G-Net: An Efficient Convolutional Network for Underwater Object Detection
Visual perception technology is of great significance for underwater robots to carry out seabed investigation and mariculture activities. Due to the complex underwater environment, it is often necessary to enhance the underwater image when detecting underwater targets by optical sensors. Most of the...
Ausführliche Beschreibung
Autor*in: |
Xiaoyang Zhao [verfasserIn] Zhuo Wang [verfasserIn] Zhongchao Deng [verfasserIn] Hongde Qin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Marine Science and Engineering - MDPI AG, 2014, 12(2024), 1, p 116 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2024 ; number:1, p 116 |
Links: |
---|
DOI / URN: |
10.3390/jmse12010116 |
---|
Katalog-ID: |
DOAJ096332999 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ096332999 | ||
003 | DE-627 | ||
005 | 20240413150408.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/jmse12010116 |2 doi | |
035 | |a (DE-627)DOAJ096332999 | ||
035 | |a (DE-599)DOAJ0e24655ab88142cd83988b516d32c7fb | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a VM1-989 | |
050 | 0 | |a GC1-1581 | |
100 | 0 | |a Xiaoyang Zhao |e verfasserin |4 aut | |
245 | 1 | 0 | |a G-Net: An Efficient Convolutional Network for Underwater Object Detection |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Visual perception technology is of great significance for underwater robots to carry out seabed investigation and mariculture activities. Due to the complex underwater environment, it is often necessary to enhance the underwater image when detecting underwater targets by optical sensors. Most of the traditional methods involve image enhancement and then target detection. However, this method greatly increases the timeliness in practical application. To solve this problem, we propose a feature-enhanced target detection network, Global-Net (G-Net), which combines underwater image enhancement with target detection. Different from the traditional method of reconstructing enhanced images for target detection, G-Net realizes the integration of image enhancement and target detection. In addition, our feature map learning module (FML) can effectively extract defogging features. The test results in a real underwater environment show that G-Net improves the detection accuracy of underwater targets by about 5%, but also has high detection efficiency, which ensures the reliability of underwater robots in seabed investigation and aquaculture activities. | ||
650 | 4 | |a image enhancement | |
650 | 4 | |a image reconstruction | |
650 | 4 | |a underwater object detection | |
650 | 4 | |a feature enhancement | |
653 | 0 | |a Naval architecture. Shipbuilding. Marine engineering | |
653 | 0 | |a Oceanography | |
700 | 0 | |a Zhuo Wang |e verfasserin |4 aut | |
700 | 0 | |a Zhongchao Deng |e verfasserin |4 aut | |
700 | 0 | |a Hongde Qin |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Marine Science and Engineering |d MDPI AG, 2014 |g 12(2024), 1, p 116 |w (DE-627)771274181 |w (DE-600)2738390-8 |x 20771312 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2024 |g number:1, p 116 |
856 | 4 | 0 | |u https://doi.org/10.3390/jmse12010116 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/0e24655ab88142cd83988b516d32c7fb |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2077-1312/12/1/116 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2077-1312 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2024 |e 1, p 116 |
author_variant |
x z xz z w zw z d zd h q hq |
---|---|
matchkey_str |
article:20771312:2024----::ntnfiincnouinlewrfrnew |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
VM |
publishDate |
2024 |
allfields |
10.3390/jmse12010116 doi (DE-627)DOAJ096332999 (DE-599)DOAJ0e24655ab88142cd83988b516d32c7fb DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Xiaoyang Zhao verfasserin aut G-Net: An Efficient Convolutional Network for Underwater Object Detection 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Visual perception technology is of great significance for underwater robots to carry out seabed investigation and mariculture activities. Due to the complex underwater environment, it is often necessary to enhance the underwater image when detecting underwater targets by optical sensors. Most of the traditional methods involve image enhancement and then target detection. However, this method greatly increases the timeliness in practical application. To solve this problem, we propose a feature-enhanced target detection network, Global-Net (G-Net), which combines underwater image enhancement with target detection. Different from the traditional method of reconstructing enhanced images for target detection, G-Net realizes the integration of image enhancement and target detection. In addition, our feature map learning module (FML) can effectively extract defogging features. The test results in a real underwater environment show that G-Net improves the detection accuracy of underwater targets by about 5%, but also has high detection efficiency, which ensures the reliability of underwater robots in seabed investigation and aquaculture activities. image enhancement image reconstruction underwater object detection feature enhancement Naval architecture. Shipbuilding. Marine engineering Oceanography Zhuo Wang verfasserin aut Zhongchao Deng verfasserin aut Hongde Qin verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 12(2024), 1, p 116 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:12 year:2024 number:1, p 116 https://doi.org/10.3390/jmse12010116 kostenfrei https://doaj.org/article/0e24655ab88142cd83988b516d32c7fb kostenfrei https://www.mdpi.com/2077-1312/12/1/116 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2024 1, p 116 |
