A Biomimetic Lignocellulose Aerogel-Based Membrane for Efficient Phenol Extraction from Water
Rapid extraction and concentration systems based on green materials such as cellulose or lignin are promising. However, there is still a need to optimize the material properties and production processes. Unlike conventional cellulose or lignin sorbent materials, aquatic reed root cells can concentra...
Ausführliche Beschreibung
Autor*in: |
Peipei Liu [verfasserIn] Chunling Zheng [verfasserIn] Zhong Yao [verfasserIn] Fang Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Gels - MDPI AG, 2015, 10(2024), 1, p 59 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2024 ; number:1, p 59 |
Links: |
---|
DOI / URN: |
10.3390/gels10010059 |
---|
Katalog-ID: |
DOAJ096357835 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ096357835 | ||
003 | DE-627 | ||
005 | 20240413150630.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/gels10010059 |2 doi | |
035 | |a (DE-627)DOAJ096357835 | ||
035 | |a (DE-599)DOAJ6647a4ae4c774ccf93592d56c95709ca | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD1-999 | |
050 | 0 | |a QD146-197 | |
050 | 0 | |a QD1-65 | |
100 | 0 | |a Peipei Liu |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Biomimetic Lignocellulose Aerogel-Based Membrane for Efficient Phenol Extraction from Water |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Rapid extraction and concentration systems based on green materials such as cellulose or lignin are promising. However, there is still a need to optimize the material properties and production processes. Unlike conventional cellulose or lignin sorbent materials, aquatic reed root cells can concentrate external organic pollutants in the water and accumulate them in the plant. Inspired by this, a new nanocellulose–lignin aerogel (NLAG) was designed, in which nanocellulose was used as a substrate and lignin and polyamide epoxy chloropropane were used to crosslink cellulose in order to enhance the strength of the NLGA, resulting in good mechanical stability and water–oil amphiphilic properties. In practical applications, the organic membrane on the NLAG can transport organic pollutants from water to the NLAG, where they are immobilized. This is evidenced by the fact that the aerogel can remove more than 93% of exogenous phenol within a few minutes, highly enriching it inside. In addition, the aerogel facilitates filtration and shape recovery for reuse. This work establishes a novel biopolymer–aerogel-based extraction system with the advantages of sustainability, high efficiency, stability, and easy detachability, which are hard for the traditional adsorbent materials to attain. | ||
650 | 4 | |a biomimetic membrane | |
650 | 4 | |a cellulose–lignin aerogel | |
650 | 4 | |a phenol | |
650 | 4 | |a extraction and enrichment | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
653 | 0 | |a Chemistry | |
653 | 0 | |a Inorganic chemistry | |
653 | 0 | |a General. Including alchemy | |
700 | 0 | |a Chunling Zheng |e verfasserin |4 aut | |
700 | 0 | |a Zhong Yao |e verfasserin |4 aut | |
700 | 0 | |a Fang Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Gels |d MDPI AG, 2015 |g 10(2024), 1, p 59 |w (DE-627)820684147 |w (DE-600)2813982-3 |x 23102861 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2024 |g number:1, p 59 |
856 | 4 | 0 | |u https://doi.org/10.3390/gels10010059 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6647a4ae4c774ccf93592d56c95709ca |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2310-2861/10/1/59 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2310-2861 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2024 |e 1, p 59 |
author_variant |
p l pl c z cz z y zy f z fz |
---|---|
matchkey_str |
article:23102861:2024----::boieilgoellsarglaemmrnfrfiinpe |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
QD |
publishDate |
2024 |
allfields |
10.3390/gels10010059 doi (DE-627)DOAJ096357835 (DE-599)DOAJ6647a4ae4c774ccf93592d56c95709ca DE-627 ger DE-627 rakwb eng QD1-999 QD146-197 QD1-65 Peipei Liu verfasserin aut A Biomimetic Lignocellulose Aerogel-Based Membrane for Efficient Phenol Extraction from Water 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rapid extraction and concentration systems based on green materials such as cellulose or lignin are promising. However, there is still a need to optimize the material properties and production processes. Unlike conventional cellulose or lignin sorbent materials, aquatic reed root cells can concentrate external organic pollutants in the water and accumulate them in the plant. Inspired by this, a new nanocellulose–lignin aerogel (NLAG) was designed, in which nanocellulose was used as a substrate and lignin and polyamide epoxy chloropropane were used to crosslink cellulose in order to enhance the strength of the NLGA, resulting in good mechanical stability and water–oil amphiphilic properties. In practical applications, the