A High-Parallelism RRAM-Based Compute-In-Memory Macro With Intrinsic Impedance Boosting and In-ADC Computing
Resistive random access memory (RRAM) is considered to be a promising compute-in-memory (CIM) platform; however, they tend to lose energy efficiency quickly in high-throughput and high-resolution cases. Instead of using access transistors as switches, this work explores their analog characteristics...
Ausführliche Beschreibung
Autor*in: |
Tian Xie [verfasserIn] Shimeng Yu [verfasserIn] Shaolan Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Journal on Exploratory Solid-State Computational Devices and Circuits - IEEE, 2019, 9(2023), 1, Seite 38-46 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2023 ; number:1 ; pages:38-46 |
Links: |
---|
DOI / URN: |
10.1109/JXCDC.2023.3255788 |
---|
Katalog-ID: |
DOAJ096121165 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ096121165 | ||
003 | DE-627 | ||
005 | 20240413142414.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/JXCDC.2023.3255788 |2 doi | |
035 | |a (DE-627)DOAJ096121165 | ||
035 | |a (DE-599)DOAJd5180028a13d425db8b21d969f02fdd1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK7885-7895 | |
100 | 0 | |a Tian Xie |e verfasserin |4 aut | |
245 | 1 | 2 | |a A High-Parallelism RRAM-Based Compute-In-Memory Macro With Intrinsic Impedance Boosting and In-ADC Computing |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Resistive random access memory (RRAM) is considered to be a promising compute-in-memory (CIM) platform; however, they tend to lose energy efficiency quickly in high-throughput and high-resolution cases. Instead of using access transistors as switches, this work explores their analog characteristics as common-gate current buffers. So the cell current can be minimized and the output impedance is boosted. The idea of In-ADC Computing (IAC) is also proposed to further decrease the complexity of the peripheral circuits. Benefiting from the proposed ideas, a pretrained VGG-8 network based on the CIFAR-10 dataset can be implemented, and an accuracy of 87.2% is achieved with 8.9 TOPS/W energy efficiency (for 8-bit multiply-and-accumulate (MAC) operation), demonstrating that the proposed techniques enable low-distortion partial sum results while still being able to operate in a power-efficient way. | ||
650 | 4 | |a High parallelism | |
650 | 4 | |a In-ADC Computing (IAC) | |
650 | 4 | |a in-memory computing | |
650 | 4 | |a intrinsic impedance boosting (IIB) | |
650 | 4 | |a resistive random access memory (RRAM) | |
653 | 0 | |a Computer engineering. Computer hardware | |
700 | 0 | |a Shimeng Yu |e verfasserin |4 aut | |
700 | 0 | |a Shaolan Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Journal on Exploratory Solid-State Computational Devices and Circuits |d IEEE, 2019 |g 9(2023), 1, Seite 38-46 |w (DE-627)842240136 |w (DE-600)2840841-X |x 23299231 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2023 |g number:1 |g pages:38-46 |
856 | 4 | 0 | |u https://doi.org/10.1109/JXCDC.2023.3255788 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/d5180028a13d425db8b21d969f02fdd1 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/10070378/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2329-9231 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2023 |e 1 |h 38-46 |
author_variant |
t x tx s y sy s l sl |
---|---|
matchkey_str |
article:23299231:2023----::hgprleimrmaecmueneoyarwtitiscmeacb |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TK |
publishDate |
2023 |
allfields |
10.1109/JXCDC.2023.3255788 doi (DE-627)DOAJ096121165 (DE-599)DOAJd5180028a13d425db8b21d969f02fdd1 DE-627 ger DE-627 rakwb eng TK7885-7895 Tian Xie verfasserin aut A High-Parallelism RRAM-Based Compute-In-Memory Macro With Intrinsic Impedance Boosting and In-ADC Computing 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Resistive random access memory (RRAM) is considered to be a promising compute-in-memory (CIM) platform; however, they tend to lose energy efficiency quickly in high-throughput and high-resolution cases. Instead of using access transistors as switches, this work explores their analog characteristics as common-gate current buffers. So the cell current can be minimized and the output impedance is boosted. The idea of In-ADC Computing (IAC) is also proposed to further decrease the complexity of the peripheral