spelling |
10.3390/jmse12010116 doi (DE-627)DOAJ096332999 (DE-599)DOAJ0e24655ab88142cd83988b516d32c7fb DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Xiaoyang Zhao verfasserin aut G-Net: An Efficient Convolutional Network for Underwater Object Detection 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Visual perception technology is of great significance for underwater robots to carry out seabed investigation and mariculture activities. Due to the complex underwater environment, it is often necessary to enhance the underwater image when detecting underwater targets by optical sensors. Most of the traditional methods involve image enhancement and then target detection. However, this method greatly increases the timeliness in practical application. To solve this problem, we propose a feature-enhanced target detection network, Global-Net (G-Net), which combines underwater image enhancement with target detection. Different from the traditional method of reconstructing enhanced images for target detection, G-Net realizes the integration of image enhancement and target detection. In addition, our feature map learning module (FML) can effectively extract defogging features. The test results in a real underwater environment show that G-Net improves the detection accuracy of underwater targets by about 5%, but also has high detection efficiency, which ensures the reliability of underwater robots in seabed investigation and aquaculture activities. image enhancement image reconstruction underwater object detection feature enhancement Naval architecture. Shipbuilding. Marine engineering Oceanography Zhuo Wang verfasserin aut Zhongchao Deng verfasserin aut Hongde Qin verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 12(2024), 1, p 116 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:12 year:2024 number:1, p 116 https://doi.org/10.3390/jmse12010116 kostenfrei https://doaj.org/article/0e24655ab88142cd83988b516d32c7fb kostenfrei https://www.mdpi.com/2077-1312/12/1/116 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2024 1, p 116 |
allfields_unstemmed |
10.3390/jmse12010116 doi (DE-627)DOAJ096332999 (DE-599)DOAJ0e24655ab88142cd83988b516d32c7fb DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Xiaoyang Zhao verfasserin aut G-Net: An Efficient Convolutional Network for Underwater Object Detection 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Visual perception technology is of great significance for underwater robots to carry out seabed investigation and mariculture activities. Due to the complex underwater environment, it is often necessary to enhance the underwater image when detecting underwater targets by optical sensors. Most of the traditional methods involve image enhancement and then target detection. However, this method greatly increases the timeliness in practical application. To solve this problem, we propose a feature-enhanced target detection network, Global-Net (G-Net), which combines underwater image enhancement with target detection. Different from the traditional method of reconstructing enhanced images for target detection, G-Net realizes the integration of image enhancement and target detection. In addition, our feature map learning module (FML) can effectively extract defogging features. The test results in a real underwater environment show that G-Net improves the detection accuracy of underwater targets by about 5%, but also has high detection efficiency, which ensures the reliability of underwater robots in seabed investigation and aquaculture activities. image enhancement image reconstruction underwater object detection feature enhancement Naval architecture. Shipbuilding. Marine engineering Oceanography Zhuo Wang verfasserin aut Zhongchao Deng verfasserin aut Hongde Qin verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 12(2024), 1, p 116 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:12 year:2024 number:1, p 116 https://doi.org/10.3390/jmse12010116 kostenfrei https://doaj.org/article/0e24655ab88142cd83988b516d32c7fb kostenfrei https://www.mdpi.com/2077-1312/12/1/116 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2024 1, p 116 |
allfieldsGer |
10.3390/jmse12010116 doi (DE-627)DOAJ096332999 (DE-599)DOAJ0e24655ab88142cd83988b516d32c7fb DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Xiaoyang Zhao verfasserin aut G-Net: An Efficient Convolutional Network for Underwater Object Detection 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Visual perception technology is of great significance for underwater robots to carry out seabed investigation and mariculture activities. Due to the complex underwater environment, it is often necessary to enhance the underwater image when detecting underwater targets by optical sensors. Most of the traditional methods involve image enhancement and then target detection. However, this method greatly increases the timeliness in practical application. To solve this problem, we propose a feature-enhanced target detection network, Global-Net (G-Net), which combines underwater image enhancement with target detection. Different from the traditional method of reconstructing enhanced images for target detection, G-Net realizes the integration of image enhancement and target detection. In addition, our feature map learning module (FML) can effectively extract defogging features. The test results in a real underwater environment show that G-Net improves the detection accuracy of underwater targets by about 5%, but also has high detection efficiency, which ensures the reliability of underwater robots in seabed investigation and aquaculture activities. image enhancement image reconstruction underwater object detection feature enhancement Naval architecture. Shipbuilding. Marine engineering Oceanography Zhuo Wang verfasserin aut Zhongchao Deng verfasserin aut Hongde Qin verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 12(2024), 1, p 116 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:12 year:2024 number:1, p 116 https://doi.org/10.3390/jmse12010116 kostenfrei https://doaj.org/article/0e24655ab88142cd83988b516d32c7fb kostenfrei https://www.mdpi.com/2077-1312/12/1/116 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2024 1, p 116 |
