Comparative Analysis of Soil Shear Strength Stabilization of Paya Tumpi Soft Clay with Burni Telong Volcanic Ash – Wih Pesam
Silty clay soil a quarry in Paya Tumpi, Kebayakan, West Aceh, is a source of backfill material that is often used for road construction in the area. This clay can be divided into three types based on its color, namely red, yellow, and gray. These three types of soil have bad properties that make the...
Ausführliche Beschreibung
Autor*in: |
Suwandi [verfasserIn] Munirwansyah [verfasserIn] Yunita Halida [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Französisch |
Erschienen: |
2024 |
---|
Übergeordnetes Werk: |
In: E3S Web of Conferences - EDP Sciences, 2013, 476, p 01016(2024) |
---|---|
Übergeordnetes Werk: |
volume:476, p 01016 ; year:2024 |
Links: |
---|
DOI / URN: |
10.1051/e3sconf/202447601016 |
---|
Katalog-ID: |
DOAJ096342641 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ096342641 | ||
003 | DE-627 | ||
005 | 20240413150505.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1051/e3sconf/202447601016 |2 doi | |
035 | |a (DE-627)DOAJ096342641 | ||
035 | |a (DE-599)DOAJ95927cdd8b5446baacb5c077f2ab3df2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a fre | ||
050 | 0 | |a GE1-350 | |
100 | 0 | |a Suwandi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Comparative Analysis of Soil Shear Strength Stabilization of Paya Tumpi Soft Clay with Burni Telong Volcanic Ash – Wih Pesam |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Silty clay soil a quarry in Paya Tumpi, Kebayakan, West Aceh, is a source of backfill material that is often used for road construction in the area. This clay can be divided into three types based on its color, namely red, yellow, and gray. These three types of soil have bad properties that make them unsuitable for use as road base layers. Therefore, it is necessary to stabilize it using a mixture of volcanic ash taken from Wih Pesam and Bener Meriah. The purpose of this study was to evaluate the effect of mixing soil with volcanic ash on the shear strength of the soil. This research method involves compaction testing with a standard proctor and direct shear strength testing on a mixture of soil and volcanic ash. Variations in the addition of volcanic ash are 12.5%, 15%, 17.5%, and 20% of the dry weight of the soil. The results showed that the three soil types were included in the soil classification A-7-6 according to AASHTO, and the presence of minerals was detected in montmorillonite on gray soil. The addition of volcanic ash only increases the cohesion value of the gray soil in several variations of the mixture. The cohesion values for the various soil and volcanic ash mixtures of 0%, 12.5%, 15%, 17.5%, and 20% are as follows: for red soil, the cohesion values are 0.492, 0.408, 0.452, 0.088, respectively, and 0.344 in units of kg/cm2; for yellow soil, the cohesion values were 0.585, 0.562, 0.579, 0.243, and 0.327 in units of kg/cm2; while for gray soil, the cohesion values were 0.037, 0.453, 0.433, 0.206, and 0.031 in units of kg/cm2, respectively. | ||
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Munirwansyah |e verfasserin |4 aut | |
700 | 0 | |a Yunita Halida |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t E3S Web of Conferences |d EDP Sciences, 2013 |g 476, p 01016(2024) |w (DE-627)778372081 |w (DE-600)2755680-3 |x 22671242 |7 nnns |
773 | 1 | 8 | |g volume:476, p 01016 |g year:2024 |
856 | 4 | 0 | |u https://doi.org/10.1051/e3sconf/202447601016 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/95927cdd8b5446baacb5c077f2ab3df2 |z kostenfrei |
856 | 4 | 0 | |u https://www.e3s-conferences.org/articles/e3sconf/pdf/2024/06/e3sconf_aisce2023_01016.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2267-1242 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 476, p 01016 |j 2024 |
author_variant |
s m y h yh |
---|---|
matchkey_str |
article:22671242:2024----::oprtvaayiosiserteghtblztoopytmiotlyihun |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
GE |
publishDate |
2024 |
allfields |