organic membrane on the NLAG can transport organic pollutants from water to the NLAG, where they are immobilized. This is evidenced by the fact that the aerogel can remove more than 93% of exogenous phenol within a few minutes, highly enriching it inside. In addition, the aerogel facilitates filtration and shape recovery for reuse. This work establishes a novel biopolymer–aerogel-based extraction system with the advantages of sustainability, high efficiency, stability, and easy detachability, which are hard for the traditional adsorbent materials to attain. biomimetic membrane cellulose–lignin aerogel phenol extraction and enrichment Science Q Chemistry Inorganic chemistry General. Including alchemy Chunling Zheng verfasserin aut Zhong Yao verfasserin aut Fang Zhang verfasserin aut In Gels MDPI AG, 2015 10(2024), 1, p 59 (DE-627)820684147 (DE-600)2813982-3 23102861 nnns volume:10 year:2024 number:1, p 59 https://doi.org/10.3390/gels10010059 kostenfrei https://doaj.org/article/6647a4ae4c774ccf93592d56c95709ca kostenfrei https://www.mdpi.com/2310-2861/10/1/59 kostenfrei https://doaj.org/toc/2310-2861 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 1, p 59 |
spelling |
10.3390/gels10010059 doi (DE-627)DOAJ096357835 (DE-599)DOAJ6647a4ae4c774ccf93592d56c95709ca DE-627 ger DE-627 rakwb eng QD1-999 QD146-197 QD1-65 Peipei Liu verfasserin aut A Biomimetic Lignocellulose Aerogel-Based Membrane for Efficient Phenol Extraction from Water 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rapid extraction and concentration systems based on green materials such as cellulose or lignin are promising. However, there is still a need to optimize the material properties and production processes. Unlike conventional cellulose or lignin sorbent materials, aquatic reed root cells can concentrate external organic pollutants in the water and accumulate them in the plant. Inspired by this, a new nanocellulose–lignin aerogel (NLAG) was designed, in which nanocellulose was used as a substrate and lignin and polyamide epoxy chloropropane were used to crosslink cellulose in order to enhance the strength of the NLGA, resulting in good mechanical stability and water–oil amphiphilic properties. In practical applications, the organic membrane on the NLAG can transport organic pollutants from water to the NLAG, where they are immobilized. This is evidenced by the fact that the aerogel can remove more than 93% of exogenous phenol within a few minutes, highly enriching it inside. In addition, the aerogel facilitates filtration and shape recovery for reuse. This work establishes a novel biopolymer–aerogel-based extraction system with the advantages of sustainability, high efficiency, stability, and easy detachability, which are hard for the traditional adsorbent materials to attain. biomimetic membrane cellulose–lignin aerogel phenol extraction and enrichment Science Q Chemistry Inorganic chemistry General. Including alchemy Chunling Zheng verfasserin aut Zhong Yao verfasserin aut Fang Zhang verfasserin aut In Gels MDPI AG, 2015 10(2024), 1, p 59 (DE-627)820684147 (DE-600)2813982-3 23102861 nnns volume:10 year:2024 number:1, p 59 https://doi.org/10.3390/gels10010059 kostenfrei https://doaj.org/article/6647a4ae4c774ccf93592d56c95709ca kostenfrei https://www.mdpi.com/2310-2861/10/1/59 kostenfrei https://doaj.org/toc/2310-2861 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 1, p 59 |
allfields_unstemmed |
10.3390/gels10010059 doi (DE-627)DOAJ096357835 (DE-599)DOAJ6647a4ae4c774ccf93592d56c95709ca DE-627 ger DE-627 rakwb eng QD1-999 QD146-197 QD1-65 Peipei Liu verfasserin aut A Biomimetic Lignocellulose Aerogel-Based Membrane for Efficient Phenol Extraction from Water 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rapid extraction and concentration systems based on green materials such as cellulose or lignin are promising. However, there is still a need to optimize the material properties and production processes. Unlike conventional cellulose or lignin sorbent materials, aquatic reed root cells can concentrate external organic pollutants in the water and accumulate them in the plant. Inspired by this, a new nanocellulose–lignin aerogel (NLAG) was designed, in which nanocellulose was used as a substrate and lignin and polyamide epoxy chloropropane were used to crosslink cellulose in order to enhance the strength of the NLGA, resulting in good mechanical stability and water–oil amphiphilic properties. In practical applications, the organic membrane on the NLAG can transport organic pollutants from water to the NLAG, where they are immobilized. This is evidenced by the fact that the aerogel can remove more than 93% of exogenous phenol within a few minutes, highly enriching it inside. In addition, the aerogel facilitates filtration and shape recovery for reuse. This work establishes a novel biopolymer–aerogel-based extraction system with the advantages of sustainability, high efficiency, stability, and easy detachability, which are hard for the traditional adsorbent materials to attain. biomimetic membrane cellulose–lignin aerogel phenol extraction and enrichment Science Q Chemistry Inorganic chemistry General. Including alchemy Chunling Zheng verfasserin aut Zhong Yao verfasserin aut Fang Zhang verfasserin aut In Gels MDPI AG, 2015 10(2024), 1, p 59 (DE-627)820684147 (DE-600)2813982-3 23102861 nnns volume:10 year:2024 number:1, p 59 https://doi.org/10.3390/gels10010059 kostenfrei https://doaj.org/article/6647a4ae4c774ccf93592d56c95709ca kostenfrei https://www.mdpi.com/2310-2861/10/1/59 kostenfrei https://doaj.org/toc/2310-2861 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 1, p 59 |