circuits. Benefiting from the proposed ideas, a pretrained VGG-8 network based on the CIFAR-10 dataset can be implemented, and an accuracy of 87.2% is achieved with 8.9 TOPS/W energy efficiency (for 8-bit multiply-and-accumulate (MAC) operation), demonstrating that the proposed techniques enable low-distortion partial sum results while still being able to operate in a power-efficient way. High parallelism In-ADC Computing (IAC) in-memory computing intrinsic impedance boosting (IIB) resistive random access memory (RRAM) Computer engineering. Computer hardware Shimeng Yu verfasserin aut Shaolan Li verfasserin aut In IEEE Journal on Exploratory Solid-State Computational Devices and Circuits IEEE, 2019 9(2023), 1, Seite 38-46 (DE-627)842240136 (DE-600)2840841-X 23299231 nnns volume:9 year:2023 number:1 pages:38-46 https://doi.org/10.1109/JXCDC.2023.3255788 kostenfrei https://doaj.org/article/d5180028a13d425db8b21d969f02fdd1 kostenfrei https://ieeexplore.ieee.org/document/10070378/ kostenfrei https://doaj.org/toc/2329-9231 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2023 1 38-46 |
spelling |
10.1109/JXCDC.2023.3255788 doi (DE-627)DOAJ096121165 (DE-599)DOAJd5180028a13d425db8b21d969f02fdd1 DE-627 ger DE-627 rakwb eng TK7885-7895 Tian Xie verfasserin aut A High-Parallelism RRAM-Based Compute-In-Memory Macro With Intrinsic Impedance Boosting and In-ADC Computing 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Resistive random access memory (RRAM) is considered to be a promising compute-in-memory (CIM) platform; however, they tend to lose energy efficiency quickly in high-throughput and high-resolution cases. Instead of using access transistors as switches, this work explores their analog characteristics as common-gate current buffers. So the cell current can be minimized and the output impedance is boosted. The idea of In-ADC Computing (IAC) is also proposed to further decrease the complexity of the peripheral circuits. Benefiting from the proposed ideas, a pretrained VGG-8 network based on the CIFAR-10 dataset can be implemented, and an accuracy of 87.2% is achieved with 8.9 TOPS/W energy efficiency (for 8-bit multiply-and-accumulate (MAC) operation), demonstrating that the proposed techniques enable low-distortion partial sum results while still being able to operate in a power-efficient way. High parallelism In-ADC Computing (IAC) in-memory computing intrinsic impedance boosting (IIB) resistive random access memory (RRAM) Computer engineering. Computer hardware Shimeng Yu verfasserin aut Shaolan Li verfasserin aut In IEEE Journal on Exploratory Solid-State Computational Devices and Circuits IEEE, 2019 9(2023), 1, Seite 38-46 (DE-627)842240136 (DE-600)2840841-X 23299231 nnns volume:9 year:2023 number:1 pages:38-46 https://doi.org/10.1109/JXCDC.2023.3255788 kostenfrei https://doaj.org/article/d5180028a13d425db8b21d969f02fdd1 kostenfrei https://ieeexplore.ieee.org/document/10070378/ kostenfrei https://doaj.org/toc/2329-9231 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2023 1 38-46 |
allfields_unstemmed |
10.1109/JXCDC.2023.3255788 doi (DE-627)DOAJ096121165 (DE-599)DOAJd5180028a13d425db8b21d969f02fdd1 DE-627 ger DE-627 rakwb eng TK7885-7895 Tian Xie verfasserin aut A High-Parallelism RRAM-Based Compute-In-Memory Macro With Intrinsic Impedance Boosting and In-ADC Computing 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Resistive random access memory (RRAM) is considered to be a promising compute-in-memory (CIM) platform; however, they tend to lose energy efficiency quickly in high-throughput and high-resolution cases. Instead of using access transistors as switches, this work explores their analog characteristics as common-gate current buffers. So the cell current can be minimized and the output impedance is boosted. The idea of In-ADC Computing (IAC) is also proposed to further decrease the complexity of the peripheral circuits. Benefiting from the proposed ideas, a pretrained VGG-8 network based on the CIFAR-10 dataset can be implemented, and an accuracy of 87.2% is achieved with 8.9 TOPS/W energy efficiency (for 8-bit multiply-and-accumulate (MAC) operation), demonstrating that the proposed techniques enable low-distortion partial sum results while still being able to operate in a power-efficient way. High parallelism In-ADC Computing (IAC) in-memory computing intrinsic impedance boosting (IIB) resistive random access memory (RRAM) Computer engineering. Computer hardware Shimeng Yu verfasserin aut Shaolan Li verfasserin aut In IEEE Journal on Exploratory Solid-State Computational Devices and Circuits IEEE, 2019 9(2023), 1, Seite 38-46 (DE-627)842240136 (DE-600)2840841-X 23299231 nnns volume:9 year:2023 number:1 pages:38-46 https://doi.org/10.1109/JXCDC.2023.3255788 kostenfrei https://doaj.org/article/d5180028a13d425db8b21d969f02fdd1 kostenfrei https://ieeexplore.ieee.org/document/10070378/ kostenfrei https://doaj.org/toc/2329-9231 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2023 1 38-46 |
