Diagnostic Performance of Noninvasive Coronary Computed Tomography Angiography-Derived FFR for Coronary Lesion-Specific Ischemia Based on Deep Learning Analysis
Background: The noninvasive computed tomography angiography–derived fractional flow reserve (CT-FFR) can be used to diagnose coronary ischemia. With advancements in associated software, the diagnostic capability of CT-FFR may have evolved. This study evaluates the effectiveness of a novel deep learn...
Ausführliche Beschreibung
Autor*in: |
Haoyu Wu [verfasserIn] Lei Liang [verfasserIn] Fuyu Qiu [verfasserIn] Wenqi Han [verfasserIn] Zheng Yang [verfasserIn] Jie Qi [verfasserIn] Jizhao Deng [verfasserIn] Yida Tang [verfasserIn] Xiling Shou [verfasserIn] Haichao Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
coronary lesion-specific ischemia computed tomography angiography-derived ffr (ct-ffr) |
---|
Übergeordnetes Werk: |
In: Reviews in Cardiovascular Medicine - IMR Press, 2020, 25(2024), 1, p 20 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2024 ; number:1, p 20 |
Links: |
---|
DOI / URN: |
10.31083/j.rcm2501020 |
---|
Katalog-ID: |
DOAJ096119896 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ096119896 | ||
003 | DE-627 | ||
005 | 20240413142357.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.31083/j.rcm2501020 |2 doi | |
035 | |a (DE-627)DOAJ096119896 | ||
035 | |a (DE-599)DOAJb257bc87945d49b0aebe80a2dd1a5943 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC666-701 | |
100 | 0 | |a Haoyu Wu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Diagnostic Performance of Noninvasive Coronary Computed Tomography Angiography-Derived FFR for Coronary Lesion-Specific Ischemia Based on Deep Learning Analysis |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background: The noninvasive computed tomography angiography–derived fractional flow reserve (CT-FFR) can be used to diagnose coronary ischemia. With advancements in associated software, the diagnostic capability of CT-FFR may have evolved. This study evaluates the effectiveness of a novel deep learning-based software in predicting coronary ischemia through CT-FFR. Methods: In this prospective study, 138 subjects with suspected or confirmed coronary artery disease were assessed. Following indication of 30%–90% stenosis on coronary computed tomography (CT) angiography, participants underwent invasive coronary angiography and fractional flow reserve (FFR) measurement. The diagnostic performance of the CT-FFR was determined using the FFR as the reference standard. Results: With a threshold of 0.80, the CT-FFR displayed an impressive diagnostic accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), positive predictive value (PPV), and negative predictive value (NPV) of 97.1%, 96.2%, 97.7%, 0.98, 96.2%, and 97.7%, respectively. At a 0.75 threshold, the CT-FFR showed a diagnostic accuracy, sensitivity, specificity, AUC, PPV, and NPV of 84.1%, 78.8%, 85.7%, 0.95, 63.4%, and 92.8%, respectively. The Bland–Altman analysis revealed a direct correlation between the CT-FFR and FFR (p < 0.001), without systematic differences (p = 0.085). Conclusions: The CT-FFR, empowered by novel deep learning software, demonstrates a strong correlation with the FFR, offering high clinical diagnostic accuracy for coronary ischemia. The results underline the potential of modern computational approaches in enhancing noninvasive coronary assessment. | ||
650 | 4 | |a coronary artery disease | |
650 | 4 | |a coronary lesion-specific ischemia | |
650 | 4 | |a fractional flow reserve (ffr) | |
650 | 4 | |a computed tomography angiography-derived ffr (ct-ffr) | |
650 | 4 | |a coronary computed tomographic angiography | |
650 | 4 | |a deep learning analysis | |
653 | 0 | |a Diseases of the circulatory (Cardiovascular) system | |
700 | 0 | |a Lei Liang |e verfasserin |4 aut | |
700 | 0 | |a Fuyu Qiu |e verfasserin |4 aut | |
700 | 0 | |a Wenqi Han |e verfasserin |4 aut | |
700 | 0 | |a Zheng Yang |e verfasserin |4 aut | |
700 | 0 | |a Jie Qi |e verfasserin |4 aut | |
700 | 0 | |a Jizhao Deng |e verfasserin |4 aut | |
700 | 0 | |a Yida Tang |e verfasserin |4 aut | |
700 | 0 | |a Xiling Shou |e verfasserin |4 aut | |
700 | 0 | |a Haichao Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Reviews in Cardiovascular Medicine |d IMR Press, 2020 |g 25(2024), 1, p 20 |w (DE-627)363773541 |w (DE-600)2108911-5 |x 21538174 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2024 |g number:1, p 20 |
856 | 4 | 0 | |u https://doi.org/10.31083/j.rcm2501020 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b257bc87945d49b0aebe80a2dd1a5943 |z kostenfrei |
856 | 4 | 0 | |u https://www.imrpress.com/journal/RCM/25/1/10.31083/j.rcm2501020 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1530-6550 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 25 |j 2024 |e 1, p 20 |
