Lightweight Super-Resolution Reconstruction Vision Transformers of Remote Sensing Image Based on Structural Re-Parameterization
In recent times, remote sensing image super-resolution reconstruction technology based on deep learning has experienced rapid development. However, most algorithms in this domain concentrate solely on enhancing the super-resolution network’s performance while neglecting the equally crucial aspect of...
Ausführliche Beschreibung
Autor*in: |
Jiaming Bian [verfasserIn] Ye Liu [verfasserIn] Jun Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Applied Sciences - MDPI AG, 2012, 14(2024), 2, p 917 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2024 ; number:2, p 917 |
Links: |
---|
DOI / URN: |
10.3390/app14020917 |
---|
Katalog-ID: |
DOAJ09619832X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ09619832X | ||
003 | DE-627 | ||
005 | 20240413144003.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/app14020917 |2 doi | |
035 | |a (DE-627)DOAJ09619832X | ||
035 | |a (DE-599)DOAJdfd02d4aa78745fb8b626edefb8e1526 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Jiaming Bian |e verfasserin |4 aut | |
245 | 1 | 0 | |a Lightweight Super-Resolution Reconstruction Vision Transformers of Remote Sensing Image Based on Structural Re-Parameterization |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In recent times, remote sensing image super-resolution reconstruction technology based on deep learning has experienced rapid development. However, most algorithms in this domain concentrate solely on enhancing the super-resolution network’s performance while neglecting the equally crucial aspect of inference speed. In this study, we propose a method for lightweight super-resolution reconstruction of remote sensing images, termed SRRepViT. This approach reduces model parameters and floating-point operations during inference through parameter equivalent transformation. Using the RSSOD remote sensing dataset as our benchmark dataset, we compared the reconstruction performance, inference time, and model size of SRRepViT with other classical methods. Compared to the lightweight model ECBSR, SRRepViT exhibits slightly improved reconstruction performance while reducing inference time by 16% and model parameters by 34%, respectively. Moreover, compared to other classical super-resolution reconstruction methods, the SRRepViT model achieves similar reconstruction performance while reducing model parameters by 98% and increasing inference speed by 90% for a single remote sensing image. | ||
650 | 4 | |a remote sensing image | |
650 | 4 | |a super resolution reconstruction | |
650 | 4 | |a vision transformers | |
650 | 4 | |a structural re-parameterization | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Ye Liu |e verfasserin |4 aut | |
700 | 0 | |a Jun Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Applied Sciences |d MDPI AG, 2012 |g 14(2024), 2, p 917 |w (DE-627)737287640 |w (DE-600)2704225-X |x 20763417 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2024 |g number:2, p 917 |
856 | 4 | 0 | |u https://doi.org/10.3390/app14020917 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/dfd02d4aa78745fb8b626edefb8e1526 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3417/14/2/917 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3417 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2024 |e 2, p 917 |
author_variant |
j b jb y l yl j c jc |
---|---|
matchkey_str |
article:20763417:2024----::ihwihspreouineosrciniinrnfresfeoeesniaeaeo |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
TA |
publishDate |
2024 |
allfields |
10.3390/app14020917 doi (DE-627)DOAJ09619832X (DE-599)DOAJdfd02d4aa78745fb8b626edefb8e1526 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jiaming Bian verfasserin aut Lightweight Super-Resolution Reconstruction Vision Transformers of Remote Sensing Image Based on Structural Re-Parameterization 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent times, remote sensing image super-resolution reconstruction technology based on deep learning has experienced rapid development. However, most algorithms in this domain concentrate solely on enhancing the super-resolution network’s performance while neglecting the equally crucial aspect of inference speed. In this study, we propose a method for lightweight super-resolution reconstruction of remote sensing images, termed SRRepViT. This approach reduces model parameters and floating-point operations during inference through parameter equivalent transformation. Using the RSSOD remote sensing dataset as our benchmark dataset, we compared the reconstruction performance, inference time, and model size of SRRepViT with other classical methods. Compared to the lightweight model ECBSR, SRRepViT exhibits slightly improved reconstruction performance while reducing inference time by 16% and model parameters by 34%, respectively. Moreover, compared to other classical super-resolution reconstruction methods, the SRRepViT model achieves similar reconstruction performance while reducing model parameters by 98% and increasing inference speed by 90% for a single remote sensing image. remote sensing image super resolution reconstruction vision transformers structural re-parameterization Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Ye Liu verfasserin aut Jun Chen verfasserin aut In Applied Sciences MDPI AG, 2012 14(2024), 2, p 917 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:14 year:2024 number:2, p 917 https://doi.org/10.3390/app14020917 kostenfrei https://doaj.org/article/dfd02d4aa78745fb8b626edefb8e1526 kostenfrei https://www.mdpi.com/2076-3417/14/2/917 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 2, p 917 |