allfieldsGer |
10.3390/gels10010059 doi (DE-627)DOAJ096357835 (DE-599)DOAJ6647a4ae4c774ccf93592d56c95709ca DE-627 ger DE-627 rakwb eng QD1-999 QD146-197 QD1-65 Peipei Liu verfasserin aut A Biomimetic Lignocellulose Aerogel-Based Membrane for Efficient Phenol Extraction from Water 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rapid extraction and concentration systems based on green materials such as cellulose or lignin are promising. However, there is still a need to optimize the material properties and production processes. Unlike conventional cellulose or lignin sorbent materials, aquatic reed root cells can concentrate external organic pollutants in the water and accumulate them in the plant. Inspired by this, a new nanocellulose–lignin aerogel (NLAG) was designed, in which nanocellulose was used as a substrate and lignin and polyamide epoxy chloropropane were used to crosslink cellulose in order to enhance the strength of the NLGA, resulting in good mechanical stability and water–oil amphiphilic properties. In practical applications, the organic membrane on the NLAG can transport organic pollutants from water to the NLAG, where they are immobilized. This is evidenced by the fact that the aerogel can remove more than 93% of exogenous phenol within a few minutes, highly enriching it inside. In addition, the aerogel facilitates filtration and shape recovery for reuse. This work establishes a novel biopolymer–aerogel-based extraction system with the advantages of sustainability, high efficiency, stability, and easy detachability, which are hard for the traditional adsorbent materials to attain. biomimetic membrane cellulose–lignin aerogel phenol extraction and enrichment Science Q Chemistry Inorganic chemistry General. Including alchemy Chunling Zheng verfasserin aut Zhong Yao verfasserin aut Fang Zhang verfasserin aut In Gels MDPI AG, 2015 10(2024), 1, p 59 (DE-627)820684147 (DE-600)2813982-3 23102861 nnns volume:10 year:2024 number:1, p 59 https://doi.org/10.3390/gels10010059 kostenfrei https://doaj.org/article/6647a4ae4c774ccf93592d56c95709ca kostenfrei https://www.mdpi.com/2310-2861/10/1/59 kostenfrei https://doaj.org/toc/2310-2861 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 1, p 59 |
allfieldsSound |
10.3390/gels10010059 doi (DE-627)DOAJ096357835 (DE-599)DOAJ6647a4ae4c774ccf93592d56c95709ca DE-627 ger DE-627 rakwb eng QD1-999 QD146-197 QD1-65 Peipei Liu verfasserin aut A Biomimetic Lignocellulose Aerogel-Based Membrane for Efficient Phenol Extraction from Water 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rapid extraction and concentration systems based on green materials such as cellulose or lignin are promising. However, there is still a need to optimize the material properties and production processes. Unlike conventional cellulose or lignin sorbent materials, aquatic reed root cells can concentrate external organic pollutants in the water and accumulate them in the plant. Inspired by this, a new nanocellulose–lignin aerogel (NLAG) was designed, in which nanocellulose was used as a substrate and lignin and polyamide epoxy chloropropane were used to crosslink cellulose in order to enhance the strength of the NLGA, resulting in good mechanical stability and water–oil amphiphilic properties. In practical applications, the organic membrane on the NLAG can transport organic pollutants from water to the NLAG, where they are immobilized. This is evidenced by the fact that the aerogel can remove more than 93% of exogenous phenol within a few minutes, highly enriching it inside. In addition, the aerogel facilitates filtration and shape recovery for reuse. This work establishes a novel biopolymer–aerogel-based extraction system with the advantages of sustainability, high efficiency, stability, and easy detachability, which are hard for the traditional adsorbent materials to attain. biomimetic membrane cellulose–lignin aerogel phenol extraction and enrichment Science Q Chemistry Inorganic chemistry General. Including alchemy Chunling Zheng verfasserin aut Zhong Yao verfasserin aut Fang Zhang verfasserin aut In Gels MDPI AG, 2015 10(2024), 1, p 59 (DE-627)820684147 (DE-600)2813982-3 23102861 nnns volume:10 year:2024 number:1, p 59 https://doi.org/10.3390/gels10010059 kostenfrei https://doaj.org/article/6647a4ae4c774ccf93592d56c95709ca kostenfrei https://www.mdpi.com/2310-2861/10/1/59 kostenfrei https://doaj.org/toc/2310-2861 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 1, p 59 |