allfieldsSound |
10.3390/jmse12010116 doi (DE-627)DOAJ096332999 (DE-599)DOAJ0e24655ab88142cd83988b516d32c7fb DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Xiaoyang Zhao verfasserin aut G-Net: An Efficient Convolutional Network for Underwater Object Detection 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Visual perception technology is of great significance for underwater robots to carry out seabed investigation and mariculture activities. Due to the complex underwater environment, it is often necessary to enhance the underwater image when detecting underwater targets by optical sensors. Most of the traditional methods involve image enhancement and then target detection. However, this method greatly increases the timeliness in practical application. To solve this problem, we propose a feature-enhanced target detection network, Global-Net (G-Net), which combines underwater image enhancement with target detection. Different from the traditional method of reconstructing enhanced images for target detection, G-Net realizes the integration of image enhancement and target detection. In addition, our feature map learning module (FML) can effectively extract defogging features. The test results in a real underwater environment show that G-Net improves the detection accuracy of underwater targets by about 5%, but also has high detection efficiency, which ensures the reliability of underwater robots in seabed investigation and aquaculture activities. image enhancement image reconstruction underwater object detection feature enhancement Naval architecture. Shipbuilding. Marine engineering Oceanography Zhuo Wang verfasserin aut Zhongchao Deng verfasserin aut Hongde Qin verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 12(2024), 1, p 116 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:12 year:2024 number:1, p 116 https://doi.org/10.3390/jmse12010116 kostenfrei https://doaj.org/article/0e24655ab88142cd83988b516d32c7fb kostenfrei https://www.mdpi.com/2077-1312/12/1/116 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2024 1, p 116 |
language |
English |
source |
In Journal of Marine Science and Engineering 12(2024), 1, p 116 volume:12 year:2024 number:1, p 116 |
sourceStr |
In Journal of Marine Science and Engineering 12(2024), 1, p 116 volume:12 year:2024 number:1, p 116 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
image enhancement image reconstruction underwater object detection feature enhancement Naval architecture. Shipbuilding. Marine engineering Oceanography |
isfreeaccess_bool |
true |
container_title |
Journal of Marine Science and Engineering |
authorswithroles_txt_mv |
Xiaoyang Zhao @@aut@@ Zhuo Wang @@aut@@ Zhongchao Deng @@aut@@ Hongde Qin @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
771274181 |
id |
DOAJ096332999 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096332999</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413150408.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jmse12010116</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096332999</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0e24655ab88142cd83988b516d32c7fb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">VM1-989</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GC1-1581</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaoyang Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">G-Net: An Efficient Convolutional Network for Underwater Object Detection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Visual perception technology is of great significance for underwater robots to carry out seabed investigation and mariculture activities. Due to the complex underwater environment, it is often necessary to enhance the underwater image when detecting underwater targets by optical sensors. Most of the traditional methods involve image enhancement and then target detection. However, this method greatly increases the timeliness in practical application. To solve this problem, we propose a feature-enhanced target detection network, Global-Net (G-Net), which combines underwater image enhancement with target detection. Different from the traditional method of reconstructing enhanced images for target detection, G-Net realizes the integration of image enhancement and target detection. In addition, our feature map learning module (FML) can effectively extract defogging features. The test results in a real underwater environment show that G-Net improves the detection accuracy of underwater targets by about 5%, but also has high detection efficiency, which ensures the reliability of underwater robots in seabed investigation and aquaculture activities.