spelling |
10.3390/app14020917 doi (DE-627)DOAJ09619832X (DE-599)DOAJdfd02d4aa78745fb8b626edefb8e1526 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jiaming Bian verfasserin aut Lightweight Super-Resolution Reconstruction Vision Transformers of Remote Sensing Image Based on Structural Re-Parameterization 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent times, remote sensing image super-resolution reconstruction technology based on deep learning has experienced rapid development. However, most algorithms in this domain concentrate solely on enhancing the super-resolution network’s performance while neglecting the equally crucial aspect of inference speed. In this study, we propose a method for lightweight super-resolution reconstruction of remote sensing images, termed SRRepViT. This approach reduces model parameters and floating-point operations during inference through parameter equivalent transformation. Using the RSSOD remote sensing dataset as our benchmark dataset, we compared the reconstruction performance, inference time, and model size of SRRepViT with other classical methods. Compared to the lightweight model ECBSR, SRRepViT exhibits slightly improved reconstruction performance while reducing inference time by 16% and model parameters by 34%, respectively. Moreover, compared to other classical super-resolution reconstruction methods, the SRRepViT model achieves similar reconstruction performance while reducing model parameters by 98% and increasing inference speed by 90% for a single remote sensing image. remote sensing image super resolution reconstruction vision transformers structural re-parameterization Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Ye Liu verfasserin aut Jun Chen verfasserin aut In Applied Sciences MDPI AG, 2012 14(2024), 2, p 917 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:14 year:2024 number:2, p 917 https://doi.org/10.3390/app14020917 kostenfrei https://doaj.org/article/dfd02d4aa78745fb8b626edefb8e1526 kostenfrei https://www.mdpi.com/2076-3417/14/2/917 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 2, p 917 |
allfields_unstemmed |
10.3390/app14020917 doi (DE-627)DOAJ09619832X (DE-599)DOAJdfd02d4aa78745fb8b626edefb8e1526 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jiaming Bian verfasserin aut Lightweight Super-Resolution Reconstruction Vision Transformers of Remote Sensing Image Based on Structural Re-Parameterization 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent times, remote sensing image super-resolution reconstruction technology based on deep learning has experienced rapid development. However, most algorithms in this domain concentrate solely on enhancing the super-resolution network’s performance while neglecting the equally crucial aspect of inference speed. In this study, we propose a method for lightweight super-resolution reconstruction of remote sensing images, termed SRRepViT. This approach reduces model parameters and floating-point operations during inference through parameter equivalent transformation. Using the RSSOD remote sensing dataset as our benchmark dataset, we compared the reconstruction performance, inference time, and model size of SRRepViT with other classical methods. Compared to the lightweight model ECBSR, SRRepViT exhibits slightly improved reconstruction performance while reducing inference time by 16% and model parameters by 34%, respectively. Moreover, compared to other classical super-resolution reconstruction methods, the SRRepViT model achieves similar reconstruction performance while reducing model parameters by 98% and increasing inference speed by 90% for a single remote sensing image. remote sensing image super resolution reconstruction vision transformers structural re-parameterization Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Ye Liu verfasserin aut Jun Chen verfasserin aut In Applied Sciences MDPI AG, 2012 14(2024), 2, p 917 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:14 year:2024 number:2, p 917 https://doi.org/10.3390/app14020917 kostenfrei https://doaj.org/article/dfd02d4aa78745fb8b626edefb8e1526 kostenfrei https://www.mdpi.com/2076-3417/14/2/917 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 2, p 917 |
allfieldsGer |
10.3390/app14020917 doi (DE-627)DOAJ09619832X (DE-599)DOAJdfd02d4aa78745fb8b626edefb8e1526 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jiaming Bian verfasserin aut Lightweight Super-Resolution Reconstruction Vision Transformers of Remote Sensing Image Based on Structural Re-Parameterization 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent times, remote sensing image super-resolution reconstruction technology based on deep learning has experienced rapid development. However, most algorithms in this domain concentrate solely on enhancing the super-resolution network’s performance while neglecting the equally crucial aspect of inference speed. In this study, we propose a method for lightweight super-resolution reconstruction of remote sensing images, termed SRRepViT. This approach reduces model parameters and floating-point operations during inference through parameter equivalent