language |
English |
source |
In Gels 10(2024), 1, p 59 volume:10 year:2024 number:1, p 59 |
sourceStr |
In Gels 10(2024), 1, p 59 volume:10 year:2024 number:1, p 59 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
biomimetic membrane cellulose–lignin aerogel phenol extraction and enrichment Science Q Chemistry Inorganic chemistry General. Including alchemy |
isfreeaccess_bool |
true |
container_title |
Gels |
authorswithroles_txt_mv |
Peipei Liu @@aut@@ Chunling Zheng @@aut@@ Zhong Yao @@aut@@ Fang Zhang @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
820684147 |
id |
DOAJ096357835 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096357835</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413150630.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/gels10010059</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096357835</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6647a4ae4c774ccf93592d56c95709ca</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD146-197</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-65</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Peipei Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Biomimetic Lignocellulose Aerogel-Based Membrane for Efficient Phenol Extraction from Water</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rapid extraction and concentration systems based on green materials such as cellulose or lignin are promising. However, there is still a need to optimize the material properties and production processes. Unlike conventional cellulose or lignin sorbent materials, aquatic reed root cells can concentrate external organic pollutants in the water and accumulate them in the plant. Inspired by this, a new nanocellulose–lignin aerogel (NLAG) was designed, in which nanocellulose was used as a substrate and lignin and polyamide epoxy chloropropane were used to crosslink cellulose in order to enhance the strength of the NLGA, resulting in good mechanical stability and water–oil amphiphilic properties. In practical applications, the organic membrane on the NLAG can transport organic pollutants from water to the NLAG, where they are immobilized. This is evidenced by the fact that the aerogel can remove more than 93% of exogenous phenol within a few minutes, highly enriching it inside. In addition, the aerogel facilitates filtration and shape recovery for reuse. This work establishes a novel biopolymer–aerogel-based extraction system with the advantages of sustainability, high efficiency, stability, and easy detachability, which are hard for the traditional adsorbent materials to attain.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biomimetic membrane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cellulose–lignin aerogel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phenol</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">extraction and enrichment</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Inorganic chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">General. Including alchemy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chunling Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhong Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fang Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Gels</subfield><subfield code="d">MDPI AG, 2015</subfield><subfield code="g">10(2024), 1, p 59</subfield><subfield code="w">(DE-627)820684147</subfield><subfield code="w">(DE-600)2813982-3</subfield><subfield code="x">23102861</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1, p 59</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/gels10010059</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6647a4ae4c774ccf93592d56c95709ca</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2310-2861/10/1/59</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2310-2861</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2024</subfield><subfield code="e">1, p 59</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Peipei Liu |
spellingShingle |
Peipei Liu misc QD1-999 misc QD146-197 misc QD1-65 misc biomimetic membrane misc cellulose–lignin aerogel misc phenol misc extraction and enrichment misc Science misc Q misc Chemistry misc Inorganic chemistry misc General. Including alchemy A Biomimetic Lignocellulose Aerogel-Based Membrane for Efficient Phenol Extraction from Water |
authorStr |
Peipei Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)820684147 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD1-999 |
illustrated |
Not Illustrated |
issn |
23102861 |
topic_title |
QD1-999 QD146-197 QD1-65 A Biomimetic Lignocellulose Aerogel-Based Membrane for Efficient Phenol Extraction from Water biomimetic membrane cellulose–lignin aerogel phenol extraction and enrichment |