allfieldsGer |
10.1109/JXCDC.2023.3255788 doi (DE-627)DOAJ096121165 (DE-599)DOAJd5180028a13d425db8b21d969f02fdd1 DE-627 ger DE-627 rakwb eng TK7885-7895 Tian Xie verfasserin aut A High-Parallelism RRAM-Based Compute-In-Memory Macro With Intrinsic Impedance Boosting and In-ADC Computing 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Resistive random access memory (RRAM) is considered to be a promising compute-in-memory (CIM) platform; however, they tend to lose energy efficiency quickly in high-throughput and high-resolution cases. Instead of using access transistors as switches, this work explores their analog characteristics as common-gate current buffers. So the cell current can be minimized and the output impedance is boosted. The idea of In-ADC Computing (IAC) is also proposed to further decrease the complexity of the peripheral circuits. Benefiting from the proposed ideas, a pretrained VGG-8 network based on the CIFAR-10 dataset can be implemented, and an accuracy of 87.2% is achieved with 8.9 TOPS/W energy efficiency (for 8-bit multiply-and-accumulate (MAC) operation), demonstrating that the proposed techniques enable low-distortion partial sum results while still being able to operate in a power-efficient way. High parallelism In-ADC Computing (IAC) in-memory computing intrinsic impedance boosting (IIB) resistive random access memory (RRAM) Computer engineering. Computer hardware Shimeng Yu verfasserin aut Shaolan Li verfasserin aut In IEEE Journal on Exploratory Solid-State Computational Devices and Circuits IEEE, 2019 9(2023), 1, Seite 38-46 (DE-627)842240136 (DE-600)2840841-X 23299231 nnns volume:9 year:2023 number:1 pages:38-46 https://doi.org/10.1109/JXCDC.2023.3255788 kostenfrei https://doaj.org/article/d5180028a13d425db8b21d969f02fdd1 kostenfrei https://ieeexplore.ieee.org/document/10070378/ kostenfrei https://doaj.org/toc/2329-9231 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2023 1 38-46 |
allfieldsSound |
10.1109/JXCDC.2023.3255788 doi (DE-627)DOAJ096121165 (DE-599)DOAJd5180028a13d425db8b21d969f02fdd1 DE-627 ger DE-627 rakwb eng TK7885-7895 Tian Xie verfasserin aut A High-Parallelism RRAM-Based Compute-In-Memory Macro With Intrinsic Impedance Boosting and In-ADC Computing 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Resistive random access memory (RRAM) is considered to be a promising compute-in-memory (CIM) platform; however, they tend to lose energy efficiency quickly in high-throughput and high-resolution cases. Instead of using access transistors as switches, this work explores their analog characteristics as common-gate current buffers. So the cell current can be minimized and the output impedance is boosted. The idea of In-ADC Computing (IAC) is also proposed to further decrease the complexity of the peripheral circuits. Benefiting from the proposed ideas, a pretrained VGG-8 network based on the CIFAR-10 dataset can be implemented, and an accuracy of 87.2% is achieved with 8.9 TOPS/W energy efficiency (for 8-bit multiply-and-accumulate (MAC) operation), demonstrating that the proposed techniques enable low-distortion partial sum results while still being able to operate in a power-efficient way. High parallelism In-ADC Computing (IAC) in-memory computing intrinsic impedance boosting (IIB) resistive random access memory (RRAM) Computer engineering. Computer hardware Shimeng Yu verfasserin aut Shaolan Li verfasserin aut In IEEE Journal on Exploratory Solid-State Computational Devices and Circuits IEEE, 2019 9(2023), 1, Seite 38-46 (DE-627)842240136 (DE-600)2840841-X 23299231 nnns volume:9 year:2023 number:1 pages:38-46 https://doi.org/10.1109/JXCDC.2023.3255788 kostenfrei https://doaj.org/article/d5180028a13d425db8b21d969f02fdd1 kostenfrei https://ieeexplore.ieee.org/document/10070378/ kostenfrei https://doaj.org/toc/2329-9231 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2023 1 38-46 |