10.1051/e3sconf/202447601016 doi (DE-627)DOAJ096342641 (DE-599)DOAJ95927cdd8b5446baacb5c077f2ab3df2 DE-627 ger DE-627 rakwb eng fre GE1-350 Suwandi verfasserin aut Comparative Analysis of Soil Shear Strength Stabilization of Paya Tumpi Soft Clay with Burni Telong Volcanic Ash – Wih Pesam 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Silty clay soil a quarry in Paya Tumpi, Kebayakan, West Aceh, is a source of backfill material that is often used for road construction in the area. This clay can be divided into three types based on its color, namely red, yellow, and gray. These three types of soil have bad properties that make them unsuitable for use as road base layers. Therefore, it is necessary to stabilize it using a mixture of volcanic ash taken from Wih Pesam and Bener Meriah. The purpose of this study was to evaluate the effect of mixing soil with volcanic ash on the shear strength of the soil. This research method involves compaction testing with a standard proctor and direct shear strength testing on a mixture of soil and volcanic ash. Variations in the addition of volcanic ash are 12.5%, 15%, 17.5%, and 20% of the dry weight of the soil. The results showed that the three soil types were included in the soil classification A-7-6 according to AASHTO, and the presence of minerals was detected in montmorillonite on gray soil. The addition of volcanic ash only increases the cohesion value of the gray soil in several variations of the mixture. The cohesion values for the various soil and volcanic ash mixtures of 0%, 12.5%, 15%, 17.5%, and 20% are as follows: for red soil, the cohesion values are 0.492, 0.408, 0.452, 0.088, respectively, and 0.344 in units of kg/cm2; for yellow soil, the cohesion values were 0.585, 0.562, 0.579, 0.243, and 0.327 in units of kg/cm2; while for gray soil, the cohesion values were 0.037, 0.453, 0.433, 0.206, and 0.031 in units of kg/cm2, respectively. Environmental sciences Munirwansyah verfasserin aut Yunita Halida verfasserin aut In E3S Web of Conferences EDP Sciences, 2013 476, p 01016(2024) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:476, p 01016 year:2024 https://doi.org/10.1051/e3sconf/202447601016 kostenfrei https://doaj.org/article/95927cdd8b5446baacb5c077f2ab3df2 kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2024/06/e3sconf_aisce2023_01016.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 476, p 01016 2024 |
spelling |
10.1051/e3sconf/202447601016 doi (DE-627)DOAJ096342641 (DE-599)DOAJ95927cdd8b5446baacb5c077f2ab3df2 DE-627 ger DE-627 rakwb eng fre GE1-350 Suwandi verfasserin aut Comparative Analysis of Soil Shear Strength Stabilization of Paya Tumpi Soft Clay with Burni Telong Volcanic Ash – Wih Pesam 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Silty clay soil a quarry in Paya Tumpi, Kebayakan, West Aceh, is a source of backfill material that is often used for road construction in the area. This clay can be divided into three types based on its color, namely red, yellow, and gray. These three types of soil have bad properties that make them unsuitable for use as road base layers. Therefore, it is necessary to stabilize it using a mixture of volcanic ash taken from Wih Pesam and Bener Meriah. The purpose of this study was to evaluate the effect of mixing soil with volcanic ash on the shear strength of the soil. This research method involves compaction testing with a standard proctor and direct shear strength testing on a mixture of soil and volcanic ash. Variations in the addition of volcanic ash are 12.5%, 15%, 17.5%, and 20% of the dry weight of the soil. The results showed that the three soil types were included in the soil classification A-7-6 according to AASHTO, and the presence of minerals was detected in montmorillonite on gray soil. The addition of volcanic ash only increases the cohesion value of the gray soil in several variations of the mixture. The cohesion values for the various soil and volcanic ash mixtures of 0%, 12.5%, 15%, 17.5%, and 20% are as follows: for red soil, the cohesion values are 0.492, 0.408, 0.452, 0.088, respectively, and 0.344 in units of kg/cm2; for yellow soil, the cohesion values were 0.585, 0.562, 0.579, 0.243, and 0.327 in units of kg/cm2; while for gray soil, the cohesion values were 0.037, 0.453, 0.433, 0.206, and 0.031 in units of kg/cm2, respectively. Environmental sciences Munirwansyah verfasserin aut Yunita Halida verfasserin aut In E3S Web of Conferences EDP Sciences, 2013 476, p 01016(2024) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:476, p 01016 year:2024 https://doi.org/10.1051/e3sconf/202447601016 kostenfrei https://doaj.org/article/95927cdd8b5446baacb5c077f2ab3df2 kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2024/06/e3sconf_aisce2023_01016.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 476, p 01016 2024 |
