the dam structure; And will cause shifts in the crown of the dam upstream and dow...
Ausführliche Beschreibung
Autor*in: |
Hosein Naderpour [verfasserIn] Seyed Rohollah Hoseini Vaez [verfasserIn] Naser Malekshahi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Persisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: پژوهشهای زیرساختهای عمرانی - University of Qom, 2024, 6(2021), 2, Seite 123-132 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2021 ; number:2 ; pages:123-132 |
Links: |
---|
DOI / URN: |
10.22091/cer.2021.6898.1242 |
---|
Katalog-ID: |
DOAJ095834737 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ095834737 | ||
003 | DE-627 | ||
005 | 20240413124000.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2021 xx |||||o 00| ||per c | ||
024 | 7 | |a 10.22091/cer.2021.6898.1242 |2 doi | |
035 | |a (DE-627)DOAJ095834737 | ||
035 | |a (DE-599)DOAJ95f2bb8062414a248d8ff5ea62b688c1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a per | ||
050 | 0 | |a TA630-695 | |
100 | 0 | |a Hosein Naderpour |e verfasserin |4 aut | |
245 | 1 | 0 | |a Predicting the Behavior of Concrete Dams Using Artificial Neural Networks (Case study of Dez Dam) |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Large dams store a significant amount of water behind them. Therefore, their safety and stability control have a special place. Changes in temperature and hydrostatic pressure are the most important factors that affect the dam structure; And will cause shifts in the crown of the dam upstream and downstream. Therefore, the data obtained from the monitoring center should be evaluated regularly in order to analyze the behavior of the dam. Due to this issue, in this study, using artificial neural networks, a model is presented to predict the horizontal displacement of the Dez dam crown due to changes in pressure and temperature. According to the results, it is observed that the neural network has a good performance in predicting real values. The average error of the modeled network is about 4%. This indicates that the network is well trained. Using the generated network, the radial displacement changes against the reservoir water level for different temperatures are obtained, and plotted. Using diagrams, it is possible to predict the behavior of Dez dam for different temperatures and changes in reservoir water level, which can be very useful in monitoring and maintaining this dam. | ||
650 | 4 | |a concrete dam | |
650 | 4 | |a artificial neural network | |
650 | 4 | |a dez dam | |
650 | 4 | |a hydrostatic pressure | |
650 | 4 | |a temperature variation | |
653 | 0 | |a Structural engineering (General) | |
700 | 0 | |a Seyed Rohollah Hoseini Vaez |e verfasserin |4 aut | |
700 | 0 | |a Naser Malekshahi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t پژوهشهای زیرساختهای عمرانی |d University of Qom, 2024 |g 6(2021), 2, Seite 123-132 |w (DE-627)DOAJ09066969X |x 2783140X |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2021 |g number:2 |g pages:123-132 |
856 | 4 | 0 | |u https://doi.org/10.22091/cer.2021.6898.1242 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/95f2bb8062414a248d8ff5ea62b688c1 |z kostenfrei |
856 | 4 | 0 | |u https://cer.qom.ac.ir/article_1878_4a6eb3052f059b3ba1d1d3564e5c74c3.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2783-140X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
951 | |a AR | ||
952 | |d 6 |j 2021 |e 2 |h 123-132 |
author_variant |
h n hn s r h v srhv n m nm |
---|---|
matchkey_str |
article:2783140X:2021----::rdcighbhvoocnrtdmuigriiilerlew |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TA |
publishDate |
2021 |
allfields |
10.22091/cer.2021.6898.1242 doi (DE-627)DOAJ095834737 (DE-599)DOAJ95f2bb8062414a248d8ff5ea62b688c1 DE-627 ger DE-627 rakwb per TA630-695 Hosein Naderpour verfasserin aut Predicting the Behavior of Concrete Dams Using Artificial Neural Networks (Case study of Dez Dam) 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Large dams store a significant amount of water behind them. Therefore, their safety and stability control have a special place. Changes in temperature and hydrostatic pressure are the most important factors that affect the dam structure; And will cause shifts in the crown of the dam upstream and downstream. Therefore, the data obtained from the monitoring center should be evaluated regularly in order to analyze the behavior of the dam. Due to this issue, in this study, using artificial neural networks, a model is presented to predict the horizontal displacement of the Dez dam crown due to changes in pressure and temperature. According to the results, it is observed that the neural network has a good performance in predicting real values. The average error of the modeled network is about 4%. This indicates that the network is well trained. Using the generated