Reduced representation approaches produce similar results to whole genome sequencing for some common phylogeographic analyses.
When designing phylogeographic investigations researchers can choose to collect many different types of molecular markers, including mitochondrial genes or genomes, SNPs from reduced representation protocols, large sequence capture data sets, and even whole genomes. Given that the statistical power...
Ausführliche Beschreibung
Autor*in: |
Drew J Duckett [verfasserIn] Kailee Calder [verfasserIn] Jack Sullivan [verfasserIn] David C Tank [verfasserIn] Bryan C Carstens [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Übergeordnetes Werk: |
In: PLoS ONE - Public Library of Science (PLoS), 2007, 18(2023), 11, p e0291941 |
---|---|
Übergeordnetes Werk: |
volume:18 ; year:2023 ; number:11, p e0291941 |
Links: |
---|
DOI / URN: |
10.1371/journal.pone.0291941 |
---|
Katalog-ID: |
DOAJ096063017 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ096063017 | ||
003 | DE-627 | ||
005 | 20240413141005.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1371/journal.pone.0291941 |2 doi | |
035 | |a (DE-627)DOAJ096063017 | ||
035 | |a (DE-599)DOAJ6eda98ce06ef4cc98566f7154a0b6f9b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Drew J Duckett |e verfasserin |4 aut | |
245 | 1 | 0 | |a Reduced representation approaches produce similar results to whole genome sequencing for some common phylogeographic analyses. |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a When designing phylogeographic investigations researchers can choose to collect many different types of molecular markers, including mitochondrial genes or genomes, SNPs from reduced representation protocols, large sequence capture data sets, and even whole genomes. Given that the statistical power and accuracy of various analyses are expected to differ depending on both the type of marker and the amount of data collected, an exploration of the variance across methodological results as a function of marker type should provide valuable information to researchers. Here we collect mitochondrial Cytochrome b sequences, whole mitochondrial genomes, single nucleotide polymorphisms (SNP)s isolated using a genotype by sequencing (GBS) protocol, sequences from ultraconserved elements, and low-coverage nuclear genomes from the North American water vole (Microtus richardsoni). We estimate genetic distances, population genetic structure, and historical demography using data from each of these datasets and compare the results across markers. As anticipated, the results exhibit differences across marker types, particularly in terms of the resolution offered by different analyses. A cost-benefit analysis indicates that SNPs collected using a GBS protocol are the most cost-effective molecular marker, with inferences that mirror those collected from the whole genome data at a fraction of the cost per sample. | ||
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Kailee Calder |e verfasserin |4 aut | |
700 | 0 | |a Jack Sullivan |e verfasserin |4 aut | |
700 | 0 | |a David C Tank |e verfasserin |4 aut | |
700 | 0 | |a Bryan C Carstens |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t PLoS ONE |d Public Library of Science (PLoS), 2007 |g 18(2023), 11, p e0291941 |w (DE-627)523574592 |w (DE-600)2267670-3 |x 19326203 |7 nnns |
773 | 1 | 8 | |g volume:18 |g year:2023 |g number:11, p e0291941 |
856 | 4 | 0 | |u https://doi.org/10.1371/journal.pone.0291941 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6eda98ce06ef4cc98566f7154a0b6f9b |z kostenfrei |
856 | 4 | 0 | |u https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0291941&type=printable |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1932-6203 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_34 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_235 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 18 |j 2023 |e 11, p e0291941 |
author_variant |
d j d djd k c kc j s js d c t dct b c c bcc |
---|---|
matchkey_str |
article:19326203:2023----::euerpeettoapocepoueiiarslsohlgnmsqecnfro |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1371/journal.pone.0291941 doi (DE-627)DOAJ096063017 (DE-599)DOAJ6eda98ce06ef4cc98566f7154a0b6f9b DE-627 ger DE-627 rakwb eng Drew J Duckett verfasserin aut Reduced representation approaches produce similar results to whole genome sequencing for some common phylogeographic analyses. 