topic |
misc QD1-999 misc QD146-197 misc QD1-65 misc biomimetic membrane misc cellulose–lignin aerogel misc phenol misc extraction and enrichment misc Science misc Q misc Chemistry misc Inorganic chemistry misc General. Including alchemy |
topic_unstemmed |
misc QD1-999 misc QD146-197 misc QD1-65 misc biomimetic membrane misc cellulose–lignin aerogel misc phenol misc extraction and enrichment misc Science misc Q misc Chemistry misc Inorganic chemistry misc General. Including alchemy |
topic_browse |
misc QD1-999 misc QD146-197 misc QD1-65 misc biomimetic membrane misc cellulose–lignin aerogel misc phenol misc extraction and enrichment misc Science misc Q misc Chemistry misc Inorganic chemistry misc General. Including alchemy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Gels |
hierarchy_parent_id |
820684147 |
hierarchy_top_title |
Gels |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)820684147 (DE-600)2813982-3 |
title |
A Biomimetic Lignocellulose Aerogel-Based Membrane for Efficient Phenol Extraction from Water |
ctrlnum |
(DE-627)DOAJ096357835 (DE-599)DOAJ6647a4ae4c774ccf93592d56c95709ca |
title_full |
A Biomimetic Lignocellulose Aerogel-Based Membrane for Efficient Phenol Extraction from Water |
author_sort |
Peipei Liu |
journal |
Gels |
journalStr |
Gels |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Peipei Liu Chunling Zheng Zhong Yao Fang Zhang |
container_volume |
10 |
class |
QD1-999 QD146-197 QD1-65 |
format_se |
Elektronische Aufsätze |
author-letter |
Peipei Liu |
doi_str_mv |
10.3390/gels10010059 |
author2-role |
verfasserin |
title_sort |
biomimetic lignocellulose aerogel-based membrane for efficient phenol extraction from water |
callnumber |
QD1-999 |
title_auth |
A Biomimetic Lignocellulose Aerogel-Based Membrane for Efficient Phenol Extraction from Water |
abstract |
Rapid extraction and concentration systems based on green materials such as cellulose or lignin are promising. However, there is still a need to optimize the material properties and production processes. Unlike conventional cellulose or lignin sorbent materials, aquatic reed root cells can concentrate external organic pollutants in the water and accumulate them in the plant. Inspired by this, a new nanocellulose–lignin aerogel (NLAG) was designed, in which nanocellulose was used as a substrate and lignin and polyamide epoxy chloropropane were used to crosslink cellulose in order to enhance the strength of the NLGA, resulting in good mechanical stability and water–oil amphiphilic properties. In practical applications, the organic membrane on the NLAG can transport organic pollutants from water to the NLAG, where they are immobilized. This is evidenced by the fact that the aerogel can remove more than 93% of exogenous phenol within a few minutes, highly enriching it inside. In addition, the aerogel facilitates filtration and shape recovery for reuse. This work establishes a novel biopolymer–aerogel-based extraction system with the advantages of sustainability, high efficiency, stability, and easy detachability, which are hard for the traditional adsorbent materials to attain. |
abstractGer |
Rapid extraction and concentration systems based on green materials such as cellulose or lignin are promising. However, there is still a need to optimize the material properties and production processes. Unlike conventional cellulose or lignin sorbent materials, aquatic reed root cells can concentrate external organic pollutants in the water and accumulate them in the plant. Inspired by this, a new nanocellulose–lignin aerogel (NLAG) was designed, in which nanocellulose was used as a substrate and lignin and polyamide epoxy chloropropane were used to crosslink cellulose in order to enhance the strength of the NLGA, resulting in good mechanical stability and water–oil amphiphilic properties. In practical applications, the organic membrane on the NLAG can transport organic pollutants from water to the NLAG, where they are immobilized. This is evidenced by the fact that the aerogel can remove more than 93% of exogenous phenol within a few minutes, highly enriching it inside. In addition, the aerogel facilitates filtration and shape recovery for reuse. This work establishes a novel biopolymer–aerogel-based extraction system with the advantages of sustainability, high efficiency, stability, and easy detachability, which are hard for the traditional adsorbent materials to attain. |
abstract_unstemmed |