network, the radial displacement changes against the reservoir water level for different temperatures are obtained, and plotted. Using diagrams, it is possible to predict the behavior of Dez dam for different temperatures and changes in reservoir water level, which can be very useful in monitoring and maintaining this dam. concrete dam artificial neural network dez dam hydrostatic pressure temperature variation Structural engineering (General) Seyed Rohollah Hoseini Vaez verfasserin aut Naser Malekshahi verfasserin aut In پژوهشهای زیرساختهای عمرانی University of Qom, 2024 6(2021), 2, Seite 123-132 (DE-627)DOAJ09066969X 2783140X nnns volume:6 year:2021 number:2 pages:123-132 https://doi.org/10.22091/cer.2021.6898.1242 kostenfrei https://doaj.org/article/95f2bb8062414a248d8ff5ea62b688c1 kostenfrei https://cer.qom.ac.ir/article_1878_4a6eb3052f059b3ba1d1d3564e5c74c3.pdf kostenfrei https://doaj.org/toc/2783-140X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 6 2021 2 123-132 |
spelling |
10.22091/cer.2021.6898.1242 doi (DE-627)DOAJ095834737 (DE-599)DOAJ95f2bb8062414a248d8ff5ea62b688c1 DE-627 ger DE-627 rakwb per TA630-695 Hosein Naderpour verfasserin aut Predicting the Behavior of Concrete Dams Using Artificial Neural Networks (Case study of Dez Dam) 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Large dams store a significant amount of water behind them. Therefore, their safety and stability control have a special place. Changes in temperature and hydrostatic pressure are the most important factors that affect the dam structure; And will cause shifts in the crown of the dam upstream and downstream. Therefore, the data obtained from the monitoring center should be evaluated regularly in order to analyze the behavior of the dam. Due to this issue, in this study, using artificial neural networks, a model is presented to predict the horizontal displacement of the Dez dam crown due to changes in pressure and temperature. According to the results, it is observed that the neural network has a good performance in predicting real values. The average error of the modeled network is about 4%. This indicates that the network is well trained. Using the generated network, the radial displacement changes against the reservoir water level for different temperatures are obtained, and plotted. Using diagrams, it is possible to predict the behavior of Dez dam for different temperatures and changes in reservoir water level, which can be very useful in monitoring and maintaining this dam. concrete dam artificial neural network dez dam hydrostatic pressure temperature variation Structural engineering (General) Seyed Rohollah Hoseini Vaez verfasserin aut Naser Malekshahi verfasserin aut In پژوهشهای زیرساختهای عمرانی University of Qom, 2024 6(2021), 2, Seite 123-132 (DE-627)DOAJ09066969X 2783140X nnns volume:6 year:2021 number:2 pages:123-132 https://doi.org/10.22091/cer.2021.6898.1242 kostenfrei https://doaj.org/article/95f2bb8062414a248d8ff5ea62b688c1 kostenfrei https://cer.qom.ac.ir/article_1878_4a6eb3052f059b3ba1d1d3564e5c74c3.pdf kostenfrei https://doaj.org/toc/2783-140X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 6 2021 2 123-132 |
allfields_unstemmed |
10.22091/cer.2021.6898.1242 doi (DE-627)DOAJ095834737 (DE-599)DOAJ95f2bb8062414a248d8ff5ea62b688c1 DE-627 ger DE-627 rakwb per TA630-695 Hosein Naderpour verfasserin aut Predicting the Behavior of Concrete Dams Using Artificial Neural Networks (Case study of Dez Dam) 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Large dams store a significant amount of water behind them. Therefore, their safety and stability control have a special place. Changes in temperature and hydrostatic pressure are the most important factors that affect the dam structure; And will cause shifts in the crown of the dam upstream and downstream. Therefore, the data obtained from the monitoring center should be evaluated regularly in order to analyze the behavior of the dam. Due to this issue, in this study, using artificial neural networks, a model is presented to predict the horizontal displacement of the Dez dam crown due to changes in pressure and temperature. According to the results, it is observed that the neural network has a good performance in predicting real values. The average error of the modeled network is about 4%. This indicates that the network is well trained. Using the generated network, the radial displacement changes against the reservoir water level for different temperatures are obtained, and plotted. Using diagrams, it is possible to predict the behavior of Dez dam for different temperatures and changes in reservoir water level, which can be very useful in monitoring and maintaining this dam. concrete dam artificial neural network dez dam hydrostatic pressure temperature variation Structural engineering (General) Seyed Rohollah Hoseini Vaez verfasserin aut Naser Malekshahi verfasserin aut In پژوهشهای زیرساختهای عمرانی University of Qom, 2024 6(2021), 2, Seite 123-132 (DE-627)DOAJ09066969X 2783140X nnns volume:6 year:2021 number:2 pages:123-132 https://doi.org/10.22091/cer.2021.6898.1242 kostenfrei https://doaj.org/article/95f2bb8062414a248d8ff5ea62b688c1 kostenfrei https://cer.qom.ac.ir/article_1878_4a6eb3052f059b3ba1d1d3564e5c74c3.pdf kostenfrei https://doaj.org/toc/2783-140X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 6 2021 2 123-132 |