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier When designing phylogeographic investigations researchers can choose to collect many different types of molecular markers, including mitochondrial genes or genomes, SNPs from reduced representation protocols, large sequence capture data sets, and even whole genomes. Given that the statistical power and accuracy of various analyses are expected to differ depending on both the type of marker and the amount of data collected, an exploration of the variance across methodological results as a function of marker type should provide valuable information to researchers. Here we collect mitochondrial Cytochrome b sequences, whole mitochondrial genomes, single nucleotide polymorphisms (SNP)s isolated using a genotype by sequencing (GBS) protocol, sequences from ultraconserved elements, and low-coverage nuclear genomes from the North American water vole (Microtus richardsoni). We estimate genetic distances, population genetic structure, and historical demography using data from each of these datasets and compare the results across markers. As anticipated, the results exhibit differences across marker types, particularly in terms of the resolution offered by different analyses. A cost-benefit analysis indicates that SNPs collected using a GBS protocol are the most cost-effective molecular marker, with inferences that mirror those collected from the whole genome data at a fraction of the cost per sample. Medicine R Science Q Kailee Calder verfasserin aut Jack Sullivan verfasserin aut David C Tank verfasserin aut Bryan C Carstens verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 18(2023), 11, p e0291941 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:18 year:2023 number:11, p e0291941 https://doi.org/10.1371/journal.pone.0291941 kostenfrei https://doaj.org/article/6eda98ce06ef4cc98566f7154a0b6f9b kostenfrei https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0291941&type=printable kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2023 11, p e0291941 |
spelling |
10.1371/journal.pone.0291941 doi (DE-627)DOAJ096063017 (DE-599)DOAJ6eda98ce06ef4cc98566f7154a0b6f9b DE-627 ger DE-627 rakwb eng Drew J Duckett verfasserin aut Reduced representation approaches produce similar results to whole genome sequencing for some common phylogeographic analyses. 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier When designing phylogeographic investigations researchers can choose to collect many different types of molecular markers, including mitochondrial genes or genomes, SNPs from reduced representation protocols, large sequence capture data sets, and even whole genomes. Given that the statistical power and accuracy of various analyses are expected to differ depending on both the type of marker and the amount of data collected, an exploration of the variance across methodological results as a function of marker type should provide valuable information to researchers. Here we collect mitochondrial Cytochrome b sequences, whole mitochondrial genomes, single nucleotide polymorphisms (SNP)s isolated using a genotype by sequencing (GBS) protocol, sequences from ultraconserved elements, and low-coverage nuclear genomes from the North American water vole (Microtus richardsoni). We estimate genetic distances, population genetic structure, and historical demography using data from each of these datasets and compare the results across markers. As anticipated, the results exhibit differences across marker types, particularly in terms of the resolution offered by different analyses. A cost-benefit analysis indicates that SNPs collected using a GBS protocol are the most cost-effective molecular marker, with inferences that mirror those collected from the whole genome data at a fraction of the cost per sample. Medicine R Science Q Kailee Calder verfasserin aut Jack Sullivan verfasserin aut David C Tank verfasserin aut Bryan C Carstens verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 18(2023), 11, p e0291941 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:18 year:2023 number:11, p e0291941 https://doi.org/10.1371/journal.pone.0291941 kostenfrei https://doaj.org/article/6eda98ce06ef4cc98566f7154a0b6f9b kostenfrei https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0291941&type=printable kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2023 11, p e0291941 |
allfields_unstemmed |
10.1371/journal.pone.0291941 doi (DE-627)DOAJ096063017 (DE-599)DOAJ6eda98ce06ef4cc98566f7154a0b6f9b DE-627 ger DE-627 rakwb eng Drew J Duckett verfasserin aut Reduced representation approaches produce similar results to whole genome sequencing for some common phylogeographic analyses. 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier When designing phylogeographic investigations researchers can choose to collect many different types of molecular markers, including mitochondrial genes or genomes, SNPs from reduced representation protocols, large sequence capture data sets, and even whole genomes. Given that the statistical power and accuracy of various analyses are expected to differ depending on both the type of marker and the amount of data collected, an exploration of the variance across methodological results as a function of marker type should provide valuable information to researchers. Here we collect mitochondrial Cytochrome b sequences, whole mitochondrial genomes, single nucleotide polymorphisms (SNP)s isolated using a genotype by sequencing (GBS) protocol, sequences from