allfields_unstemmed |
10.1051/e3sconf/202447601016 doi (DE-627)DOAJ096342641 (DE-599)DOAJ95927cdd8b5446baacb5c077f2ab3df2 DE-627 ger DE-627 rakwb eng fre GE1-350 Suwandi verfasserin aut Comparative Analysis of Soil Shear Strength Stabilization of Paya Tumpi Soft Clay with Burni Telong Volcanic Ash – Wih Pesam 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Silty clay soil a quarry in Paya Tumpi, Kebayakan, West Aceh, is a source of backfill material that is often used for road construction in the area. This clay can be divided into three types based on its color, namely red, yellow, and gray. These three types of soil have bad properties that make them unsuitable for use as road base layers. Therefore, it is necessary to stabilize it using a mixture of volcanic ash taken from Wih Pesam and Bener Meriah. The purpose of this study was to evaluate the effect of mixing soil with volcanic ash on the shear strength of the soil. This research method involves compaction testing with a standard proctor and direct shear strength testing on a mixture of soil and volcanic ash. Variations in the addition of volcanic ash are 12.5%, 15%, 17.5%, and 20% of the dry weight of the soil. The results showed that the three soil types were included in the soil classification A-7-6 according to AASHTO, and the presence of minerals was detected in montmorillonite on gray soil. The addition of volcanic ash only increases the cohesion value of the gray soil in several variations of the mixture. The cohesion values for the various soil and volcanic ash mixtures of 0%, 12.5%, 15%, 17.5%, and 20% are as follows: for red soil, the cohesion values are 0.492, 0.408, 0.452, 0.088, respectively, and 0.344 in units of kg/cm2; for yellow soil, the cohesion values were 0.585, 0.562, 0.579, 0.243, and 0.327 in units of kg/cm2; while for gray soil, the cohesion values were 0.037, 0.453, 0.433, 0.206, and 0.031 in units of kg/cm2, respectively. Environmental sciences Munirwansyah verfasserin aut Yunita Halida verfasserin aut In E3S Web of Conferences EDP Sciences, 2013 476, p 01016(2024) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:476, p 01016 year:2024 https://doi.org/10.1051/e3sconf/202447601016 kostenfrei https://doaj.org/article/95927cdd8b5446baacb5c077f2ab3df2 kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2024/06/e3sconf_aisce2023_01016.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 476, p 01016 2024 |
allfieldsGer |
10.1051/e3sconf/202447601016 doi (DE-627)DOAJ096342641 (DE-599)DOAJ95927cdd8b5446baacb5c077f2ab3df2 DE-627 ger DE-627 rakwb eng fre GE1-350 Suwandi verfasserin aut Comparative Analysis of Soil Shear Strength Stabilization of Paya Tumpi Soft Clay with Burni Telong Volcanic Ash – Wih Pesam 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Silty clay soil a quarry in Paya Tumpi, Kebayakan, West Aceh, is a source of backfill material that is often used for road construction in the area. This clay can be divided into three types based on its color, namely red, yellow, and gray. These three types of soil have bad properties that make them unsuitable for use as road base layers. Therefore, it is necessary to stabilize it using a mixture of volcanic ash taken from Wih Pesam and Bener Meriah. The purpose of this study was to evaluate the effect of mixing soil with volcanic ash on the shear strength of the soil. This research method involves compaction testing with a standard proctor and direct shear strength testing on a mixture of soil and volcanic ash. Variations in the addition of volcanic ash are 12.5%, 15%, 17.5%, and 20% of the dry weight of the soil. The results showed that the three soil types were included in the soil classification A-7-6 according to AASHTO, and the presence of minerals was detected in montmorillonite on gray soil. The addition of volcanic ash only increases the cohesion value of the gray soil in several variations of the mixture. The cohesion values for the various soil and volcanic ash mixtures of 0%, 12.5%, 15%, 17.5%, and 20% are as follows: for red soil, the cohesion values are 0.492, 0.408, 0.452, 0.088, respectively, and 0.344 in units of kg/cm2; for yellow soil, the cohesion values were 0.585, 0.562, 0.579, 0.243, and 0.327 in units of kg/cm2; while for gray soil, the cohesion values were 0.037, 0.453, 0.433, 0.206, and 0.031 in units of kg/cm2, respectively. Environmental sciences Munirwansyah verfasserin aut Yunita Halida verfasserin aut In E3S Web of Conferences EDP Sciences, 2013 476, p 01016(2024) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:476, p 01016 year:2024 https://doi.org/10.1051/e3sconf/202447601016 kostenfrei https://doaj.org/article/95927cdd8b5446baacb5c077f2ab3df2 kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2024/06/e3sconf_aisce2023_01016.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 476, p 01016 2024 |