allfieldsGer |
10.22091/cer.2021.6898.1242 doi (DE-627)DOAJ095834737 (DE-599)DOAJ95f2bb8062414a248d8ff5ea62b688c1 DE-627 ger DE-627 rakwb per TA630-695 Hosein Naderpour verfasserin aut Predicting the Behavior of Concrete Dams Using Artificial Neural Networks (Case study of Dez Dam) 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Large dams store a significant amount of water behind them. Therefore, their safety and stability control have a special place. Changes in temperature and hydrostatic pressure are the most important factors that affect the dam structure; And will cause shifts in the crown of the dam upstream and downstream. Therefore, the data obtained from the monitoring center should be evaluated regularly in order to analyze the behavior of the dam. Due to this issue, in this study, using artificial neural networks, a model is presented to predict the horizontal displacement of the Dez dam crown due to changes in pressure and temperature. According to the results, it is observed that the neural network has a good performance in predicting real values. The average error of the modeled network is about 4%. This indicates that the network is well trained. Using the generated network, the radial displacement changes against the reservoir water level for different temperatures are obtained, and plotted. Using diagrams, it is possible to predict the behavior of Dez dam for different temperatures and changes in reservoir water level, which can be very useful in monitoring and maintaining this dam. concrete dam artificial neural network dez dam hydrostatic pressure temperature variation Structural engineering (General) Seyed Rohollah Hoseini Vaez verfasserin aut Naser Malekshahi verfasserin aut In پژوهشهای زیرساختهای عمرانی University of Qom, 2024 6(2021), 2, Seite 123-132 (DE-627)DOAJ09066969X 2783140X nnns volume:6 year:2021 number:2 pages:123-132 https://doi.org/10.22091/cer.2021.6898.1242 kostenfrei https://doaj.org/article/95f2bb8062414a248d8ff5ea62b688c1 kostenfrei https://cer.qom.ac.ir/article_1878_4a6eb3052f059b3ba1d1d3564e5c74c3.pdf kostenfrei https://doaj.org/toc/2783-140X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 6 2021 2 123-132 |
allfieldsSound |
10.22091/cer.2021.6898.1242 doi (DE-627)DOAJ095834737 (DE-599)DOAJ95f2bb8062414a248d8ff5ea62b688c1 DE-627 ger DE-627 rakwb per TA630-695 Hosein Naderpour verfasserin aut Predicting the Behavior of Concrete Dams Using Artificial Neural Networks (Case study of Dez Dam) 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Large dams store a significant amount of water behind them. Therefore, their safety and stability control have a special place. Changes in temperature and hydrostatic pressure are the most important factors that affect the dam structure; And will cause shifts in the crown of the dam upstream and downstream. Therefore, the data obtained from the monitoring center should be evaluated regularly in order to analyze the behavior of the dam. Due to this issue, in this study, using artificial neural networks, a model is presented to predict the horizontal displacement of the Dez dam crown due to changes in pressure and temperature. According to the results, it is observed that the neural network has a good performance in predicting real values. The average error of the modeled network is about 4%. This indicates that the network is well trained. Using the generated network, the radial displacement changes against the reservoir water level for different temperatures are obtained, and plotted. Using diagrams, it is possible to predict the behavior of Dez dam for different temperatures and changes in reservoir water level, which can be very useful in monitoring and maintaining this dam. concrete dam artificial neural network dez dam hydrostatic pressure temperature variation Structural engineering (General) Seyed Rohollah Hoseini Vaez verfasserin aut Naser Malekshahi verfasserin aut In پژوهشهای زیرساختهای عمرانی University of Qom, 2024 6(2021), 2, Seite 123-132 (DE-627)DOAJ09066969X 2783140X nnns volume:6 year:2021 number:2 pages:123-132 https://doi.org/10.22091/cer.2021.6898.1242 kostenfrei https://doaj.org/article/95f2bb8062414a248d8ff5ea62b688c1 kostenfrei https://cer.qom.ac.ir/article_1878_4a6eb3052f059b3ba1d1d3564e5c74c3.pdf kostenfrei https://doaj.org/toc/2783-140X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 6 2021 2 123-132 |