author_variant |
h w hw l l ll f q fq w h wh z y zy j q jq j d jd y t yt x s xs h c hc |
---|---|
matchkey_str |
article:21538174:2024----::igotcefraconnnaieooayoptdoorpynigahdrvdffrooayeinpcf |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
RC |
publishDate |
2024 |
allfields |
10.31083/j.rcm2501020 doi (DE-627)DOAJ096119896 (DE-599)DOAJb257bc87945d49b0aebe80a2dd1a5943 DE-627 ger DE-627 rakwb eng RC666-701 Haoyu Wu verfasserin aut Diagnostic Performance of Noninvasive Coronary Computed Tomography Angiography-Derived FFR for Coronary Lesion-Specific Ischemia Based on Deep Learning Analysis 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: The noninvasive computed tomography angiography–derived fractional flow reserve (CT-FFR) can be used to diagnose coronary ischemia. With advancements in associated software, the diagnostic capability of CT-FFR may have evolved. This study evaluates the effectiveness of a novel deep learning-based software in predicting coronary ischemia through CT-FFR. Methods: In this prospective study, 138 subjects with suspected or confirmed coronary artery disease were assessed. Following indication of 30%–90% stenosis on coronary computed tomography (CT) angiography, participants underwent invasive coronary angiography and fractional flow reserve (FFR) measurement. The diagnostic performance of the CT-FFR was determined using the FFR as the reference standard. Results: With a threshold of 0.80, the CT-FFR displayed an impressive diagnostic accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), positive predictive value (PPV), and negative predictive value (NPV) of 97.1%, 96.2%, 97.7%, 0.98, 96.2%, and 97.7%, respectively. At a 0.75 threshold, the CT-FFR showed a diagnostic accuracy, sensitivity, specificity, AUC, PPV, and NPV of 84.1%, 78.8%, 85.7%, 0.95, 63.4%, and 92.8%, respectively. The Bland–Altman analysis revealed a direct correlation between the CT-FFR and FFR (p < 0.001), without systematic differences (p = 0.085). Conclusions: The CT-FFR, empowered by novel deep learning software, demonstrates a strong correlation with the FFR, offering high clinical diagnostic accuracy for coronary ischemia. The results underline the potential of modern computational approaches in enhancing noninvasive coronary assessment. coronary artery disease coronary lesion-specific ischemia fractional flow reserve (ffr) computed tomography angiography-derived ffr (ct-ffr) coronary computed tomographic angiography deep learning analysis Diseases of the circulatory (Cardiovascular) system Lei Liang verfasserin aut Fuyu Qiu verfasserin aut Wenqi Han verfasserin aut Zheng Yang verfasserin aut Jie Qi verfasserin aut Jizhao Deng verfasserin aut Yida Tang verfasserin aut Xiling Shou verfasserin aut Haichao Chen verfasserin aut In Reviews in Cardiovascular Medicine IMR Press, 2020 25(2024), 1, p 20 (DE-627)363773541 (DE-600)2108911-5 21538174 nnns volume:25 year:2024 number:1, p 20 https://doi.org/10.31083/j.rcm2501020 kostenfrei https://doaj.org/article/b257bc87945d49b0aebe80a2dd1a5943 kostenfrei https://www.imrpress.com/journal/RCM/25/1/10.31083/j.rcm2501020 kostenfrei https://doaj.org/toc/1530-6550 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2024 1, p 20 |
spelling |
10.31083/j.rcm2501020 doi (DE-627)DOAJ096119896 (DE-599)DOAJb257bc87945d49b0aebe80a2dd1a5943 DE-627 ger DE-627 rakwb eng RC666-701 Haoyu Wu verfasserin aut Diagnostic Performance of Noninvasive Coronary Computed Tomography Angiography-Derived FFR for Coronary Lesion-Specific Ischemia Based on Deep Learning Analysis 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: The noninvasive computed tomography angiography–derived fractional flow reserve (CT-FFR) can be used to diagnose coronary ischemia. With advancements in associated software, the diagnostic capability of CT-FFR may have evolved. This study evaluates the effectiveness of a novel deep learning-based software in predicting coronary ischemia through CT-FFR. Methods: In this prospective study, 138 subjects with suspected or confirmed coronary artery disease were assessed. Following indication of 30%–90% stenosis on coronary computed tomography (CT) angiography, participants underwent invasive coronary angiography and fractional flow reserve (FFR) measurement. The diagnostic performance of the CT-FFR was determined using the FFR as the reference standard. Results: With a threshold of 0.80, the CT-FFR displayed an impressive diagnostic accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), positive predictive value (PPV), and negative predictive value (NPV) of 97.1%, 96.2%, 97.7%, 0.98, 96.2%, and 97.7%, respectively. At a 0.75 threshold, the CT-FFR showed a diagnostic accuracy, sensitivity, specificity, AUC, PPV, and NPV of 84.1%, 78.8%, 85.7%, 0.95, 63.4%, and 92.8%, respectively. The Bland–Altman analysis revealed