language |
English |
source |
In IEEE Journal on Exploratory Solid-State Computational Devices and Circuits 9(2023), 1, Seite 38-46 volume:9 year:2023 number:1 pages:38-46 |
sourceStr |
In IEEE Journal on Exploratory Solid-State Computational Devices and Circuits 9(2023), 1, Seite 38-46 volume:9 year:2023 number:1 pages:38-46 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
High parallelism In-ADC Computing (IAC) in-memory computing intrinsic impedance boosting (IIB) resistive random access memory (RRAM) Computer engineering. Computer hardware |
isfreeaccess_bool |
true |
container_title |
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits |
authorswithroles_txt_mv |
Tian Xie @@aut@@ Shimeng Yu @@aut@@ Shaolan Li @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
842240136 |
id |
DOAJ096121165 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096121165</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413142414.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JXCDC.2023.3255788</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096121165</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd5180028a13d425db8b21d969f02fdd1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7885-7895</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Tian Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A High-Parallelism RRAM-Based Compute-In-Memory Macro With Intrinsic Impedance Boosting and In-ADC Computing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Resistive random access memory (RRAM) is considered to be a promising compute-in-memory (CIM) platform; however, they tend to lose energy efficiency quickly in high-throughput and high-resolution cases. Instead of using access transistors as switches, this work explores their analog characteristics as common-gate current buffers. So the cell current can be minimized and the output impedance is boosted. The idea of In-ADC Computing (IAC) is also proposed to further decrease the complexity of the peripheral circuits. Benefiting from the proposed ideas, a pretrained VGG-8 network based on the CIFAR-10 dataset can be implemented, and an accuracy of 87.2% is achieved with 8.9 TOPS/W energy efficiency (for 8-bit multiply-and-accumulate (MAC) operation), demonstrating that the proposed techniques enable low-distortion partial sum results while still being able to operate in a power-efficient way.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High parallelism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">In-ADC Computing (IAC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">in-memory computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">intrinsic impedance boosting (IIB)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">resistive random access memory (RRAM)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer engineering. Computer hardware</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shimeng Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shaolan Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Journal on Exploratory Solid-State Computational Devices and Circuits</subfield><subfield code="d">IEEE, 2019</subfield><subfield code="g">9(2023), 1, Seite 38-46</subfield><subfield code="w">(DE-627)842240136</subfield><subfield code="w">(DE-600)2840841-X</subfield><subfield code="x">23299231</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:38-46</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/JXCDC.2023.3255788</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d5180028a13d425db8b21d969f02fdd1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/10070378/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2329-9231</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">38-46</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Tian Xie |
spellingShingle |
Tian Xie misc TK7885-7895 misc High parallelism misc In-ADC Computing (IAC) misc in-memory computing misc intrinsic impedance boosting (IIB) misc resistive random access memory (RRAM) misc Computer engineering. Computer hardware A High-Parallelism RRAM-Based Compute-In-Memory Macro With Intrinsic Impedance Boosting and In-ADC Computing |
authorStr |