language |
Persian |
source |
In پژوهشهای زیرساختهای عمرانی 6(2021), 2, Seite 123-132 volume:6 year:2021 number:2 pages:123-132 |
sourceStr |
In پژوهشهای زیرساختهای عمرانی 6(2021), 2, Seite 123-132 volume:6 year:2021 number:2 pages:123-132 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
concrete dam artificial neural network dez dam hydrostatic pressure temperature variation Structural engineering (General) |
isfreeaccess_bool |
true |
container_title |
پژوهشهای زیرساختهای عمرانی |
authorswithroles_txt_mv |
Hosein Naderpour @@aut@@ Seyed Rohollah Hoseini Vaez @@aut@@ Naser Malekshahi @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
DOAJ09066969X |
id |
DOAJ095834737 |
language_de |
persisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ095834737</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413124000.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2021 xx |||||o 00| ||per c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.22091/cer.2021.6898.1242</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ095834737</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ95f2bb8062414a248d8ff5ea62b688c1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">per</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA630-695</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hosein Naderpour</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting the Behavior of Concrete Dams Using Artificial Neural Networks (Case study of Dez Dam)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Large dams store a significant amount of water behind them. Therefore, their safety and stability control have a special place. Changes in temperature and hydrostatic pressure are the most important factors that affect the dam structure; And will cause shifts in the crown of the dam upstream and downstream. Therefore, the data obtained from the monitoring center should be evaluated regularly in order to analyze the behavior of the dam. Due to this issue, in this study, using artificial neural networks, a model is presented to predict the horizontal displacement of the Dez dam crown due to changes in pressure and temperature. According to the results, it is observed that the neural network has a good performance in predicting real values. The average error of the modeled network is about 4%. This indicates that the network is well trained. Using the generated network, the radial displacement changes against the reservoir water level for different temperatures are obtained, and plotted. Using diagrams, it is possible to predict the behavior of Dez dam for different temperatures and changes in reservoir water level, which can be very useful in monitoring and maintaining this dam.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">concrete dam</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dez dam</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydrostatic pressure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">temperature variation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Structural engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Seyed Rohollah Hoseini Vaez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Naser Malekshahi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">پژوهشهای زیرساختهای عمرانی</subfield><subfield code="d">University of Qom, 2024</subfield><subfield code="g">6(2021), 2, Seite 123-132</subfield><subfield code="w">(DE-627)DOAJ09066969X</subfield><subfield code="x">2783140X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:123-132</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.22091/cer.2021.6898.1242</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/95f2bb8062414a248d8ff5ea62b688c1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://cer.qom.ac.ir/article_1878_4a6eb3052f059b3ba1d1d3564e5c74c3.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2783-140X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2021</subfield><subfield code="e">2</subfield><subfield code="h">123-132</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Hosein Naderpour |
spellingShingle |
Hosein Naderpour misc TA630-695 misc concrete dam misc artificial neural network misc dez dam misc hydrostatic pressure misc temperature variation misc Structural engineering (General) Predicting the Behavior of Concrete Dams Using Artificial Neural Networks (Case study of Dez Dam) |
authorStr |
Hosein Naderpour |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)DOAJ09066969X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA630-695 |
illustrated |
Not Illustrated |
issn |
2783140X |
topic_title |
TA630-695 Predicting the Behavior of Concrete Dams Using Artificial Neural Networks (Case study of Dez Dam) concrete dam artificial neural network dez dam hydrostatic pressure temperature variation |