a direct correlation between the CT-FFR and FFR (p < 0.001), without systematic differences (p = 0.085). Conclusions: The CT-FFR, empowered by novel deep learning software, demonstrates a strong correlation with the FFR, offering high clinical diagnostic accuracy for coronary ischemia. The results underline the potential of modern computational approaches in enhancing noninvasive coronary assessment. coronary artery disease coronary lesion-specific ischemia fractional flow reserve (ffr) computed tomography angiography-derived ffr (ct-ffr) coronary computed tomographic angiography deep learning analysis Diseases of the circulatory (Cardiovascular) system Lei Liang verfasserin aut Fuyu Qiu verfasserin aut Wenqi Han verfasserin aut Zheng Yang verfasserin aut Jie Qi verfasserin aut Jizhao Deng verfasserin aut Yida Tang verfasserin aut Xiling Shou verfasserin aut Haichao Chen verfasserin aut In Reviews in Cardiovascular Medicine IMR Press, 2020 25(2024), 1, p 20 (DE-627)363773541 (DE-600)2108911-5 21538174 nnns volume:25 year:2024 number:1, p 20 https://doi.org/10.31083/j.rcm2501020 kostenfrei https://doaj.org/article/b257bc87945d49b0aebe80a2dd1a5943 kostenfrei https://www.imrpress.com/journal/RCM/25/1/10.31083/j.rcm2501020 kostenfrei https://doaj.org/toc/1530-6550 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2024 1, p 20 |
allfields_unstemmed |
10.31083/j.rcm2501020 doi (DE-627)DOAJ096119896 (DE-599)DOAJb257bc87945d49b0aebe80a2dd1a5943 DE-627 ger DE-627 rakwb eng RC666-701 Haoyu Wu verfasserin aut Diagnostic Performance of Noninvasive Coronary Computed Tomography Angiography-Derived FFR for Coronary Lesion-Specific Ischemia Based on Deep Learning Analysis 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: The noninvasive computed tomography angiography–derived fractional flow reserve (CT-FFR) can be used to diagnose coronary ischemia. With advancements in associated software, the diagnostic capability of CT-FFR may have evolved. This study evaluates the effectiveness of a novel deep learning-based software in predicting coronary ischemia through CT-FFR. Methods: In this prospective study, 138 subjects with suspected or confirmed coronary artery disease were assessed. Following indication of 30%–90% stenosis on coronary computed tomography (CT) angiography, participants underwent invasive coronary angiography and fractional flow reserve (FFR) measurement. The diagnostic performance of the CT-FFR was determined using the FFR as the reference standard. Results: With a threshold of 0.80, the CT-FFR displayed an impressive diagnostic accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), positive predictive value (PPV), and negative predictive value (NPV) of 97.1%, 96.2%, 97.7%, 0.98, 96.2%, and 97.7%, respectively. At a 0.75 threshold, the CT-FFR showed a diagnostic accuracy, sensitivity, specificity, AUC, PPV, and NPV of 84.1%, 78.8%, 85.7%, 0.95, 63.4%, and 92.8%, respectively. The Bland–Altman analysis revealed a direct correlation between the CT-FFR and FFR (p < 0.001), without systematic differences (p = 0.085). Conclusions: The CT-FFR, empowered by novel deep learning software, demonstrates a strong correlation with the FFR, offering high clinical diagnostic accuracy for coronary ischemia. The results underline the potential of modern computational approaches in enhancing noninvasive coronary assessment. coronary artery disease coronary lesion-specific ischemia fractional flow reserve (ffr) computed tomography angiography-derived ffr (ct-ffr) coronary computed tomographic angiography deep learning analysis Diseases of the circulatory (Cardiovascular) system Lei Liang verfasserin aut Fuyu Qiu verfasserin aut Wenqi Han verfasserin aut Zheng Yang verfasserin aut Jie Qi verfasserin aut Jizhao Deng verfasserin aut Yida Tang verfasserin aut Xiling Shou verfasserin aut Haichao Chen verfasserin aut In Reviews in Cardiovascular Medicine IMR Press, 2020 25(2024), 1, p 20 (DE-627)363773541 (DE-600)2108911-5 21538174 nnns volume:25 year:2024 number:1, p 20 https://doi.org/10.31083/j.rcm2501020 kostenfrei https://doaj.org/article/b257bc87945d49b0aebe80a2dd1a5943 kostenfrei https://www.imrpress.com/journal/RCM/25/1/10.31083/j.rcm2501020 kostenfrei https://doaj.org/toc/1530-6550 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2024 1, p 20 |
allfieldsGer |