transformation. Using the RSSOD remote sensing dataset as our benchmark dataset, we compared the reconstruction performance, inference time, and model size of SRRepViT with other classical methods. Compared to the lightweight model ECBSR, SRRepViT exhibits slightly improved reconstruction performance while reducing inference time by 16% and model parameters by 34%, respectively. Moreover, compared to other classical super-resolution reconstruction methods, the SRRepViT model achieves similar reconstruction performance while reducing model parameters by 98% and increasing inference speed by 90% for a single remote sensing image. remote sensing image super resolution reconstruction vision transformers structural re-parameterization Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Ye Liu verfasserin aut Jun Chen verfasserin aut In Applied Sciences MDPI AG, 2012 14(2024), 2, p 917 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:14 year:2024 number:2, p 917 https://doi.org/10.3390/app14020917 kostenfrei https://doaj.org/article/dfd02d4aa78745fb8b626edefb8e1526 kostenfrei https://www.mdpi.com/2076-3417/14/2/917 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 2, p 917 |
allfieldsSound |
10.3390/app14020917 doi (DE-627)DOAJ09619832X (DE-599)DOAJdfd02d4aa78745fb8b626edefb8e1526 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jiaming Bian verfasserin aut Lightweight Super-Resolution Reconstruction Vision Transformers of Remote Sensing Image Based on Structural Re-Parameterization 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent times, remote sensing image super-resolution reconstruction technology based on deep learning has experienced rapid development. However, most algorithms in this domain concentrate solely on enhancing the super-resolution network’s performance while neglecting the equally crucial aspect of inference speed. In this study, we propose a method for lightweight super-resolution reconstruction of remote sensing images, termed SRRepViT. This approach reduces model parameters and floating-point operations during inference through parameter equivalent transformation. Using the RSSOD remote sensing dataset as our benchmark dataset, we compared the reconstruction performance, inference time, and model size of SRRepViT with other classical methods. Compared to the lightweight model ECBSR, SRRepViT exhibits slightly improved reconstruction performance while reducing inference time by 16% and model parameters by 34%, respectively. Moreover, compared to other classical super-resolution reconstruction methods, the SRRepViT model achieves similar reconstruction performance while reducing model parameters by 98% and increasing inference speed by 90% for a single remote sensing image. remote sensing image super resolution reconstruction vision transformers structural re-parameterization Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Ye Liu verfasserin aut Jun Chen verfasserin aut In Applied Sciences MDPI AG, 2012 14(2024), 2, p 917 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:14 year:2024 number:2, p 917 https://doi.org/10.3390/app14020917 kostenfrei https://doaj.org/article/dfd02d4aa78745fb8b626edefb8e1526 kostenfrei https://www.mdpi.com/2076-3417/14/2/917 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 2, p 917 |
language |
English |
source |
In Applied Sciences 14(2024), 2, p 917 volume:14 year:2024 number:2, p 917 |
sourceStr |
In Applied Sciences 14(2024), 2, p 917 volume:14 year:2024 number:2, p 917 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
remote sensing image super resolution reconstruction vision transformers structural re-parameterization Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Applied Sciences |
authorswithroles_txt_mv |
Jiaming Bian @@aut@@ Ye Liu @@aut@@ Jun Chen @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
737287640 |
id |
DOAJ09619832X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ09619832X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413144003.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app14020917</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09619832X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdfd02d4aa78745fb8b626edefb8e1526</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiaming Bian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lightweight Super-Resolution Reconstruction Vision Transformers of Remote Sensing Image Based on Structural Re-Parameterization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In recent times, remote sensing image super-resolution reconstruction technology based on deep learning has experienced rapid development. However, most algorithms in this domain concentrate solely on enhancing the super-resolution network’s performance while neglecting the equally crucial aspect of inference speed. In this study, we propose a method for lightweight super-resolution reconstruction of remote sensing images, termed SRRepViT. This approach reduces model parameters and floating-point operations during inference through parameter equivalent transformation. Using the RSSOD remote sensing dataset as our benchmark dataset, we compared the reconstruction performance, inference time, and model size of SRRepViT with other classical methods. Compared to the lightweight model ECBSR, SRRepViT exhibits slightly improved reconstruction performance while reducing inference time by 16% and model parameters by 34%, respectively. Moreover, compared to other classical super-resolution reconstruction methods, the SRRepViT model achieves similar reconstruction performance while reducing model parameters by 98% and increasing inference speed by 90% for a single remote sensing image.