Pulsed Production of Antihydrogen in AEgIS
Low-temperature antihydrogen atoms are an effective tool to probe the validity of the fundamental laws of Physics, for example the Weak Equivalence Principle (WEP) for antimatter, and -generally speaking- it is obvious that colder atoms will increase the level of precision. After the first productio...
Ausführliche Beschreibung
Autor*in: |
Zurlo N. [verfasserIn] Auzins M. [verfasserIn] Bergmann B. [verfasserIn] Bonomi G. [verfasserIn] Brusa R.S. [verfasserIn] Burian P. [verfasserIn] Camper A. [verfasserIn] Castelli F. [verfasserIn] Ciury R. [verfasserIn] Consolati G. [verfasserIn] Doser M. [verfasserIn] Farricker A. [verfasserIn] Glöggler L. [verfasserIn] Graczykowski Ł. [verfasserIn] Grosbart M. [verfasserIn] Guatieri F. [verfasserIn] Gusakova N. [verfasserIn] Haider S. [verfasserIn] Huck S. [verfasserIn] Janik M. [verfasserIn] Kasprowicz G. [verfasserIn] Khatri G. [verfasserIn] Kłosowski Ł. [verfasserIn] Kornakov G. [verfasserIn] Krumins V. [verfasserIn] Lappo L. [verfasserIn] Linek A. [verfasserIn] Malamant J. [verfasserIn] Malbrunot C. [verfasserIn] Mariazzi S. [verfasserIn] Nowak L. [verfasserIn] Nowicka D. [verfasserIn] Oswald E. [verfasserIn] Pagano D. [verfasserIn] Penasa L. [verfasserIn] Piwiński M. [verfasserIn] Pospisil S. [verfasserIn] Povolo L. [verfasserIn] Prelz F. [verfasserIn] Rangwala S. [verfasserIn] Rienäcker B. [verfasserIn] Røhne O.M. [verfasserIn] Rotondi A. [verfasserIn] Sandaker H. [verfasserIn] Smolyanskiy P. [verfasserIn] Sowiński T. [verfasserIn] Tefelski D. [verfasserIn] Testera G. [verfasserIn] Volponi M. [verfasserIn] Welsch C.P. [verfasserIn] Wolz T. [verfasserIn] Zawada M. [verfasserIn] Zielinski J. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Übergeordnetes Werk: |
In: EPJ Web of Conferences - EDP Sciences, 2010, 290, p 07001(2023) |
---|---|
Übergeordnetes Werk: |
volume:290, p 07001 ; year:2023 |
Links: |
---|
DOI / URN: |
10.1051/epjconf/202329007001 |
---|
Katalog-ID: |
DOAJ096360208 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ096360208 | ||
003 | DE-627 | ||
005 | 20240413150642.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1051/epjconf/202329007001 |2 doi | |
035 | |a (DE-627)DOAJ096360208 | ||
035 | |a (DE-599)DOAJ73609153f9984866b1464dac5925c312 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC1-999 | |
100 | 0 | |a Zurlo N. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Pulsed Production of Antihydrogen in AEgIS |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Low-temperature antihydrogen atoms are an effective tool to probe the validity of the fundamental laws of Physics, for example the Weak Equivalence Principle (WEP) for antimatter, and -generally speaking- it is obvious that colder atoms will increase the level of precision. After the first production of cold antihydrogen in 2002 [1], experimental efforts have substantially progressed, with really competitive results already reached by adapting to cold antiatoms some well-known techniques pre- viously developed for ordinary atoms. Unfortunately, the number of antihydrogen atoms that can be produced in dedicated experiments is many orders of magnitude smaller than of hydrogen atoms, so the development of novel techniques to enhance the production of antihydrogen with well defined (and possibly controlled) conditions is essential to improve the sensitivity. We present here some experimental results achieved by the AEgIS Collaboration, based at the CERN AD (Antiproton Decelerator) on the production of antihydrogen in a pulsed mode where the production time of 90% of atoms is known with an uncertainty of ~ 250 ns [2]. The pulsed antihydrogen source is generated by the charge-exchange reaction between Rydberg positronium (Ps*) and an antiproton (p¯): p¯ + Ps* → H¯* + e−, where Ps* is produced via the implantation of a pulsed positron beam into a mesoporous silica target, and excited by two consecutive laser pulses, and antiprotons are trapped, cooled and manipulated in Penning-Malmberg traps. The pulsed production (which is a major milestone for AEgIS) makes it possible to select the antihydrogen axial temperature and opens the door for the tuning of the antihydrogen Rydberg states, their de-excitation by pulsed lasers and the manipulation through electric field gradients. In this paper, we present the results achieved by AEgIS in 2018, just before the Long Shutdown 2 (LS2), as well as some of the ongoing improvements to the system, aimed at exploiting the lower energy antiproton beam from ELENA [3]. | ||
653 | 0 | |a Physics | |
700 | 0 | |a Auzins M. |e verfasserin |4 aut | |
700 | 0 | |a Bergmann B. |e verfasserin |4 aut | |
700 | 0 | |a Bonomi G. |e verfasserin |4 aut | |
700 | 0 | |a Brusa R.S. |e verfasserin |4 aut | |
700 | 0 | |a Burian P. |e verfasserin |4 aut | |
700 | 0 | |a Camper A. |e verfasserin |4 aut | |
700 | 0 | |a Castelli F. |e verfasserin |4 aut | |
700 | 0 | |a Ciury R. |e verfasserin |4 aut | |
700 | 0 | |a Consolati G. |e verfasserin |4 aut | |
700 | 0 | |a Doser M. |e verfasserin |4 aut | |
700 | 0 | |a Farricker A. |e verfasserin |4 aut | |
700 | 0 | |a Glöggler L. |e verfasserin |4 aut | |
700 | 0 | |a Graczykowski Ł. |e verfasserin |4 aut | |
700 | 0 | |a Grosbart M. |e verfasserin |4 aut | |
700 | 0 | |a Guatieri F. |e verfasserin |4 aut | |
700 | 0 | |a Gusakova N. |e verfasserin |4 aut | |
700 | 0 | |a Haider S. |e verfasserin |4 aut | |
700 | 0 | |a Huck S. |e verfasserin |4 aut | |
700 | 0 | |a Janik M. |e verfasserin |4 aut | |
700 | 0 | |a Kasprowicz G. |e verfasserin |4 aut | |
700 | 0 | |a Khatri G. |e verfasserin |4 aut | |
700 | 0 | |a Kłosowski Ł. |e verfasserin |4 aut | |
700 | 0 | |a Kornakov G. |e verfasserin |4 aut | |
700 | 0 | |a Krumins V. |e verfasserin |4 aut | |
700 | 0 | |a Lappo L. |e verfasserin |4 aut | |
700 | 0 | |a Linek A. |e verfasserin |4 aut | |
700 | 0 | |a Malamant J. |e verfasserin |4 aut | |
700 | 0 | |a Malbrunot C. |e verfasserin |4 aut | |
700 | 0 | |a Mariazzi S. |e verfasserin |4 aut | |
700 | 0 | |a Nowak L. |e verfasserin |4 aut | |
700 | 0 | |a Nowicka D. |e verfasserin |4 aut | |
700 | 0 | |a Oswald E. |e verfasserin |4 aut | |
700 | 0 | |a Pagano D. |e verfasserin |4 aut | |
700 | 0 | |a Penasa L. |e verfasserin |4 aut | |
700 | 0 | |a Piwiński M. |e verfasserin |4 aut | |
700 | 0 | |a Pospisil S. |e verfasserin |4 aut | |
700 | 0 | |a Povolo L. |e verfasserin |4 aut | |
700 | 0 | |a Prelz F. |e verfasserin |4 aut | |
700 | 0 | |a Rangwala S. |e verfasserin |4 aut | |
700 | 0 | |a Rienäcker B. |e verfasserin |4 aut | |
700 | 0 | |a Røhne O.M. |e verfasserin |4 aut | |
700 | 0 | |a Rotondi A. |e verfasserin |4 aut | |
700 | 0 | |a Sandaker H. |e verfasserin |4 aut | |
700 | 0 | |a Smolyanskiy P. |e verfasserin |4 aut | |
700 | 0 | |a Sowiński T. |e verfasserin |4 aut | |
700 | 0 | |a Tefelski D. |e verfasserin |4 aut | |
700 | 0 | |a Testera G. |e verfasserin |4 aut | |
700 | 0 | |a Volponi M. |e verfasserin |4 aut | |
700 | 0 | |a Welsch C.P. |e verfasserin |4 aut | |
700 | 0 | |a Wolz T. |e verfasserin |4 aut | |
700 | 0 | |a Zawada M. |e verfasserin |4 aut | |
700 | 0 | |a Zielinski J. |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t EPJ Web of Conferences |d EDP Sciences, 2010 |g 290, p 07001(2023) |w (DE-627)647306611 |w (DE-600)2595425-8 |x 2100014X |7 nnns |
773 | 1 | 8 | |g volume:290, p 07001 |g year:2023 |
856 | 4 | 0 | |u https://doi.org/10.1051/epjconf/202329007001 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/73609153f9984866b1464dac5925c312 |z kostenfrei |