allfieldsSound |
10.1051/e3sconf/202447601016 doi (DE-627)DOAJ096342641 (DE-599)DOAJ95927cdd8b5446baacb5c077f2ab3df2 DE-627 ger DE-627 rakwb eng fre GE1-350 Suwandi verfasserin aut Comparative Analysis of Soil Shear Strength Stabilization of Paya Tumpi Soft Clay with Burni Telong Volcanic Ash – Wih Pesam 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Silty clay soil a quarry in Paya Tumpi, Kebayakan, West Aceh, is a source of backfill material that is often used for road construction in the area. This clay can be divided into three types based on its color, namely red, yellow, and gray. These three types of soil have bad properties that make them unsuitable for use as road base layers. Therefore, it is necessary to stabilize it using a mixture of volcanic ash taken from Wih Pesam and Bener Meriah. The purpose of this study was to evaluate the effect of mixing soil with volcanic ash on the shear strength of the soil. This research method involves compaction testing with a standard proctor and direct shear strength testing on a mixture of soil and volcanic ash. Variations in the addition of volcanic ash are 12.5%, 15%, 17.5%, and 20% of the dry weight of the soil. The results showed that the three soil types were included in the soil classification A-7-6 according to AASHTO, and the presence of minerals was detected in montmorillonite on gray soil. The addition of volcanic ash only increases the cohesion value of the gray soil in several variations of the mixture. The cohesion values for the various soil and volcanic ash mixtures of 0%, 12.5%, 15%, 17.5%, and 20% are as follows: for red soil, the cohesion values are 0.492, 0.408, 0.452, 0.088, respectively, and 0.344 in units of kg/cm2; for yellow soil, the cohesion values were 0.585, 0.562, 0.579, 0.243, and 0.327 in units of kg/cm2; while for gray soil, the cohesion values were 0.037, 0.453, 0.433, 0.206, and 0.031 in units of kg/cm2, respectively. Environmental sciences Munirwansyah verfasserin aut Yunita Halida verfasserin aut In E3S Web of Conferences EDP Sciences, 2013 476, p 01016(2024) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:476, p 01016 year:2024 https://doi.org/10.1051/e3sconf/202447601016 kostenfrei https://doaj.org/article/95927cdd8b5446baacb5c077f2ab3df2 kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2024/06/e3sconf_aisce2023_01016.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 476, p 01016 2024 |
language |
English French |
source |
In E3S Web of Conferences 476, p 01016(2024) volume:476, p 01016 year:2024 |
sourceStr |
In E3S Web of Conferences 476, p 01016(2024) volume:476, p 01016 year:2024 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Environmental sciences |
isfreeaccess_bool |
true |
container_title |
E3S Web of Conferences |
authorswithroles_txt_mv |
Suwandi @@aut@@ Munirwansyah @@aut@@ Yunita Halida @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
778372081 |
id |
DOAJ096342641 |
language_de |
englisch franzoesisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096342641</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413150505.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/e3sconf/202447601016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096342641</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ95927cdd8b5446baacb5c077f2ab3df2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Suwandi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparative Analysis of Soil Shear Strength Stabilization of Paya Tumpi Soft Clay with Burni Telong Volcanic Ash – Wih Pesam</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Silty clay soil a quarry in Paya Tumpi, Kebayakan, West Aceh, is a source of backfill material that is often used for road construction in the area. This clay can be divided into three types based on its color, namely red, yellow, and gray. These three types of soil have bad