topic |
misc TA630-695 misc concrete dam misc artificial neural network misc dez dam misc hydrostatic pressure misc temperature variation misc Structural engineering (General) |
topic_unstemmed |
misc TA630-695 misc concrete dam misc artificial neural network misc dez dam misc hydrostatic pressure misc temperature variation misc Structural engineering (General) |
topic_browse |
misc TA630-695 misc concrete dam misc artificial neural network misc dez dam misc hydrostatic pressure misc temperature variation misc Structural engineering (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
پژوهشهای زیرساختهای عمرانی |
hierarchy_parent_id |
DOAJ09066969X |
hierarchy_top_title |
پژوهشهای زیرساختهای عمرانی |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)DOAJ09066969X |
title |
Predicting the Behavior of Concrete Dams Using Artificial Neural Networks (Case study of Dez Dam) |
ctrlnum |
(DE-627)DOAJ095834737 (DE-599)DOAJ95f2bb8062414a248d8ff5ea62b688c1 |
title_full |
Predicting the Behavior of Concrete Dams Using Artificial Neural Networks (Case study of Dez Dam) |
author_sort |
Hosein Naderpour |
journal |
پژوهشهای زیرساختهای عمرانی |
journalStr |
پژوهشهای زیرساختهای عمرانی |
callnumber-first-code |
T |
lang_code |
per |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
123 |
author_browse |
Hosein Naderpour Seyed Rohollah Hoseini Vaez Naser Malekshahi |
container_volume |
6 |
class |
TA630-695 |
format_se |
Elektronische Aufsätze |
author-letter |
Hosein Naderpour |
doi_str_mv |
10.22091/cer.2021.6898.1242 |
author2-role |
verfasserin |
title_sort |
predicting the behavior of concrete dams using artificial neural networks (case study of dez dam) |
callnumber |
TA630-695 |
title_auth |
Predicting the Behavior of Concrete Dams Using Artificial Neural Networks (Case study of Dez Dam) |
abstract |
Large dams store a significant amount of water behind them. Therefore, their safety and stability control have a special place. Changes in temperature and hydrostatic pressure are the most important factors that affect the dam structure; And will cause shifts in the crown of the dam upstream and downstream. Therefore, the data obtained from the monitoring center should be evaluated regularly in order to analyze the behavior of the dam. Due to this issue, in this study, using artificial neural networks, a model is presented to predict the horizontal displacement of the Dez dam crown due to changes in pressure and temperature. According to the results, it is observed that the neural network has a good performance in predicting real values. The average error of the modeled network is about 4%. This indicates that the network is well trained. Using the generated network, the radial displacement changes against the reservoir water level for different temperatures are obtained, and plotted. Using diagrams, it is possible to predict the behavior of Dez dam for different temperatures and changes in reservoir water level, which can be very useful in monitoring and maintaining this dam. |
abstractGer |
Large dams store a significant amount of water behind them. Therefore, their safety and stability control have a special place. Changes in temperature and hydrostatic pressure are the most important factors that affect the dam structure; And will cause shifts in the crown of the dam upstream and downstream. Therefore, the data obtained from the monitoring center should be evaluated regularly in order to analyze the behavior of the dam. Due to this issue, in this study, using artificial neural networks, a model is presented to predict the horizontal displacement of the Dez dam crown due to changes in pressure and temperature. According to the results, it is observed that the neural network has a good performance in predicting real values. The average error of the modeled network is about 4%. This indicates that the network is well trained. Using the generated network, the radial displacement changes against the reservoir water level for different temperatures are obtained, and plotted. Using diagrams, it is possible to predict the behavior of Dez dam for different temperatures and changes in reservoir water level, which can be very useful in monitoring and maintaining this dam. |
abstract_unstemmed |