856 | 4 | 0 | |u https://www.epj-conferences.org/articles/epjconf/pdf/2023/16/epjconf_eunpc2023_07001.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2100-014X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 290, p 07001 |j 2023 |
author_variant |
z n zn a m am b b bb b g bg b r br b p bp c a ca c f cf c r cr c g cg d m dm f a fa g l gl g ł gł g m gm g f gf g n gn h s hs h s hs j m jm k g kg k g kg k ł kł k g kg k v kv l l ll l a la m j mj m c mc m s ms n l nl n d nd o e oe p d pd p l pl p m pm p s ps p l pl p f pf r s rs r b rb r o ro r a ra s h sh s p sp s t st t d td t g tg v m vm w c wc w t wt z m zm z j zj |
---|---|
matchkey_str |
article:2100014X:2023----::usdrdcinfniyr |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QC |
publishDate |
2023 |
allfields |
10.1051/epjconf/202329007001 doi (DE-627)DOAJ096360208 (DE-599)DOAJ73609153f9984866b1464dac5925c312 DE-627 ger DE-627 rakwb eng QC1-999 Zurlo N. verfasserin aut Pulsed Production of Antihydrogen in AEgIS 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Low-temperature antihydrogen atoms are an effective tool to probe the validity of the fundamental laws of Physics, for example the Weak Equivalence Principle (WEP) for antimatter, and -generally speaking- it is obvious that colder atoms will increase the level of precision. After the first production of cold antihydrogen in 2002 [1], experimental efforts have substantially progressed, with really competitive results already reached by adapting to cold antiatoms some well-known techniques pre- viously developed for ordinary atoms. Unfortunately, the number of antihydrogen atoms that can be produced in dedicated experiments is many orders of magnitude smaller than of hydrogen atoms, so the development of novel techniques to enhance the production of antihydrogen with well defined (and possibly controlled) conditions is essential to improve the sensitivity. We present here some experimental results achieved by the AEgIS Collaboration, based at the CERN AD (Antiproton Decelerator) on the production of antihydrogen in a pulsed mode where the production time of 90% of atoms is known with an uncertainty of ~ 250 ns [2]. The pulsed antihydrogen source is generated by the charge-exchange reaction between Rydberg positronium (Ps*) and an antiproton (p¯): p¯ + Ps* → H¯* + e−, where Ps* is produced via the implantation of a pulsed positron beam into a mesoporous silica target, and excited by two consecutive laser pulses, and antiprotons are trapped, cooled and manipulated in Penning-Malmberg traps. The pulsed production (which is a major milestone for AEgIS) makes it possible to select the antihydrogen axial temperature and opens the door for the tuning of the antihydrogen Rydberg states, their de-excitation by pulsed lasers and the manipulation through electric field gradients. In this paper, we present the results achieved by AEgIS in 2018, just before the Long Shutdown 2 (LS2), as well as some of the ongoing improvements to the system, aimed at exploiting the lower energy antiproton beam from ELENA [3]. Physics Auzins M. verfasserin aut Bergmann B. verfasserin aut Bonomi G. verfasserin aut Brusa R.S. verfasserin aut Burian P. verfasserin aut Camper A. verfasserin aut Castelli F. verfasserin aut Ciury R. verfasserin aut Consolati G. verfasserin aut Doser M. verfasserin aut Farricker A. verfasserin aut Glöggler L. verfasserin aut Graczykowski Ł. verfasserin aut Grosbart M. verfasserin aut Guatieri F. verfasserin aut Gusakova N. verfasserin aut Haider S. verfasserin aut Huck S. verfasserin aut Janik M. verfasserin aut Kasprowicz G. verfasserin aut Khatri G. verfasserin aut Kłosowski Ł. verfasserin aut Kornakov G. verfasserin aut Krumins V. verfasserin aut Lappo L. verfasserin aut Linek A. verfasserin aut Malamant J. verfasserin aut Malbrunot C. verfasserin