10.31083/j.rcm2501020 doi (DE-627)DOAJ096119896 (DE-599)DOAJb257bc87945d49b0aebe80a2dd1a5943 DE-627 ger DE-627 rakwb eng RC666-701 Haoyu Wu verfasserin aut Diagnostic Performance of Noninvasive Coronary Computed Tomography Angiography-Derived FFR for Coronary Lesion-Specific Ischemia Based on Deep Learning Analysis 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: The noninvasive computed tomography angiography–derived fractional flow reserve (CT-FFR) can be used to diagnose coronary ischemia. With advancements in associated software, the diagnostic capability of CT-FFR may have evolved. This study evaluates the effectiveness of a novel deep learning-based software in predicting coronary ischemia through CT-FFR. Methods: In this prospective study, 138 subjects with suspected or confirmed coronary artery disease were assessed. Following indication of 30%–90% stenosis on coronary computed tomography (CT) angiography, participants underwent invasive coronary angiography and fractional flow reserve (FFR) measurement. The diagnostic performance of the CT-FFR was determined using the FFR as the reference standard. Results: With a threshold of 0.80, the CT-FFR displayed an impressive diagnostic accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), positive predictive value (PPV), and negative predictive value (NPV) of 97.1%, 96.2%, 97.7%, 0.98, 96.2%, and 97.7%, respectively. At a 0.75 threshold, the CT-FFR showed a diagnostic accuracy, sensitivity, specificity, AUC, PPV, and NPV of 84.1%, 78.8%, 85.7%, 0.95, 63.4%, and 92.8%, respectively. The Bland–Altman analysis revealed a direct correlation between the CT-FFR and FFR (p < 0.001), without systematic differences (p = 0.085). Conclusions: The CT-FFR, empowered by novel deep learning software, demonstrates a strong correlation with the FFR, offering high clinical diagnostic accuracy for coronary ischemia. The results underline the potential of modern computational approaches in enhancing noninvasive coronary assessment. coronary artery disease coronary lesion-specific ischemia fractional flow reserve (ffr) computed tomography angiography-derived ffr (ct-ffr) coronary computed tomographic angiography deep learning analysis Diseases of the circulatory (Cardiovascular) system Lei Liang verfasserin aut Fuyu Qiu verfasserin aut Wenqi Han verfasserin aut Zheng Yang verfasserin aut Jie Qi verfasserin aut Jizhao Deng verfasserin aut Yida Tang verfasserin aut Xiling Shou verfasserin aut Haichao Chen verfasserin aut In Reviews in Cardiovascular Medicine IMR Press, 2020 25(2024), 1, p 20 (DE-627)363773541 (DE-600)2108911-5 21538174 nnns volume:25 year:2024 number:1, p 20 https://doi.org/10.31083/j.rcm2501020 kostenfrei https://doaj.org/article/b257bc87945d49b0aebe80a2dd1a5943 kostenfrei https://www.imrpress.com/journal/RCM/25/1/10.31083/j.rcm2501020 kostenfrei https://doaj.org/toc/1530-6550 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2024 1, p 20 |
allfieldsSound |
10.31083/j.rcm2501020 doi (DE-627)DOAJ096119896 (DE-599)DOAJb257bc87945d49b0aebe80a2dd1a5943 DE-627 ger DE-627 rakwb eng RC666-701 Haoyu Wu verfasserin aut Diagnostic Performance of Noninvasive Coronary Computed Tomography Angiography-Derived FFR for Coronary Lesion-Specific Ischemia Based on Deep Learning Analysis 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: The noninvasive computed tomography angiography–derived fractional flow reserve (CT-FFR) can be used to diagnose coronary ischemia. With advancements in associated software, the diagnostic capability of CT-FFR may have evolved. This study evaluates the effectiveness of a novel deep learning-based software in predicting coronary ischemia through CT-FFR. Methods: In this prospective study, 138 subjects with suspected or confirmed coronary artery disease were assessed. Following indication of 30%–90% stenosis on coronary computed tomography (CT) angiography, participants underwent invasive coronary angiography and fractional flow reserve (FFR) measurement. The diagnostic performance of the CT-FFR was determined using the FFR as the reference standard. Results: With a threshold of 0.80, the CT-FFR displayed an impressive diagnostic accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), positive predictive value (PPV), and negative predictive value (NPV) of 97.1%, 96.2%, 97.7%, 0.98, 96.2%, and 97.7%, respectively. At a 0.75 threshold, the CT-FFR showed a diagnostic accuracy, sensitivity, specificity, AUC, PPV, and NPV of 84.1%, 78.8%, 85.7%, 0.95, 63.4%, and 92.8%, respectively. The Bland–Altman analysis revealed a direct correlation between the CT-FFR and FFR (p < 0.001), without systematic differences (p = 0.085). Conclusions: The CT-FFR, empowered by novel deep learning software, demonstrates a strong correlation with the FFR, offering high clinical diagnostic accuracy for coronary ischemia. The results underline the potential of modern computational approaches in enhancing noninvasive coronary assessment. coronary artery disease coronary lesion-specific ischemia fractional flow reserve (ffr) computed tomography angiography-derived ffr (ct-ffr) coronary computed tomographic angiography deep learning analysis Diseases of the circulatory (Cardiovascular) system Lei Liang verfasserin aut Fuyu Qiu verfasserin aut Wenqi Han verfasserin aut Zheng Yang verfasserin aut Jie Qi verfasserin aut Jizhao Deng verfasserin aut Yida Tang verfasserin aut Xiling Shou verfasserin aut Haichao Chen verfasserin aut In Reviews in Cardiovascular Medicine IMR Press, 2020 25(2024), 1, p 20 (DE-627)363773541 (DE-600)2108911-5 21538174 nnns volume:25 year:2024 number:1, p 20 https://doi.org/10.31083/j.rcm2501020 kostenfrei https://doaj.org/article/b257bc87945d49b0aebe80a2dd1a5943 kostenfrei https://www.imrpress.com/journal/RCM/25/1/10.31083/j.rcm2501020 kostenfrei https://doaj.org/toc/1530-6550 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2024 1, p 20 |