Large dams store a significant amount of water behind them. Therefore, their safety and stability control have a special place. Changes in temperature and hydrostatic pressure are the most important factors that affect the dam structure; And will cause shifts in the crown of the dam upstream and downstream. Therefore, the data obtained from the monitoring center should be evaluated regularly in order to analyze the behavior of the dam. Due to this issue, in this study, using artificial neural networks, a model is presented to predict the horizontal displacement of the Dez dam crown due to changes in pressure and temperature. According to the results, it is observed that the neural network has a good performance in predicting real values. The average error of the modeled network is about 4%. This indicates that the network is well trained. Using the generated network, the radial displacement changes against the reservoir water level for different temperatures are obtained, and plotted. Using diagrams, it is possible to predict the behavior of Dez dam for different temperatures and changes in reservoir water level, which can be very useful in monitoring and maintaining this dam. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ |
container_issue |
2 |
title_short |
Predicting the Behavior of Concrete Dams Using Artificial Neural Networks (Case study of Dez Dam) |
url |
https://doi.org/10.22091/cer.2021.6898.1242 https://doaj.org/article/95f2bb8062414a248d8ff5ea62b688c1 https://cer.qom.ac.ir/article_1878_4a6eb3052f059b3ba1d1d3564e5c74c3.pdf https://doaj.org/toc/2783-140X |
remote_bool |
true |
author2 |
Seyed Rohollah Hoseini Vaez Naser Malekshahi |
author2Str |
Seyed Rohollah Hoseini Vaez Naser Malekshahi |
ppnlink |
DOAJ09066969X |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.22091/cer.2021.6898.1242 |
callnumber-a |
TA630-695 |
up_date |
2024-07-03T16:52:24.517Z |
_version_ |
1803577505373749248 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ095834737</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413124000.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2021 xx |||||o 00| ||per c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.22091/cer.2021.6898.1242</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ095834737</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ95f2bb8062414a248d8ff5ea62b688c1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">per</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA630-695</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hosein Naderpour</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting the Behavior of Concrete Dams Using Artificial Neural Networks (Case study of Dez Dam)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Large dams store a significant amount of water behind them. Therefore, their safety and stability control have a special place. Changes in temperature and hydrostatic pressure are the most important factors that affect the dam structure; And will cause shifts in the crown of the dam upstream and downstream. Therefore, the data obtained from the monitoring center should be evaluated regularly in order to analyze the behavior of the dam. Due to this issue, in this study, using artificial neural networks, a model is presented to predict the horizontal displacement of the Dez dam crown due to changes in pressure and temperature. According to the results, it is observed that the neural network has a good performance in predicting real values. The average error of the modeled network is about 4%. This indicates that the network is well trained. Using the generated network, the radial displacement changes against the reservoir water level for different temperatures are obtained, and plotted. Using diagrams, it is possible to predict the behavior of Dez dam for different temperatures and changes in reservoir water level, which can be very useful in monitoring and maintaining this dam.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">concrete dam</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dez dam</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydrostatic pressure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">temperature variation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Structural engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Seyed Rohollah Hoseini Vaez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Naser Malekshahi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">پژوهشهای زیرساختهای عمرانی</subfield><subfield code="d">University of Qom, 2024</subfield><subfield code="g">6(2021), 2, Seite 123-132</subfield><subfield code="w">(DE-627)DOAJ09066969X</subfield><subfield code="x">2783140X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:123-132</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.22091/cer.2021.6898.1242</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/95f2bb8062414a248d8ff5ea62b688c1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://cer.qom.ac.ir/article_1878_4a6eb3052f059b3ba1d1d3564e5c74c3.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2783-140X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2021</subfield><subfield code="e">2</subfield><subfield code="h">123-132</subfield></datafield></record></collection>
|
score |
7.4013834 |