aut Mariazzi S. verfasserin aut Nowak L. verfasserin aut Nowicka D. verfasserin aut Oswald E. verfasserin aut Pagano D. verfasserin aut Penasa L. verfasserin aut Piwiński M. verfasserin aut Pospisil S. verfasserin aut Povolo L. verfasserin aut Prelz F. verfasserin aut Rangwala S. verfasserin aut Rienäcker B. verfasserin aut Røhne O.M. verfasserin aut Rotondi A. verfasserin aut Sandaker H. verfasserin aut Smolyanskiy P. verfasserin aut Sowiński T. verfasserin aut Tefelski D. verfasserin aut Testera G. verfasserin aut Volponi M. verfasserin aut Welsch C.P. verfasserin aut Wolz T. verfasserin aut Zawada M. verfasserin aut Zielinski J. verfasserin aut In EPJ Web of Conferences EDP Sciences, 2010 290, p 07001(2023) (DE-627)647306611 (DE-600)2595425-8 2100014X nnns volume:290, p 07001 year:2023 https://doi.org/10.1051/epjconf/202329007001 kostenfrei https://doaj.org/article/73609153f9984866b1464dac5925c312 kostenfrei https://www.epj-conferences.org/articles/epjconf/pdf/2023/16/epjconf_eunpc2023_07001.pdf kostenfrei https://doaj.org/toc/2100-014X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 290, p 07001 2023 |
spelling |
10.1051/epjconf/202329007001 doi (DE-627)DOAJ096360208 (DE-599)DOAJ73609153f9984866b1464dac5925c312 DE-627 ger DE-627 rakwb eng QC1-999 Zurlo N. verfasserin aut Pulsed Production of Antihydrogen in AEgIS 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Low-temperature antihydrogen atoms are an effective tool to probe the validity of the fundamental laws of Physics, for example the Weak Equivalence Principle (WEP) for antimatter, and -generally speaking- it is obvious that colder atoms will increase the level of precision. After the first production of cold antihydrogen in 2002 [1], experimental efforts have substantially progressed, with really competitive results already reached by adapting to cold antiatoms some well-known techniques pre- viously developed for ordinary atoms. Unfortunately, the number of antihydrogen atoms that can be produced in dedicated experiments is many orders of magnitude smaller than of hydrogen atoms, so the development of novel techniques to enhance the production of antihydrogen with well defined (and possibly controlled) conditions is essential to improve the sensitivity. We present here some experimental results achieved by the AEgIS Collaboration, based at the CERN AD (Antiproton Decelerator) on the production of antihydrogen in a pulsed mode where the production time of 90% of atoms is known with an uncertainty of ~ 250 ns [2]. The pulsed antihydrogen source is generated by the charge-exchange reaction between Rydberg positronium (Ps*) and an antiproton (p¯): p¯ + Ps* → H¯* + e−, where Ps* is produced via the implantation of a pulsed positron beam into a mesoporous silica target, and excited by two consecutive laser pulses, and antiprotons are trapped, cooled and manipulated in Penning-Malmberg traps. The pulsed production (which is a major milestone for AEgIS) makes it possible to select the antihydrogen axial temperature and opens the door for the tuning of the antihydrogen Rydberg states, their de-excitation by pulsed lasers and the manipulation through electric field gradients. In this paper, we present the results achieved by AEgIS in 2018, just before the Long Shutdown 2 (LS2), as well as some of the ongoing improvements to the system, aimed at exploiting the lower energy antiproton beam from ELENA [3]. Physics Auzins M. verfasserin aut Bergmann B. verfasserin aut Bonomi G. verfasserin aut Brusa R.S. verfasserin aut Burian P. verfasserin aut Camper A. verfasserin aut Castelli F. verfasserin aut Ciury R. verfasserin aut Consolati G. verfasserin aut Doser M. verfasserin aut Farricker A. verfasserin aut Glöggler L. verfasserin aut Graczykowski Ł. verfasserin aut Grosbart