properties that make them unsuitable for use as road base layers. Therefore, it is necessary to stabilize it using a mixture of volcanic ash taken from Wih Pesam and Bener Meriah. The purpose of this study was to evaluate the effect of mixing soil with volcanic ash on the shear strength of the soil. This research method involves compaction testing with a standard proctor and direct shear strength testing on a mixture of soil and volcanic ash. Variations in the addition of volcanic ash are 12.5%, 15%, 17.5%, and 20% of the dry weight of the soil. The results showed that the three soil types were included in the soil classification A-7-6 according to AASHTO, and the presence of minerals was detected in montmorillonite on gray soil. The addition of volcanic ash only increases the cohesion value of the gray soil in several variations of the mixture. The cohesion values for the various soil and volcanic ash mixtures of 0%, 12.5%, 15%, 17.5%, and 20% are as follows: for red soil, the cohesion values are 0.492, 0.408, 0.452, 0.088, respectively, and 0.344 in units of kg/cm2; for yellow soil, the cohesion values were 0.585, 0.562, 0.579, 0.243, and 0.327 in units of kg/cm2; while for gray soil, the cohesion values were 0.037, 0.453, 0.433, 0.206, and 0.031 in units of kg/cm2, respectively.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Munirwansyah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yunita Halida</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">E3S Web of Conferences</subfield><subfield code="d">EDP Sciences, 2013</subfield><subfield code="g">476, p 01016(2024)</subfield><subfield code="w">(DE-627)778372081</subfield><subfield code="w">(DE-600)2755680-3</subfield><subfield code="x">22671242</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:476, p 01016</subfield><subfield code="g">year:2024</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/e3sconf/202447601016</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/95927cdd8b5446baacb5c077f2ab3df2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.e3s-conferences.org/articles/e3sconf/pdf/2024/06/e3sconf_aisce2023_01016.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2267-1242</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">476, p 01016</subfield><subfield code="j">2024</subfield></datafield></record></collection>
|
callnumber-first |
G - Geography, Anthropology, Recreation |
author |
Suwandi |
spellingShingle |
Suwandi misc GE1-350 misc Environmental sciences Comparative Analysis of Soil Shear Strength Stabilization of Paya Tumpi Soft Clay with Burni Telong Volcanic Ash – Wih Pesam |
authorStr |
Suwandi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)778372081 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
GE1-350 |
illustrated |
Not Illustrated |
issn |
22671242 |
topic_title |
GE1-350 Comparative Analysis of Soil Shear Strength Stabilization of Paya Tumpi Soft Clay with Burni Telong Volcanic Ash – Wih Pesam |
topic |
misc GE1-350 misc Environmental sciences |
topic_unstemmed |
misc GE1-350 misc Environmental sciences |
topic_browse |
misc GE1-350 misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
E3S Web of Conferences |
hierarchy_parent_id |
778372081 |
hierarchy_top_title |
E3S Web of Conferences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)778372081 (DE-600)2755680-3 |
title |
Comparative Analysis of Soil Shear Strength Stabilization of Paya Tumpi Soft Clay with Burni Telong Volcanic Ash – Wih Pesam |
ctrlnum |
(DE-627)DOAJ096342641 (DE-599)DOAJ95927cdd8b5446baacb5c077f2ab3df2 |
title_full |
Comparative Analysis of Soil Shear Strength Stabilization of Paya Tumpi Soft Clay with Burni Telong Volcanic Ash – Wih Pesam |
author_sort |
Suwandi |
journal |
E3S Web of Conferences |
journalStr |
E3S Web of Conferences |
callnumber-first-code |
G |
lang_code |
eng fre |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Suwandi Munirwansyah Yunita Halida |
container_volume |
476, p 01016 |
class |
GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Suwandi |
doi_str_mv |
10.1051/e3sconf/202447601016 |
author2-role |
verfasserin |
title_sort |
comparative analysis of soil shear strength stabilization of paya tumpi soft clay with burni telong volcanic ash – wih pesam |
callnumber |
GE1-350 |
title_auth |
Comparative Analysis of Soil Shear Strength Stabilization of Paya Tumpi Soft Clay with Burni Telong Volcanic Ash – Wih Pesam |