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image enhancement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image reconstruction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">underwater object detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">feature enhancement</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Naval architecture. Shipbuilding. Marine engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Oceanography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhuo Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhongchao Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongde Qin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Marine Science and Engineering</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">12(2024), 1, p 116</subfield><subfield code="w">(DE-627)771274181</subfield><subfield code="w">(DE-600)2738390-8</subfield><subfield code="x">20771312</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1, p 116</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jmse12010116</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0e24655ab88142cd83988b516d32c7fb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2077-1312/12/1/116</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2077-1312</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2024</subfield><subfield code="e">1, p 116</subfield></datafield></record></collection>
|
callnumber-first |
V - Naval Science |
author |
Xiaoyang Zhao |
spellingShingle |
Xiaoyang Zhao misc VM1-989 misc GC1-1581 misc image enhancement misc image reconstruction misc underwater object detection misc feature enhancement misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography G-Net: An Efficient Convolutional Network for Underwater Object Detection |
authorStr |
Xiaoyang Zhao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)771274181 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
VM1-989 |
illustrated |
Not Illustrated |
issn |
20771312 |
topic_title |
VM1-989 GC1-1581 G-Net: An Efficient Convolutional Network for Underwater Object Detection image enhancement image reconstruction underwater object detection feature enhancement |
topic |
misc VM1-989 misc GC1-1581 misc image enhancement misc image reconstruction misc underwater object detection misc feature enhancement misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography |
topic_unstemmed |
misc VM1-989 misc GC1-1581 misc image enhancement misc image reconstruction misc underwater object detection misc feature enhancement misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography |
topic_browse |
misc VM1-989 misc GC1-1581 misc image enhancement misc image reconstruction misc underwater object detection misc feature enhancement misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Marine Science and Engineering |
hierarchy_parent_id |
771274181 |
hierarchy_top_title |
Journal of Marine Science and Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)771274181 (DE-600)2738390-8 |
title |
G-Net: An Efficient Convolutional Network for Underwater Object Detection |
ctrlnum |
(DE-627)DOAJ096332999 (DE-599)DOAJ0e24655ab88142cd83988b516d32c7fb |
title_full |
G-Net: An Efficient Convolutional Network for Underwater Object Detection |
author_sort |
Xiaoyang Zhao |
journal |
Journal of Marine Science and Engineering |
journalStr |
Journal of Marine Science and Engineering |
callnumber-first-code |
V |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Xiaoyang Zhao Zhuo Wang Zhongchao Deng Hongde Qin |
container_volume |
12 |
class |
VM1-989 GC1-1581 |
format_se |
Elektronische Aufsätze |
author-letter |
Xiaoyang Zhao |
doi_str_mv |
10.3390/jmse12010116 |
author2-role |
verfasserin |
title_sort |
g-net: an efficient convolutional network for underwater object detection |
callnumber |
VM1-989 |
title_auth |
G-Net: An Efficient Convolutional Network for Underwater Object Detection |
abstract |
Visual perception technology is of great significance for underwater robots to carry out seabed investigation and mariculture activities. Due to the complex underwater environment, it is often necessary to enhance the underwater image when detecting underwater targets by optical sensors. Most of the traditional methods involve image enhancement and then target detection. However, this method greatly increases the timeliness in practical application. To solve this problem, we propose a feature-enhanced target detection network, Global-Net (G-Net), which combines underwater image enhancement with target detection. Different from the traditional method of reconstructing enhanced images for target detection, G-Net realizes the integration of image enhancement and target detection. In addition, our feature map learning module (FML) can effectively extract defogging features. The test results in a real underwater environment show that G-Net improves the detection accuracy of underwater targets by about 5%, but also has high detection efficiency, which ensures the reliability of underwater robots in seabed investigation and aquaculture activities. |
abstractGer |
Visual perception technology is of great significance for underwater robots to carry out seabed investigation and mariculture activities. Due to the complex underwater environment, it is often necessary to enhance the underwater image when detecting underwater targets by optical sensors. Most of the traditional methods involve image enhancement and then target detection. However, this method greatly increases the timeliness in practical application. To solve this problem, we propose a feature-enhanced target detection network, Global-Net (G-Net), which combines underwater image enhancement with target detection. Different from the traditional method of reconstructing enhanced images for target detection, G-Net realizes the integration of image enhancement and target detection. In addition, our feature map learning module (FML) can effectively extract defogging features. The test results in a real underwater environment show that G-Net improves the detection accuracy of underwater targets by about 5%, but also has high detection efficiency, which ensures the reliability of underwater robots in seabed investigation and aquaculture activities. |