M. verfasserin aut Guatieri F. verfasserin aut Gusakova N. verfasserin aut Haider S. verfasserin aut Huck S. verfasserin aut Janik M. verfasserin aut Kasprowicz G. verfasserin aut Khatri G. verfasserin aut Kłosowski Ł. verfasserin aut Kornakov G. verfasserin aut Krumins V. verfasserin aut Lappo L. verfasserin aut Linek A. verfasserin aut Malamant J. verfasserin aut Malbrunot C. verfasserin aut Mariazzi S. verfasserin aut Nowak L. verfasserin aut Nowicka D. verfasserin aut Oswald E. verfasserin aut Pagano D. verfasserin aut Penasa L. verfasserin aut Piwiński M. verfasserin aut Pospisil S. verfasserin aut Povolo L. verfasserin aut Prelz F. verfasserin aut Rangwala S. verfasserin aut Rienäcker B. verfasserin aut Røhne O.M. verfasserin aut Rotondi A. verfasserin aut Sandaker H. verfasserin aut Smolyanskiy P. verfasserin aut Sowiński T. verfasserin aut Tefelski D. verfasserin aut Testera G. verfasserin aut Volponi M. verfasserin aut Welsch C.P. verfasserin aut Wolz T. verfasserin aut Zawada M. verfasserin aut Zielinski J. verfasserin aut In EPJ Web of Conferences EDP Sciences, 2010 290, p 07001(2023) (DE-627)647306611 (DE-600)2595425-8 2100014X nnns volume:290, p 07001 year:2023 https://doi.org/10.1051/epjconf/202329007001 kostenfrei https://doaj.org/article/73609153f9984866b1464dac5925c312 kostenfrei https://www.epj-conferences.org/articles/epjconf/pdf/2023/16/epjconf_eunpc2023_07001.pdf kostenfrei https://doaj.org/toc/2100-014X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 290, p 07001 2023 |
allfields_unstemmed |
10.1051/epjconf/202329007001 doi (DE-627)DOAJ096360208 (DE-599)DOAJ73609153f9984866b1464dac5925c312 DE-627 ger DE-627 rakwb eng QC1-999 Zurlo N. verfasserin aut Pulsed Production of Antihydrogen in AEgIS 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Low-temperature antihydrogen atoms are an effective tool to probe the validity of the fundamental laws of Physics, for example the Weak Equivalence Principle (WEP) for antimatter, and -generally speaking- it is obvious that colder atoms will increase the level of precision. After the first production of cold antihydrogen in 2002 [1], experimental efforts have substantially progressed, with really competitive results already reached by adapting to cold antiatoms some well-known techniques pre- viously developed for ordinary atoms. Unfortunately, the number of antihydrogen atoms that can be produced in dedicated experiments is many orders of magnitude smaller than of hydrogen atoms, so the development of novel techniques to enhance the production of antihydrogen with well defined (and possibly controlled) conditions is essential to improve the sensitivity. We present here some experimental results achieved by the AEgIS Collaboration, based at the CERN AD (Antiproton Decelerator) on the production of antihydrogen in a pulsed mode where the production time of 90% of atoms is known with an uncertainty of ~ 250 ns [2]. The pulsed antihydrogen source is generated by the charge-exchange reaction between Rydberg positronium (Ps*) and an antiproton (p¯): p¯ + Ps* → H¯* + e−, where Ps* is produced via the implantation of a pulsed positron beam into a mesoporous silica target, and excited by two consecutive laser pulses, and antiprotons are trapped, cooled and manipulated in Penning-Malmberg traps. The pulsed production (which is a major milestone for AEgIS) makes it possible to select the antihydrogen axial temperature and opens the door for the tuning of the antihydrogen Rydberg states, their de-excitation by pulsed lasers and the manipulation through electric field gradients. In this paper, we present the results achieved by AEgIS in 2018, just before the Long Shutdown 2 (LS2), as well as some of the ongoing improvements to the system, aimed at exploiting the lower energy antiproton