abstract |
Silty clay soil a quarry in Paya Tumpi, Kebayakan, West Aceh, is a source of backfill material that is often used for road construction in the area. This clay can be divided into three types based on its color, namely red, yellow, and gray. These three types of soil have bad properties that make them unsuitable for use as road base layers. Therefore, it is necessary to stabilize it using a mixture of volcanic ash taken from Wih Pesam and Bener Meriah. The purpose of this study was to evaluate the effect of mixing soil with volcanic ash on the shear strength of the soil. This research method involves compaction testing with a standard proctor and direct shear strength testing on a mixture of soil and volcanic ash. Variations in the addition of volcanic ash are 12.5%, 15%, 17.5%, and 20% of the dry weight of the soil. The results showed that the three soil types were included in the soil classification A-7-6 according to AASHTO, and the presence of minerals was detected in montmorillonite on gray soil. The addition of volcanic ash only increases the cohesion value of the gray soil in several variations of the mixture. The cohesion values for the various soil and volcanic ash mixtures of 0%, 12.5%, 15%, 17.5%, and 20% are as follows: for red soil, the cohesion values are 0.492, 0.408, 0.452, 0.088, respectively, and 0.344 in units of kg/cm2; for yellow soil, the cohesion values were 0.585, 0.562, 0.579, 0.243, and 0.327 in units of kg/cm2; while for gray soil, the cohesion values were 0.037, 0.453, 0.433, 0.206, and 0.031 in units of kg/cm2, respectively. |
abstractGer |
Silty clay soil a quarry in Paya Tumpi, Kebayakan, West Aceh, is a source of backfill material that is often used for road construction in the area. This clay can be divided into three types based on its color, namely red, yellow, and gray. These three types of soil have bad properties that make them unsuitable for use as road base layers. Therefore, it is necessary to stabilize it using a mixture of volcanic ash taken from Wih Pesam and Bener Meriah. The purpose of this study was to evaluate the effect of mixing soil with volcanic ash on the shear strength of the soil. This research method involves compaction testing with a standard proctor and direct shear strength testing on a mixture of soil and volcanic ash. Variations in the addition of volcanic ash are 12.5%, 15%, 17.5%, and 20% of the dry weight of the soil. The results showed that the three soil types were included in the soil classification A-7-6 according to AASHTO, and the presence of minerals was detected in montmorillonite on gray soil. The addition of volcanic ash only increases the cohesion value of the gray soil in several variations of the mixture. The cohesion values for the various soil and volcanic ash mixtures of 0%, 12.5%, 15%, 17.5%, and 20% are as follows: for red soil, the cohesion values are 0.492, 0.408, 0.452, 0.088, respectively, and 0.344 in units of kg/cm2; for yellow soil, the cohesion values were 0.585, 0.562, 0.579, 0.243, and 0.327 in units of kg/cm2; while for gray soil, the cohesion values were 0.037, 0.453, 0.433, 0.206, and 0.031 in units of kg/cm2, respectively. |
abstract_unstemmed |
Silty clay soil a quarry in Paya Tumpi, Kebayakan, West Aceh, is a source of backfill material that is often used for road construction in the area. This clay can be divided into three types based on its color, namely red, yellow, and gray. These three types of soil have bad properties that make them unsuitable for use as road base layers. Therefore, it is necessary to stabilize it using a mixture of volcanic ash taken from Wih Pesam and Bener Meriah. The purpose of this study was to evaluate the effect of mixing soil with volcanic ash on the shear strength of the soil. This research method involves compaction testing with a standard proctor and direct shear strength testing on a mixture of soil and volcanic ash. Variations in the addition of volcanic ash are 12.5%, 15%, 17.5%, and 20% of the dry weight of the soil. The results showed that the three soil types were included in the soil classification A-7-6 according to AASHTO, and the presence of minerals was detected in montmorillonite on gray soil. The addition of volcanic ash only increases the cohesion value of the gray soil in several variations of the mixture. The cohesion values for the various soil and volcanic ash mixtures of 0%, 12.5%, 15%, 17.5%, and 20% are as follows: for red soil, the cohesion values are 0.492, 0.408, 0.452, 0.088, respectively, and 0.344 in units of kg/cm2; for yellow soil, the cohesion values were 0.585, 0.562, 0.579, 0.243, and 0.327 in units of kg/cm2; while for gray soil, the cohesion values were 0.037, 0.453, 0.433, 0.206, and 0.031 in units of kg/cm2, respectively. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Comparative Analysis of Soil Shear Strength Stabilization of Paya Tumpi Soft Clay with Burni Telong Volcanic Ash – Wih Pesam |