Tian Xie |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)842240136 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK7885-7895 |
illustrated |
Not Illustrated |
issn |
23299231 |
topic_title |
TK7885-7895 A High-Parallelism RRAM-Based Compute-In-Memory Macro With Intrinsic Impedance Boosting and In-ADC Computing High parallelism In-ADC Computing (IAC) in-memory computing intrinsic impedance boosting (IIB) resistive random access memory (RRAM) |
topic |
misc TK7885-7895 misc High parallelism misc In-ADC Computing (IAC) misc in-memory computing misc intrinsic impedance boosting (IIB) misc resistive random access memory (RRAM) misc Computer engineering. Computer hardware |
topic_unstemmed |
misc TK7885-7895 misc High parallelism misc In-ADC Computing (IAC) misc in-memory computing misc intrinsic impedance boosting (IIB) misc resistive random access memory (RRAM) misc Computer engineering. Computer hardware |
topic_browse |
misc TK7885-7895 misc High parallelism misc In-ADC Computing (IAC) misc in-memory computing misc intrinsic impedance boosting (IIB) misc resistive random access memory (RRAM) misc Computer engineering. Computer hardware |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits |
hierarchy_parent_id |
842240136 |
hierarchy_top_title |
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)842240136 (DE-600)2840841-X |
title |
A High-Parallelism RRAM-Based Compute-In-Memory Macro With Intrinsic Impedance Boosting and In-ADC Computing |
ctrlnum |
(DE-627)DOAJ096121165 (DE-599)DOAJd5180028a13d425db8b21d969f02fdd1 |
title_full |
A High-Parallelism RRAM-Based Compute-In-Memory Macro With Intrinsic Impedance Boosting and In-ADC Computing |
author_sort |
Tian Xie |
journal |
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits |
journalStr |
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
38 |
author_browse |
Tian Xie Shimeng Yu Shaolan Li |
container_volume |
9 |
class |
TK7885-7895 |
format_se |
Elektronische Aufsätze |
author-letter |
Tian Xie |
doi_str_mv |
10.1109/JXCDC.2023.3255788 |
author2-role |
verfasserin |
title_sort |
high-parallelism rram-based compute-in-memory macro with intrinsic impedance boosting and in-adc computing |
callnumber |
TK7885-7895 |
title_auth |
A High-Parallelism RRAM-Based Compute-In-Memory Macro With Intrinsic Impedance Boosting and In-ADC Computing |
abstract |
Resistive random access memory (RRAM) is considered to be a promising compute-in-memory (CIM) platform; however, they tend to lose energy efficiency quickly in high-throughput and high-resolution cases. Instead of using access transistors as switches, this work explores their analog characteristics as common-gate current buffers. So the cell current can be minimized and the output impedance is boosted. The idea of In-ADC Computing (IAC) is also proposed to further decrease the complexity of the peripheral circuits. Benefiting from the proposed ideas, a pretrained VGG-8 network based on the CIFAR-10 dataset can be implemented, and an accuracy of 87.2% is achieved with 8.9 TOPS/W energy efficiency (for 8-bit multiply-and-accumulate (MAC) operation), demonstrating that the proposed techniques enable low-distortion partial sum results while still being able to operate in a power-efficient way. |
abstractGer |
Resistive random access memory (RRAM) is considered to be a promising compute-in-memory (CIM) platform; however, they tend to lose energy efficiency quickly in high-throughput and high-resolution cases. Instead of using access transistors as switches, this work explores their analog characteristics as common-gate current buffers. So the cell current can be minimized and the output impedance is boosted. The idea of In-ADC Computing (IAC) is also proposed to further decrease the complexity of the peripheral circuits. Benefiting from the proposed ideas, a pretrained VGG-8 network based on the CIFAR-10 dataset can be implemented, and an accuracy of 87.2% is achieved with 8.9 TOPS/W energy efficiency (for 8-bit multiply-and-accumulate (MAC) operation), demonstrating that the proposed techniques enable low-distortion partial sum results while still being able to operate in a power-efficient way. |
abstract_unstemmed |