language |
English |
source |
In Reviews in Cardiovascular Medicine 25(2024), 1, p 20 volume:25 year:2024 number:1, p 20 |
sourceStr |
In Reviews in Cardiovascular Medicine 25(2024), 1, p 20 volume:25 year:2024 number:1, p 20 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
coronary artery disease coronary lesion-specific ischemia fractional flow reserve (ffr) computed tomography angiography-derived ffr (ct-ffr) coronary computed tomographic angiography deep learning analysis Diseases of the circulatory (Cardiovascular) system |
isfreeaccess_bool |
true |
container_title |
Reviews in Cardiovascular Medicine |
authorswithroles_txt_mv |
Haoyu Wu @@aut@@ Lei Liang @@aut@@ Fuyu Qiu @@aut@@ Wenqi Han @@aut@@ Zheng Yang @@aut@@ Jie Qi @@aut@@ Jizhao Deng @@aut@@ Yida Tang @@aut@@ Xiling Shou @@aut@@ Haichao Chen @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
363773541 |
id |
DOAJ096119896 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096119896</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413142357.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.31083/j.rcm2501020</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096119896</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb257bc87945d49b0aebe80a2dd1a5943</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC666-701</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Haoyu Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Diagnostic Performance of Noninvasive Coronary Computed Tomography Angiography-Derived FFR for Coronary Lesion-Specific Ischemia Based on Deep Learning Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: The noninvasive computed tomography angiography–derived fractional flow reserve (CT-FFR) can be used to diagnose coronary ischemia. With advancements in associated software, the diagnostic capability of CT-FFR may have evolved. This study evaluates the effectiveness of a novel deep learning-based software in predicting coronary ischemia through CT-FFR. Methods: In this prospective study, 138 subjects with suspected or confirmed coronary artery disease were assessed. Following indication of 30%–90% stenosis on coronary computed tomography (CT) angiography, participants underwent invasive coronary angiography and fractional flow reserve (FFR) measurement. The diagnostic performance of the CT-FFR was determined using the FFR as the reference standard. Results: With a threshold of 0.80, the CT-FFR displayed an impressive diagnostic accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), positive predictive value (PPV), and negative predictive value (NPV) of 97.1%, 96.2%, 97.7%, 0.98, 96.2%, and 97.7%, respectively. At a 0.75 threshold, the CT-FFR showed a diagnostic accuracy, sensitivity, specificity, AUC, PPV, and NPV of 84.1%, 78.8%, 85.7%, 0.95, 63.4%, and 92.8%, respectively. The Bland–Altman analysis revealed a direct correlation between the CT-FFR and FFR (p < 0.001), without systematic differences (p = 0.085). Conclusions: The CT-FFR, empowered by novel deep learning software, demonstrates a strong correlation with the FFR, offering high clinical diagnostic accuracy for coronary ischemia. The results underline the potential of modern computational approaches in enhancing noninvasive coronary assessment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coronary artery disease</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coronary lesion-specific ischemia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractional flow reserve (ffr)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computed tomography angiography-derived ffr (ct-ffr)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coronary computed tomographic angiography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Diseases of the circulatory (Cardiovascular) system</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fuyu Qiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenqi Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zheng Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jie Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jizhao Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yida Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiling Shou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haichao Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Reviews