url |
https://doi.org/10.1051/e3sconf/202447601016 https://doaj.org/article/95927cdd8b5446baacb5c077f2ab3df2 https://www.e3s-conferences.org/articles/e3sconf/pdf/2024/06/e3sconf_aisce2023_01016.pdf https://doaj.org/toc/2267-1242 |
remote_bool |
true |
author2 |
Munirwansyah Yunita Halida |
author2Str |
Munirwansyah Yunita Halida |
ppnlink |
778372081 |
callnumber-subject |
GE - Environmental Sciences |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1051/e3sconf/202447601016 |
callnumber-a |
GE1-350 |
up_date |
2024-07-03T19:38:09.946Z |
_version_ |
1803587933907714048 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096342641</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413150505.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/e3sconf/202447601016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096342641</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ95927cdd8b5446baacb5c077f2ab3df2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Suwandi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparative Analysis of Soil Shear Strength Stabilization of Paya Tumpi Soft Clay with Burni Telong Volcanic Ash – Wih Pesam</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Silty clay soil a quarry in Paya Tumpi, Kebayakan, West Aceh, is a source of backfill material that is often used for road construction in the area. This clay can be divided into three types based on its color, namely red, yellow, and gray. These three types of soil have bad properties that make them unsuitable for use as road base layers. Therefore, it is necessary to stabilize it using a mixture of volcanic ash taken from Wih Pesam and Bener Meriah. The purpose of this study was to evaluate the effect of mixing soil with volcanic ash on the shear strength of the soil. This research method involves compaction testing with a standard proctor and direct shear strength testing on a mixture of soil and volcanic ash. Variations in the addition of volcanic ash are 12.5%, 15%, 17.5%, and 20% of the dry weight of the soil. The results showed that the three soil types were included in the soil classification A-7-6 according to AASHTO, and the presence of minerals was detected in montmorillonite on gray soil. The addition of volcanic ash only increases the cohesion value of the gray soil in several variations of the mixture. The cohesion values for the various soil and volcanic ash mixtures of 0%, 12.5%, 15%, 17.5%, and 20% are as follows: for red soil, the cohesion values are 0.492, 0.408, 0.452, 0.088, respectively, and 0.344 in units of kg/cm2; for yellow soil, the cohesion values were 0.585, 0.562, 0.579, 0.243, and 0.327 in units of kg/cm2; while for gray soil, the cohesion values were 0.037, 0.453, 0.433, 0.206, and 0.031 in units of kg/cm2, respectively.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Munirwansyah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yunita Halida</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">E3S Web of Conferences</subfield><subfield code="d">EDP Sciences, 2013</subfield><subfield code="g">476, p 01016(2024)</subfield><subfield code="w">(DE-627)778372081</subfield><subfield code="w">(DE-600)2755680-3</subfield><subfield code="x">22671242</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:476, p 01016</subfield><subfield code="g">year:2024</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/e3sconf/202447601016</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/95927cdd8b5446baacb5c077f2ab3df2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.e3s-conferences.org/articles/e3sconf/pdf/2024/06/e3sconf_aisce2023_01016.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2267-1242</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">476, p 01016</subfield><subfield code="j">2024</subfield></datafield></record></collection>
|
score |
7.4013443 |