Rapid extraction and concentration systems based on green materials such as cellulose or lignin are promising. However, there is still a need to optimize the material properties and production processes. Unlike conventional cellulose or lignin sorbent materials, aquatic reed root cells can concentrate external organic pollutants in the water and accumulate them in the plant. Inspired by this, a new nanocellulose–lignin aerogel (NLAG) was designed, in which nanocellulose was used as a substrate and lignin and polyamide epoxy chloropropane were used to crosslink cellulose in order to enhance the strength of the NLGA, resulting in good mechanical stability and water–oil amphiphilic properties. In practical applications, the organic membrane on the NLAG can transport organic pollutants from water to the NLAG, where they are immobilized. This is evidenced by the fact that the aerogel can remove more than 93% of exogenous phenol within a few minutes, highly enriching it inside. In addition, the aerogel facilitates filtration and shape recovery for reuse. This work establishes a novel biopolymer–aerogel-based extraction system with the advantages of sustainability, high efficiency, stability, and easy detachability, which are hard for the traditional adsorbent materials to attain. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 59 |
title_short |
A Biomimetic Lignocellulose Aerogel-Based Membrane for Efficient Phenol Extraction from Water |
url |
https://doi.org/10.3390/gels10010059 https://doaj.org/article/6647a4ae4c774ccf93592d56c95709ca https://www.mdpi.com/2310-2861/10/1/59 https://doaj.org/toc/2310-2861 |
remote_bool |
true |
author2 |
Chunling Zheng Zhong Yao Fang Zhang |
author2Str |
Chunling Zheng Zhong Yao Fang Zhang |
ppnlink |
820684147 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/gels10010059 |
callnumber-a |
QD1-999 |
up_date |
2024-07-03T19:42:59.542Z |
_version_ |
1803588237570080768 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096357835</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413150630.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/gels10010059</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096357835</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6647a4ae4c774ccf93592d56c95709ca</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD146-197</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-65</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Peipei Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Biomimetic Lignocellulose Aerogel-Based Membrane for Efficient Phenol Extraction from Water</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rapid extraction and concentration systems based on green materials such as cellulose or lignin are promising. However, there is still a need to optimize the material properties and production processes. Unlike conventional cellulose or lignin sorbent materials, aquatic reed root cells can concentrate external organic pollutants in the water and accumulate them in the plant. Inspired by this, a new nanocellulose–lignin aerogel (NLAG) was designed, in which nanocellulose was used as a substrate and lignin and polyamide epoxy chloropropane were used to crosslink cellulose in order to enhance the strength of the NLGA, resulting in good mechanical stability and water–oil amphiphilic properties. In practical applications, the organic membrane on the NLAG can transport organic pollutants from water to the NLAG, where they are immobilized. This is evidenced by the fact that the aerogel can remove more than 93% of exogenous phenol within a few minutes, highly enriching it inside. In addition, the aerogel facilitates filtration and shape recovery for reuse. This work establishes a novel biopolymer–aerogel-based extraction system with the advantages of sustainability, high efficiency, stability, and easy detachability, which are hard for the traditional adsorbent materials to attain.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biomimetic membrane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cellulose–lignin aerogel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phenol</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">extraction and enrichment</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Inorganic chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">General. Including alchemy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chunling Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhong Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fang Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Gels</subfield><subfield code="d">MDPI AG, 2015</subfield><subfield code="g">10(2024), 1, p 59</subfield><subfield code="w">(DE-627)820684147</subfield><subfield code="w">(DE-600)2813982-3</subfield><subfield code="x">23102861</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1, p 59</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/gels10010059</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6647a4ae4c774ccf93592d56c95709ca</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2310-2861/10/1/59</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2310-2861</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2024</subfield><subfield code="e">1, p 59</subfield></datafield></record></collection>
|
score |
7.3993254 |