ultraconserved elements, and low-coverage nuclear genomes from the North American water vole (Microtus richardsoni). We estimate genetic distances, population genetic structure, and historical demography using data from each of these datasets and compare the results across markers. As anticipated, the results exhibit differences across marker types, particularly in terms of the resolution offered by different analyses. A cost-benefit analysis indicates that SNPs collected using a GBS protocol are the most cost-effective molecular marker, with inferences that mirror those collected from the whole genome data at a fraction of the cost per sample. Medicine R Science Q Kailee Calder verfasserin aut Jack Sullivan verfasserin aut David C Tank verfasserin aut Bryan C Carstens verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 18(2023), 11, p e0291941 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:18 year:2023 number:11, p e0291941 https://doi.org/10.1371/journal.pone.0291941 kostenfrei https://doaj.org/article/6eda98ce06ef4cc98566f7154a0b6f9b kostenfrei https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0291941&type=printable kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2023 11, p e0291941 |
allfieldsGer |
10.1371/journal.pone.0291941 doi (DE-627)DOAJ096063017 (DE-599)DOAJ6eda98ce06ef4cc98566f7154a0b6f9b DE-627 ger DE-627 rakwb eng Drew J Duckett verfasserin aut Reduced representation approaches produce similar results to whole genome sequencing for some common phylogeographic analyses. 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier When designing phylogeographic investigations researchers can choose to collect many different types of molecular markers, including mitochondrial genes or genomes, SNPs from reduced representation protocols, large sequence capture data sets, and even whole genomes. Given that the statistical power and accuracy of various analyses are expected to differ depending on both the type of marker and the amount of data collected, an exploration of the variance across methodological results as a function of marker type should provide valuable information to researchers. Here we collect mitochondrial Cytochrome b sequences, whole mitochondrial genomes, single nucleotide polymorphisms (SNP)s isolated using a genotype by sequencing (GBS) protocol, sequences from ultraconserved elements, and low-coverage nuclear genomes from the North American water vole (Microtus richardsoni). We estimate genetic distances, population genetic structure, and historical demography using data from each of these datasets and compare the results across markers. As anticipated, the results exhibit differences across marker types, particularly in terms of the resolution offered by different analyses. A cost-benefit analysis indicates that SNPs collected using a GBS protocol are the most cost-effective molecular marker, with inferences that mirror those collected from the whole genome data at a fraction of the cost per sample. Medicine R Science Q Kailee Calder verfasserin aut Jack Sullivan verfasserin aut David C Tank verfasserin aut Bryan C Carstens verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 18(2023), 11, p e0291941 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:18 year:2023 number:11, p e0291941 https://doi.org/10.1371/journal.pone.0291941 kostenfrei https://doaj.org/article/6eda98ce06ef4cc98566f7154a0b6f9b kostenfrei https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0291941&type=printable kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2023 11, p e0291941 |
allfieldsSound |
10.1371/journal.pone.0291941 doi (DE-627)DOAJ096063017 (DE-599)DOAJ6eda98ce06ef4cc98566f7154a0b6f9b DE-627 ger DE-627 rakwb eng Drew J Duckett verfasserin aut Reduced representation approaches produce similar results to whole genome sequencing for some common phylogeographic analyses. 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier When designing phylogeographic investigations researchers can choose to collect many different types of molecular markers, including mitochondrial genes or genomes, SNPs from reduced representation protocols, large sequence capture data sets, and even whole genomes. Given that the statistical power and accuracy of various analyses are expected to differ depending on both the type of marker and the amount of data collected, an exploration of the variance across methodological results as a function of marker type should provide valuable information to researchers. Here we collect mitochondrial Cytochrome b sequences, whole mitochondrial genomes, single nucleotide polymorphisms (SNP)s isolated using a genotype by sequencing (GBS) protocol, sequences from ultraconserved elements, and low-coverage nuclear genomes from the North American water vole (Microtus richardsoni). We estimate genetic distances, population genetic structure, and historical demography using data from each of these datasets and compare the results across markers. As