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">remote sensing image</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">super resolution reconstruction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vision transformers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">structural re-parameterization</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ye Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">14(2024), 2, p 917</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2, p 917</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app14020917</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/dfd02d4aa78745fb8b626edefb8e1526</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/14/2/917</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2024</subfield><subfield code="e">2, p 917</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jiaming Bian |
spellingShingle |
Jiaming Bian misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc remote sensing image misc super resolution reconstruction misc vision transformers misc structural re-parameterization misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry Lightweight Super-Resolution Reconstruction Vision Transformers of Remote Sensing Image Based on Structural Re-Parameterization |
authorStr |
Jiaming Bian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287640 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20763417 |
topic_title |
TA1-2040 QH301-705.5 QC1-999 QD1-999 Lightweight Super-Resolution Reconstruction Vision Transformers of Remote Sensing Image Based on Structural Re-Parameterization remote sensing image super resolution reconstruction vision transformers structural re-parameterization |
topic |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc remote sensing image misc super resolution reconstruction misc vision transformers misc structural re-parameterization misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_unstemmed |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc remote sensing image misc super resolution reconstruction misc vision transformers misc structural re-parameterization misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_browse |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc remote sensing image misc super resolution reconstruction misc vision transformers misc structural re-parameterization misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied Sciences |
hierarchy_parent_id |
737287640 |
hierarchy_top_title |
Applied Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287640 (DE-600)2704225-X |
title |
Lightweight Super-Resolution Reconstruction Vision Transformers of Remote Sensing Image Based on Structural Re-Parameterization |
ctrlnum |
(DE-627)DOAJ09619832X (DE-599)DOAJdfd02d4aa78745fb8b626edefb8e1526 |
title_full |
Lightweight Super-Resolution Reconstruction Vision Transformers of Remote Sensing Image Based on Structural Re-Parameterization |
author_sort |
Jiaming Bian |
journal |
Applied Sciences |
journalStr |
Applied Sciences |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Jiaming Bian Ye Liu Jun Chen |
container_volume |
14 |
class |
TA1-2040 QH301-705.5 QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Jiaming Bian |
doi_str_mv |
10.3390/app14020917 |
author2-role |
verfasserin |
title_sort |
lightweight super-resolution reconstruction vision transformers of remote sensing image based on structural re-parameterization |
callnumber |
TA1-2040 |
title_auth |
Lightweight Super-Resolution Reconstruction Vision Transformers of Remote Sensing Image Based on Structural Re-Parameterization |
abstract |
In recent times, remote sensing image super-resolution reconstruction technology based on deep learning has experienced rapid development. However, most algorithms in this domain concentrate solely on enhancing the super-resolution network’s performance while neglecting the equally crucial aspect of inference speed. In this study, we propose a method for lightweight super-resolution reconstruction of remote sensing images, termed SRRepViT. This approach reduces model parameters and floating-point operations during inference through parameter equivalent transformation. Using the RSSOD remote sensing dataset as our benchmark dataset, we compared the reconstruction performance, inference time, and model size of SRRepViT with other classical methods. Compared to the lightweight model ECBSR, SRRepViT exhibits slightly improved reconstruction performance while reducing inference time by 16% and model parameters by 34%, respectively. Moreover, compared to other classical super-resolution reconstruction methods, the SRRepViT model achieves similar reconstruction performance while reducing model parameters by 98% and increasing inference speed by 90% for a single remote sensing image. |
abstractGer |