abstract_unstemmed |
Visual perception technology is of great significance for underwater robots to carry out seabed investigation and mariculture activities. Due to the complex underwater environment, it is often necessary to enhance the underwater image when detecting underwater targets by optical sensors. Most of the traditional methods involve image enhancement and then target detection. However, this method greatly increases the timeliness in practical application. To solve this problem, we propose a feature-enhanced target detection network, Global-Net (G-Net), which combines underwater image enhancement with target detection. Different from the traditional method of reconstructing enhanced images for target detection, G-Net realizes the integration of image enhancement and target detection. In addition, our feature map learning module (FML) can effectively extract defogging features. The test results in a real underwater environment show that G-Net improves the detection accuracy of underwater targets by about 5%, but also has high detection efficiency, which ensures the reliability of underwater robots in seabed investigation and aquaculture activities. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 116 |
title_short |
G-Net: An Efficient Convolutional Network for Underwater Object Detection |
url |
https://doi.org/10.3390/jmse12010116 https://doaj.org/article/0e24655ab88142cd83988b516d32c7fb https://www.mdpi.com/2077-1312/12/1/116 https://doaj.org/toc/2077-1312 |
remote_bool |
true |
author2 |
Zhuo Wang Zhongchao Deng Hongde Qin |
author2Str |
Zhuo Wang Zhongchao Deng Hongde Qin |
ppnlink |
771274181 |
callnumber-subject |
VM - Naval Architecture, Shipbuilding, Marine Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/jmse12010116 |
callnumber-a |
VM1-989 |
up_date |
2024-07-03T19:35:05.635Z |
_version_ |
1803587740654108672 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096332999</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413150408.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jmse12010116</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096332999</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0e24655ab88142cd83988b516d32c7fb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">VM1-989</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GC1-1581</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaoyang Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">G-Net: An Efficient Convolutional Network for Underwater Object Detection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Visual perception technology is of great significance for underwater robots to carry out seabed investigation and mariculture activities. Due to the complex underwater environment, it is often necessary to enhance the underwater image when detecting underwater targets by optical sensors. Most of the traditional methods involve image enhancement and then target detection. However, this method greatly increases the timeliness in practical application. To solve this problem, we propose a feature-enhanced target detection network, Global-Net (G-Net), which combines underwater image enhancement with target detection. Different from the traditional method of reconstructing enhanced images for target detection, G-Net realizes the integration of image enhancement and target detection. In addition, our feature map learning module (FML) can effectively extract defogging features. The test results in a real underwater environment show that G-Net improves the detection accuracy of underwater targets by about 5%, but also has high detection efficiency, which ensures the reliability of underwater robots in seabed investigation and aquaculture activities.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image enhancement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image reconstruction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">underwater object detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">feature enhancement</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Naval architecture. Shipbuilding. Marine engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Oceanography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhuo Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhongchao Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongde Qin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Marine Science and Engineering</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">12(2024), 1, p 116</subfield><subfield code="w">(DE-627)771274181</subfield><subfield code="w">(DE-600)2738390-8</subfield><subfield code="x">20771312</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1, p 116</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jmse12010116</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0e24655ab88142cd83988b516d32c7fb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2077-1312/12/1/116</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2077-1312</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2024</subfield><subfield code="e">1, p 116</subfield></datafield></record></collection>
|
score |
7.398796 |