Self-Supervised Learning for High-Resolution Remote Sensing Images Change Detection With Variational Information Bottleneck

Notable achievements have been made in remote sensing images change detection with sample-driven supervised deep learning methods. However, the requirement of the number of labeled samples is impractical for many practical applications, which is a major constraint to the development of supervised de...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Congcong Wang [verfasserIn]

Shouhang Du [verfasserIn]

Wenbin Sun [verfasserIn]

Deqin Fan [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Change detection

contrastive learning

remote sensing

self-supervised learning

variational information bottleneck (VIB)

Übergeordnetes Werk:

In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing - IEEE, 2020, 16(2023), Seite 5849-5866

Übergeordnetes Werk:

volume:16 ; year:2023 ; pages:5849-5866

Links:

Link aufrufen
Link aufrufen
Link aufrufen
Journal toc

DOI / URN:

10.1109/JSTARS.2023.3288294

Katalog-ID:

DOAJ095923357

Nicht das Richtige dabei?

Schreiben Sie uns!