anticipated, the results exhibit differences across marker types, particularly in terms of the resolution offered by different analyses. A cost-benefit analysis indicates that SNPs collected using a GBS protocol are the most cost-effective molecular marker, with inferences that mirror those collected from the whole genome data at a fraction of the cost per sample. Medicine R Science Q Kailee Calder verfasserin aut Jack Sullivan verfasserin aut David C Tank verfasserin aut Bryan C Carstens verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 18(2023), 11, p e0291941 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:18 year:2023 number:11, p e0291941 https://doi.org/10.1371/journal.pone.0291941 kostenfrei https://doaj.org/article/6eda98ce06ef4cc98566f7154a0b6f9b kostenfrei https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0291941&type=printable kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2023 11, p e0291941 |
language |
English |
source |
In PLoS ONE 18(2023), 11, p e0291941 volume:18 year:2023 number:11, p e0291941 |
sourceStr |
In PLoS ONE 18(2023), 11, p e0291941 volume:18 year:2023 number:11, p e0291941 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Medicine R Science Q |
isfreeaccess_bool |
true |
container_title |
PLoS ONE |
authorswithroles_txt_mv |
Drew J Duckett @@aut@@ Kailee Calder @@aut@@ Jack Sullivan @@aut@@ David C Tank @@aut@@ Bryan C Carstens @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
523574592 |
id |
DOAJ096063017 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096063017</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413141005.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1371/journal.pone.0291941</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096063017</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6eda98ce06ef4cc98566f7154a0b6f9b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Drew J Duckett</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reduced representation approaches produce similar results to whole genome sequencing for some common phylogeographic analyses.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">When designing phylogeographic investigations researchers can choose to collect many different types of molecular markers, including mitochondrial genes or genomes, SNPs from reduced representation protocols, large sequence capture data sets, and even whole genomes. Given that the statistical power and accuracy of various analyses are expected to differ depending on both the type of marker and the amount of data collected, an exploration of the variance across methodological results as a function of marker type should provide valuable information to researchers. Here we collect mitochondrial Cytochrome b sequences, whole mitochondrial genomes, single nucleotide polymorphisms (SNP)s isolated using a genotype by sequencing (GBS) protocol, sequences from ultraconserved elements, and low-coverage nuclear genomes from the North American water vole (Microtus richardsoni). We estimate genetic distances, population genetic structure, and historical demography using data from each of these datasets and compare the results across markers. As anticipated, the results exhibit differences across marker types, particularly in terms of the resolution offered by different analyses. A cost-benefit analysis indicates that SNPs collected using a GBS protocol are the most cost-effective molecular marker, with inferences that mirror those collected from the whole genome data at a fraction of the cost per sample.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kailee Calder</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jack Sullivan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David C Tank</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bryan C Carstens</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PLoS ONE</subfield><subfield code="d">Public Library of Science (PLoS), 2007</subfield><subfield code="g">18(2023), 11, p e0291941</subfield><subfield code="w">(DE-627)523574592</subfield><subfield code="w">(DE-600)2267670-3</subfield><subfield code="x">19326203</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:11, p e0291941</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pone.0291941</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6eda98ce06ef4cc98566f7154a0b6f9b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0291941&type=printable</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1932-6203</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_235</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2023</subfield><subfield code="e">11, p e0291941</subfield></datafield></record></collection>
|
author |
Drew J Duckett |
spellingShingle |
Drew J Duckett misc Medicine misc R misc Science misc Q Reduced representation approaches produce similar results to whole genome sequencing for some common phylogeographic analyses. |
authorStr |