In recent times, remote sensing image super-resolution reconstruction technology based on deep learning has experienced rapid development. However, most algorithms in this domain concentrate solely on enhancing the super-resolution network’s performance while neglecting the equally crucial aspect of inference speed. In this study, we propose a method for lightweight super-resolution reconstruction of remote sensing images, termed SRRepViT. This approach reduces model parameters and floating-point operations during inference through parameter equivalent transformation. Using the RSSOD remote sensing dataset as our benchmark dataset, we compared the reconstruction performance, inference time, and model size of SRRepViT with other classical methods. Compared to the lightweight model ECBSR, SRRepViT exhibits slightly improved reconstruction performance while reducing inference time by 16% and model parameters by 34%, respectively. Moreover, compared to other classical super-resolution reconstruction methods, the SRRepViT model achieves similar reconstruction performance while reducing model parameters by 98% and increasing inference speed by 90% for a single remote sensing image. |
abstract_unstemmed |
In recent times, remote sensing image super-resolution reconstruction technology based on deep learning has experienced rapid development. However, most algorithms in this domain concentrate solely on enhancing the super-resolution network’s performance while neglecting the equally crucial aspect of inference speed. In this study, we propose a method for lightweight super-resolution reconstruction of remote sensing images, termed SRRepViT. This approach reduces model parameters and floating-point operations during inference through parameter equivalent transformation. Using the RSSOD remote sensing dataset as our benchmark dataset, we compared the reconstruction performance, inference time, and model size of SRRepViT with other classical methods. Compared to the lightweight model ECBSR, SRRepViT exhibits slightly improved reconstruction performance while reducing inference time by 16% and model parameters by 34%, respectively. Moreover, compared to other classical super-resolution reconstruction methods, the SRRepViT model achieves similar reconstruction performance while reducing model parameters by 98% and increasing inference speed by 90% for a single remote sensing image. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 917 |
title_short |
Lightweight Super-Resolution Reconstruction Vision Transformers of Remote Sensing Image Based on Structural Re-Parameterization |
url |
https://doi.org/10.3390/app14020917 https://doaj.org/article/dfd02d4aa78745fb8b626edefb8e1526 https://www.mdpi.com/2076-3417/14/2/917 https://doaj.org/toc/2076-3417 |
remote_bool |
true |
author2 |
Ye Liu Jun Chen |
author2Str |
Ye Liu Jun Chen |
ppnlink |
737287640 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/app14020917 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T18:50:14.084Z |
_version_ |
1803584918347841536 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ09619832X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413144003.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app14020917</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09619832X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdfd02d4aa78745fb8b626edefb8e1526</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiaming Bian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lightweight Super-Resolution Reconstruction Vision Transformers of Remote Sensing Image Based on Structural Re-Parameterization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In recent times, remote sensing image super-resolution reconstruction technology based on deep learning has experienced rapid development. However, most algorithms in this domain concentrate solely on enhancing the super-resolution network’s performance while neglecting the equally crucial aspect of inference speed. In this study, we propose a method for lightweight super-resolution reconstruction of remote sensing images, termed SRRepViT. This approach reduces model parameters and floating-point operations during inference through parameter equivalent transformation. Using the RSSOD remote sensing dataset as our benchmark dataset, we compared the reconstruction performance, inference time, and model size of SRRepViT with other classical methods. Compared to the lightweight model ECBSR, SRRepViT exhibits slightly improved reconstruction performance while reducing inference time by 16% and model parameters by 34%, respectively. Moreover, compared to other classical super-resolution reconstruction methods, the SRRepViT model achieves similar reconstruction performance while reducing model parameters by 98% and increasing inference speed by 90% for a single remote sensing image.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">remote sensing image</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">super resolution reconstruction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vision transformers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">structural re-parameterization</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ye Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">14(2024), 2, p 917</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2, p 917</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app14020917</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/dfd02d4aa78745fb8b626edefb8e1526</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/14/2/917</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2024</subfield><subfield code="e">2, p 917</subfield></datafield></record></collection>
|
score |
7.401717 |