in Cardiovascular Medicine</subfield><subfield code="d">IMR Press, 2020</subfield><subfield code="g">25(2024), 1, p 20</subfield><subfield code="w">(DE-627)363773541</subfield><subfield code="w">(DE-600)2108911-5</subfield><subfield code="x">21538174</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1, p 20</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.31083/j.rcm2501020</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b257bc87945d49b0aebe80a2dd1a5943</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.imrpress.com/journal/RCM/25/1/10.31083/j.rcm2501020</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1530-6550</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2024</subfield><subfield code="e">1, p 20</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Haoyu Wu |
spellingShingle |
Haoyu Wu misc RC666-701 misc coronary artery disease misc coronary lesion-specific ischemia misc fractional flow reserve (ffr) misc computed tomography angiography-derived ffr (ct-ffr) misc coronary computed tomographic angiography misc deep learning analysis misc Diseases of the circulatory (Cardiovascular) system Diagnostic Performance of Noninvasive Coronary Computed Tomography Angiography-Derived FFR for Coronary Lesion-Specific Ischemia Based on Deep Learning Analysis |
authorStr |
Haoyu Wu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)363773541 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC666-701 |
illustrated |
Not Illustrated |
issn |
21538174 |
topic_title |
RC666-701 Diagnostic Performance of Noninvasive Coronary Computed Tomography Angiography-Derived FFR for Coronary Lesion-Specific Ischemia Based on Deep Learning Analysis coronary artery disease coronary lesion-specific ischemia fractional flow reserve (ffr) computed tomography angiography-derived ffr (ct-ffr) coronary computed tomographic angiography deep learning analysis |
topic |
misc RC666-701 misc coronary artery disease misc coronary lesion-specific ischemia misc fractional flow reserve (ffr) misc computed tomography angiography-derived ffr (ct-ffr) misc coronary computed tomographic angiography misc deep learning analysis misc Diseases of the circulatory (Cardiovascular) system |
topic_unstemmed |
misc RC666-701 misc coronary artery disease misc coronary lesion-specific ischemia misc fractional flow reserve (ffr) misc computed tomography angiography-derived ffr (ct-ffr) misc coronary computed tomographic angiography misc deep learning analysis misc Diseases of the circulatory (Cardiovascular) system |
topic_browse |
misc RC666-701 misc coronary artery disease misc coronary lesion-specific ischemia misc fractional flow reserve (ffr) misc computed tomography angiography-derived ffr (ct-ffr) misc coronary computed tomographic angiography misc deep learning analysis misc Diseases of the circulatory (Cardiovascular) system |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Reviews in Cardiovascular Medicine |
hierarchy_parent_id |
363773541 |
hierarchy_top_title |
Reviews in Cardiovascular Medicine |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)363773541 (DE-600)2108911-5 |
title |
Diagnostic Performance of Noninvasive Coronary Computed Tomography Angiography-Derived FFR for Coronary Lesion-Specific Ischemia Based on Deep Learning Analysis |
ctrlnum |
(DE-627)DOAJ096119896 (DE-599)DOAJb257bc87945d49b0aebe80a2dd1a5943 |
title_full |
Diagnostic Performance of Noninvasive Coronary Computed Tomography Angiography-Derived FFR for Coronary Lesion-Specific Ischemia Based on Deep Learning Analysis |
author_sort |
Haoyu Wu |
journal |
Reviews in Cardiovascular Medicine |
journalStr |
Reviews in Cardiovascular Medicine |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Haoyu Wu Lei Liang Fuyu Qiu Wenqi Han Zheng Yang Jie Qi Jizhao Deng Yida Tang Xiling Shou Haichao Chen |
container_volume |
25 |
class |
RC666-701 |
format_se |
Elektronische Aufsätze |
author-letter |
Haoyu Wu |
doi_str_mv |
10.31083/j.rcm2501020 |
author2-role |
verfasserin |
title_sort |
diagnostic performance of noninvasive coronary computed tomography angiography-derived ffr for coronary lesion-specific ischemia based on deep learning analysis |
callnumber |
RC666-701 |
title_auth |
Diagnostic Performance of Noninvasive Coronary Computed Tomography Angiography-Derived FFR for Coronary Lesion-Specific Ischemia Based on Deep Learning Analysis |
abstract |