Drew J Duckett |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)523574592 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19326203 |
topic_title |
Reduced representation approaches produce similar results to whole genome sequencing for some common phylogeographic analyses |
topic |
misc Medicine misc R misc Science misc Q |
topic_unstemmed |
misc Medicine misc R misc Science misc Q |
topic_browse |
misc Medicine misc R misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
PLoS ONE |
hierarchy_parent_id |
523574592 |
hierarchy_top_title |
PLoS ONE |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)523574592 (DE-600)2267670-3 |
title |
Reduced representation approaches produce similar results to whole genome sequencing for some common phylogeographic analyses. |
ctrlnum |
(DE-627)DOAJ096063017 (DE-599)DOAJ6eda98ce06ef4cc98566f7154a0b6f9b |
title_full |
Reduced representation approaches produce similar results to whole genome sequencing for some common phylogeographic analyses |
author_sort |
Drew J Duckett |
journal |
PLoS ONE |
journalStr |
PLoS ONE |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Drew J Duckett Kailee Calder Jack Sullivan David C Tank Bryan C Carstens |
container_volume |
18 |
format_se |
Elektronische Aufsätze |
author-letter |
Drew J Duckett |
doi_str_mv |
10.1371/journal.pone.0291941 |
author2-role |
verfasserin |
title_sort |
reduced representation approaches produce similar results to whole genome sequencing for some common phylogeographic analyses |
title_auth |
Reduced representation approaches produce similar results to whole genome sequencing for some common phylogeographic analyses. |
abstract |
When designing phylogeographic investigations researchers can choose to collect many different types of molecular markers, including mitochondrial genes or genomes, SNPs from reduced representation protocols, large sequence capture data sets, and even whole genomes. Given that the statistical power and accuracy of various analyses are expected to differ depending on both the type of marker and the amount of data collected, an exploration of the variance across methodological results as a function of marker type should provide valuable information to researchers. Here we collect mitochondrial Cytochrome b sequences, whole mitochondrial genomes, single nucleotide polymorphisms (SNP)s isolated using a genotype by sequencing (GBS) protocol, sequences from ultraconserved elements, and low-coverage nuclear genomes from the North American water vole (Microtus richardsoni). We estimate genetic distances, population genetic structure, and historical demography using data from each of these datasets and compare the results across markers. As anticipated, the results exhibit differences across marker types, particularly in terms of the resolution offered by different analyses. A cost-benefit analysis indicates that SNPs collected using a GBS protocol are the most cost-effective molecular marker, with inferences that mirror those collected from the whole genome data at a fraction of the cost per sample. |
abstractGer |
When designing phylogeographic investigations researchers can choose to collect many different types of molecular markers, including mitochondrial genes or genomes, SNPs from reduced representation protocols, large sequence capture data sets, and even whole genomes. Given that the statistical power and accuracy of various analyses are expected to differ depending on both the type of marker and the amount of data collected, an exploration of the variance across methodological results as a function of marker type should provide valuable information to researchers. Here we collect mitochondrial Cytochrome b sequences, whole mitochondrial genomes, single nucleotide polymorphisms (SNP)s isolated using a genotype by sequencing (GBS) protocol, sequences from ultraconserved elements, and low-coverage nuclear genomes from the North American water vole (Microtus richardsoni). We estimate genetic distances, population genetic structure, and historical demography using data from each of these datasets and compare the results across markers. As anticipated, the results exhibit differences across marker types, particularly in terms of the resolution offered by different analyses. A cost-benefit analysis indicates that SNPs collected using a GBS protocol are the most cost-effective molecular marker, with inferences that mirror those collected from the whole genome data at a fraction of the cost per sample. |
abstract_unstemmed |