Resistive random access memory (RRAM) is considered to be a promising compute-in-memory (CIM) platform; however, they tend to lose energy efficiency quickly in high-throughput and high-resolution cases. Instead of using access transistors as switches, this work explores their analog characteristics as common-gate current buffers. So the cell current can be minimized and the output impedance is boosted. The idea of In-ADC Computing (IAC) is also proposed to further decrease the complexity of the peripheral circuits. Benefiting from the proposed ideas, a pretrained VGG-8 network based on the CIFAR-10 dataset can be implemented, and an accuracy of 87.2% is achieved with 8.9 TOPS/W energy efficiency (for 8-bit multiply-and-accumulate (MAC) operation), demonstrating that the proposed techniques enable low-distortion partial sum results while still being able to operate in a power-efficient way. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
A High-Parallelism RRAM-Based Compute-In-Memory Macro With Intrinsic Impedance Boosting and In-ADC Computing |
url |
https://doi.org/10.1109/JXCDC.2023.3255788 https://doaj.org/article/d5180028a13d425db8b21d969f02fdd1 https://ieeexplore.ieee.org/document/10070378/ https://doaj.org/toc/2329-9231 |
remote_bool |
true |
author2 |
Shimeng Yu Shaolan Li |
author2Str |
Shimeng Yu Shaolan Li |
ppnlink |
842240136 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/JXCDC.2023.3255788 |
callnumber-a |
TK7885-7895 |
up_date |
2024-07-03T18:25:17.382Z |
_version_ |
1803583348945190912 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096121165</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413142414.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JXCDC.2023.3255788</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096121165</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd5180028a13d425db8b21d969f02fdd1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7885-7895</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Tian Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A High-Parallelism RRAM-Based Compute-In-Memory Macro With Intrinsic Impedance Boosting and In-ADC Computing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Resistive random access memory (RRAM) is considered to be a promising compute-in-memory (CIM) platform; however, they tend to lose energy efficiency quickly in high-throughput and high-resolution cases. Instead of using access transistors as switches, this work explores their analog characteristics as common-gate current buffers. So the cell current can be minimized and the output impedance is boosted. The idea of In-ADC Computing (IAC) is also proposed to further decrease the complexity of the peripheral circuits. Benefiting from the proposed ideas, a pretrained VGG-8 network based on the CIFAR-10 dataset can be implemented, and an accuracy of 87.2% is achieved with 8.9 TOPS/W energy efficiency (for 8-bit multiply-and-accumulate (MAC) operation), demonstrating that the proposed techniques enable low-distortion partial sum results while still being able to operate in a power-efficient way.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High parallelism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">In-ADC Computing (IAC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">in-memory computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">intrinsic impedance boosting (IIB)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">resistive random access memory (RRAM)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer engineering. Computer hardware</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shimeng Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shaolan Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Journal on Exploratory Solid-State Computational Devices and Circuits</subfield><subfield code="d">IEEE, 2019</subfield><subfield code="g">9(2023), 1, Seite 38-46</subfield><subfield code="w">(DE-627)842240136</subfield><subfield code="w">(DE-600)2840841-X</subfield><subfield code="x">23299231</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:38-46</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/JXCDC.2023.3255788</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d5180028a13d425db8b21d969f02fdd1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/10070378/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2329-9231</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">38-46</subfield></datafield></record></collection>
|
score |
7.40226 |