Background: The noninvasive computed tomography angiography–derived fractional flow reserve (CT-FFR) can be used to diagnose coronary ischemia. With advancements in associated software, the diagnostic capability of CT-FFR may have evolved. This study evaluates the effectiveness of a novel deep learning-based software in predicting coronary ischemia through CT-FFR. Methods: In this prospective study, 138 subjects with suspected or confirmed coronary artery disease were assessed. Following indication of 30%–90% stenosis on coronary computed tomography (CT) angiography, participants underwent invasive coronary angiography and fractional flow reserve (FFR) measurement. The diagnostic performance of the CT-FFR was determined using the FFR as the reference standard. Results: With a threshold of 0.80, the CT-FFR displayed an impressive diagnostic accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), positive predictive value (PPV), and negative predictive value (NPV) of 97.1%, 96.2%, 97.7%, 0.98, 96.2%, and 97.7%, respectively. At a 0.75 threshold, the CT-FFR showed a diagnostic accuracy, sensitivity, specificity, AUC, PPV, and NPV of 84.1%, 78.8%, 85.7%, 0.95, 63.4%, and 92.8%, respectively. The Bland–Altman analysis revealed a direct correlation between the CT-FFR and FFR (p < 0.001), without systematic differences (p = 0.085). Conclusions: The CT-FFR, empowered by novel deep learning software, demonstrates a strong correlation with the FFR, offering high clinical diagnostic accuracy for coronary ischemia. The results underline the potential of modern computational approaches in enhancing noninvasive coronary assessment. |
abstractGer |
Background: The noninvasive computed tomography angiography–derived fractional flow reserve (CT-FFR) can be used to diagnose coronary ischemia. With advancements in associated software, the diagnostic capability of CT-FFR may have evolved. This study evaluates the effectiveness of a novel deep learning-based software in predicting coronary ischemia through CT-FFR. Methods: In this prospective study, 138 subjects with suspected or confirmed coronary artery disease were assessed. Following indication of 30%–90% stenosis on coronary computed tomography (CT) angiography, participants underwent invasive coronary angiography and fractional flow reserve (FFR) measurement. The diagnostic performance of the CT-FFR was determined using the FFR as the reference standard. Results: With a threshold of 0.80, the CT-FFR displayed an impressive diagnostic accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), positive predictive value (PPV), and negative predictive value (NPV) of 97.1%, 96.2%, 97.7%, 0.98, 96.2%, and 97.7%, respectively. At a 0.75 threshold, the CT-FFR showed a diagnostic accuracy, sensitivity, specificity, AUC, PPV, and NPV of 84.1%, 78.8%, 85.7%, 0.95, 63.4%, and 92.8%, respectively. The Bland–Altman analysis revealed a direct correlation between the CT-FFR and FFR (p < 0.001), without systematic differences (p = 0.085). Conclusions: The CT-FFR, empowered by novel deep learning software, demonstrates a strong correlation with the FFR, offering high clinical diagnostic accuracy for coronary ischemia. The results underline the potential of modern computational approaches in enhancing noninvasive coronary assessment. |
abstract_unstemmed |
Background: The noninvasive computed tomography angiography–derived fractional flow reserve (CT-FFR) can be used to diagnose coronary ischemia. With advancements in associated software, the diagnostic capability of CT-FFR may have evolved. This study evaluates the effectiveness of a novel deep learning-based software in predicting coronary ischemia through CT-FFR. Methods: In this prospective study, 138 subjects with suspected or confirmed coronary artery disease were assessed. Following indication of 30%–90% stenosis on coronary computed tomography (CT) angiography, participants underwent invasive coronary angiography and fractional flow reserve (FFR) measurement. The diagnostic performance of the CT-FFR was determined using the FFR as the reference standard. Results: With a threshold of 0.80, the CT-FFR displayed an impressive diagnostic accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), positive predictive value (PPV), and negative predictive value (NPV) of 97.1%, 96.2%, 97.7%, 0.98, 96.2%, and 97.7%, respectively. At a 0.75 threshold, the CT-FFR showed a diagnostic accuracy, sensitivity, specificity, AUC, PPV, and NPV of 84.1%, 78.8%, 85.7%, 0.95, 63.4%, and 92.8%, respectively. The Bland–Altman analysis revealed a direct correlation between the CT-FFR and FFR (p < 0.001), without systematic differences (p = 0.085). Conclusions: The CT-FFR, empowered by novel deep learning software, demonstrates a strong correlation with the FFR, offering high clinical diagnostic accuracy for coronary ischemia. The results underline the potential of modern computational approaches in enhancing noninvasive coronary assessment. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 20 |
title_short |
Diagnostic Performance of Noninvasive Coronary Computed Tomography Angiography-Derived FFR for Coronary Lesion-Specific Ischemia Based on Deep Learning Analysis |
url |