When designing phylogeographic investigations researchers can choose to collect many different types of molecular markers, including mitochondrial genes or genomes, SNPs from reduced representation protocols, large sequence capture data sets, and even whole genomes. Given that the statistical power and accuracy of various analyses are expected to differ depending on both the type of marker and the amount of data collected, an exploration of the variance across methodological results as a function of marker type should provide valuable information to researchers. Here we collect mitochondrial Cytochrome b sequences, whole mitochondrial genomes, single nucleotide polymorphisms (SNP)s isolated using a genotype by sequencing (GBS) protocol, sequences from ultraconserved elements, and low-coverage nuclear genomes from the North American water vole (Microtus richardsoni). We estimate genetic distances, population genetic structure, and historical demography using data from each of these datasets and compare the results across markers. As anticipated, the results exhibit differences across marker types, particularly in terms of the resolution offered by different analyses. A cost-benefit analysis indicates that SNPs collected using a GBS protocol are the most cost-effective molecular marker, with inferences that mirror those collected from the whole genome data at a fraction of the cost per sample. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11, p e0291941 |
title_short |
Reduced representation approaches produce similar results to whole genome sequencing for some common phylogeographic analyses. |
url |
https://doi.org/10.1371/journal.pone.0291941 https://doaj.org/article/6eda98ce06ef4cc98566f7154a0b6f9b https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0291941&type=printable https://doaj.org/toc/1932-6203 |
remote_bool |
true |
author2 |
Kailee Calder Jack Sullivan David C Tank Bryan C Carstens |
author2Str |
Kailee Calder Jack Sullivan David C Tank Bryan C Carstens |
ppnlink |
523574592 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1371/journal.pone.0291941 |
up_date |
2024-07-03T18:06:22.456Z |
_version_ |
1803582158891122688 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096063017</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413141005.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1371/journal.pone.0291941</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096063017</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6eda98ce06ef4cc98566f7154a0b6f9b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Drew J Duckett</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reduced representation approaches produce similar results to whole genome sequencing for some common phylogeographic analyses.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">When designing phylogeographic investigations researchers can choose to collect many different types of molecular markers, including mitochondrial genes or genomes, SNPs from reduced representation protocols, large sequence capture data sets, and even whole genomes. Given that the statistical power and accuracy of various analyses are expected to differ depending on both the type of marker and the amount of data collected, an exploration of the variance across methodological results as a function of marker type should provide valuable information to researchers. Here we collect mitochondrial Cytochrome b sequences, whole mitochondrial genomes, single nucleotide polymorphisms (SNP)s isolated using a genotype by sequencing (GBS) protocol, sequences from ultraconserved elements, and low-coverage nuclear genomes from the North American water vole (Microtus richardsoni). We estimate genetic distances, population genetic structure, and historical demography using data from each of these datasets and compare the results across markers. As anticipated, the results exhibit differences across marker types, particularly in terms of the resolution offered by different analyses. A cost-benefit analysis indicates that SNPs collected using a GBS protocol are the most cost-effective molecular marker, with inferences that mirror those collected from the whole genome data at a fraction of the cost per sample.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kailee Calder</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jack Sullivan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David C Tank</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bryan C Carstens</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PLoS ONE</subfield><subfield code="d">Public Library of Science (PLoS), 2007</subfield><subfield code="g">18(2023), 11, p e0291941</subfield><subfield code="w">(DE-627)523574592</subfield><subfield code="w">(DE-600)2267670-3</subfield><subfield code="x">19326203</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:11, p e0291941</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pone.0291941</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6eda98ce06ef4cc98566f7154a0b6f9b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0291941&type=printable</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1932-6203</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_235</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2023</subfield><subfield code="e">11, p e0291941</subfield></datafield></record></collection>
|
score |
7.4021244 |