https://doi.org/10.31083/j.rcm2501020 https://doaj.org/article/b257bc87945d49b0aebe80a2dd1a5943 https://www.imrpress.com/journal/RCM/25/1/10.31083/j.rcm2501020 https://doaj.org/toc/1530-6550 |
remote_bool |
true |
author2 |
Lei Liang Fuyu Qiu Wenqi Han Zheng Yang Jie Qi Jizhao Deng Yida Tang Xiling Shou Haichao Chen |
author2Str |
Lei Liang Fuyu Qiu Wenqi Han Zheng Yang Jie Qi Jizhao Deng Yida Tang Xiling Shou Haichao Chen |
ppnlink |
363773541 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.31083/j.rcm2501020 |
callnumber-a |
RC666-701 |
up_date |
2024-07-03T18:24:50.233Z |
_version_ |
1803583320472158208 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096119896</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413142357.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.31083/j.rcm2501020</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096119896</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb257bc87945d49b0aebe80a2dd1a5943</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC666-701</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Haoyu Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Diagnostic Performance of Noninvasive Coronary Computed Tomography Angiography-Derived FFR for Coronary Lesion-Specific Ischemia Based on Deep Learning Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: The noninvasive computed tomography angiography–derived fractional flow reserve (CT-FFR) can be used to diagnose coronary ischemia. With advancements in associated software, the diagnostic capability of CT-FFR may have evolved. This study evaluates the effectiveness of a novel deep learning-based software in predicting coronary ischemia through CT-FFR. Methods: In this prospective study, 138 subjects with suspected or confirmed coronary artery disease were assessed. Following indication of 30%–90% stenosis on coronary computed tomography (CT) angiography, participants underwent invasive coronary angiography and fractional flow reserve (FFR) measurement. The diagnostic performance of the CT-FFR was determined using the FFR as the reference standard. Results: With a threshold of 0.80, the CT-FFR displayed an impressive diagnostic accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), positive predictive value (PPV), and negative predictive value (NPV) of 97.1%, 96.2%, 97.7%, 0.98, 96.2%, and 97.7%, respectively. At a 0.75 threshold, the CT-FFR showed a diagnostic accuracy, sensitivity, specificity, AUC, PPV, and NPV of 84.1%, 78.8%, 85.7%, 0.95, 63.4%, and 92.8%, respectively. The Bland–Altman analysis revealed a direct correlation between the CT-FFR and FFR (p < 0.001), without systematic differences (p = 0.085). Conclusions: The CT-FFR, empowered by novel deep learning software, demonstrates a strong correlation with the FFR, offering high clinical diagnostic accuracy for coronary ischemia. The results underline the potential of modern computational approaches in enhancing noninvasive coronary assessment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coronary artery disease</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coronary lesion-specific ischemia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractional flow reserve (ffr)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computed tomography angiography-derived ffr (ct-ffr)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coronary computed tomographic angiography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Diseases of the circulatory (Cardiovascular) system</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fuyu Qiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenqi Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zheng Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jie Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jizhao Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yida Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiling Shou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haichao Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Reviews in Cardiovascular Medicine</subfield><subfield code="d">IMR Press, 2020</subfield><subfield code="g">25(2024), 1, p 20</subfield><subfield code="w">(DE-627)363773541</subfield><subfield code="w">(DE-600)2108911-5</subfield><subfield code="x">21538174</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1, p 20</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.31083/j.rcm2501020</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b257bc87945d49b0aebe80a2dd1a5943</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.imrpress.com/journal/RCM/25/1/10.31083/j.rcm2501020</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1530-6550</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2024</subfield><subfield code="e">1, p 20</subfield></datafield></record></collection>
|
score |
7.401639 |