beam from ELENA [3]. Physics Auzins M. verfasserin aut Bergmann B. verfasserin aut Bonomi G. verfasserin aut Brusa R.S. verfasserin aut Burian P. verfasserin aut Camper A. verfasserin aut Castelli F. verfasserin aut Ciury R. verfasserin aut Consolati G. verfasserin aut Doser M. verfasserin aut Farricker A. verfasserin aut Glöggler L. verfasserin aut Graczykowski Ł. verfasserin aut Grosbart M. verfasserin aut Guatieri F. verfasserin aut Gusakova N. verfasserin aut Haider S. verfasserin aut Huck S. verfasserin aut Janik M. verfasserin aut Kasprowicz G. verfasserin aut Khatri G. verfasserin aut Kłosowski Ł. verfasserin aut Kornakov G. verfasserin aut Krumins V. verfasserin aut Lappo L. verfasserin aut Linek A. verfasserin aut Malamant J. verfasserin aut Malbrunot C. verfasserin aut Mariazzi S. verfasserin aut Nowak L. verfasserin aut Nowicka D. verfasserin aut Oswald E. verfasserin aut Pagano D. verfasserin aut Penasa L. verfasserin aut Piwiński M. verfasserin aut Pospisil S. verfasserin aut Povolo L. verfasserin aut Prelz F. verfasserin aut Rangwala S. verfasserin aut Rienäcker B. verfasserin aut Røhne O.M. verfasserin aut Rotondi A. verfasserin aut Sandaker H. verfasserin aut Smolyanskiy P. verfasserin aut Sowiński T. verfasserin aut Tefelski D. verfasserin aut Testera G. verfasserin aut Volponi M. verfasserin aut Welsch C.P. verfasserin aut Wolz T. verfasserin aut Zawada M. verfasserin aut Zielinski J. verfasserin aut In EPJ Web of Conferences EDP Sciences, 2010 290, p 07001(2023) (DE-627)647306611 (DE-600)2595425-8 2100014X nnns volume:290, p 07001 year:2023 https://doi.org/10.1051/epjconf/202329007001 kostenfrei https://doaj.org/article/73609153f9984866b1464dac5925c312 kostenfrei https://www.epj-conferences.org/articles/epjconf/pdf/2023/16/epjconf_eunpc2023_07001.pdf kostenfrei https://doaj.org/toc/2100-014X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 290, p 07001 2023 |
allfieldsGer |
10.1051/epjconf/202329007001 doi (DE-627)DOAJ096360208 (DE-599)DOAJ73609153f9984866b1464dac5925c312 DE-627 ger DE-627 rakwb eng QC1-999 Zurlo N. verfasserin aut Pulsed Production of Antihydrogen in AEgIS 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Low-temperature antihydrogen atoms are an effective tool to probe the validity of the fundamental laws of Physics, for example the Weak Equivalence Principle (WEP) for antimatter, and -generally speaking- it is obvious that colder atoms will increase the level of precision. After the first production of cold antihydrogen in 2002 [1], experimental efforts have substantially progressed, with really competitive results already reached by adapting to cold antiatoms some well-known techniques pre- viously developed for ordinary atoms. Unfortunately, the number of antihydrogen atoms that can be produced in dedicated experiments is many orders of magnitude smaller than of hydrogen atoms, so the development of novel techniques to enhance the production of antihydrogen with well defined (and possibly controlled) conditions is essential to improve the sensitivity. We present here some experimental results achieved by the AEgIS Collaboration, based at the CERN AD (Antiproton Decelerator) on the production of antihydrogen in a pulsed mode where the production time of 90% of atoms is known with an uncertainty of ~ 250 ns [2]. The pulsed antihydrogen source is generated by the charge-exchange reaction between Rydberg positronium (Ps*) and an antiproton (p¯): p¯ + Ps* → H¯* + e−, where Ps* is produced via the implantation of a pulsed positron beam into a mesoporous silica target, and excited by two consecutive laser pulses, and antiprotons are trapped, cooled and manipulated in Penning-Malmberg traps. The pulsed production (which is a major milestone for AEgIS) makes it possible to select the antihydrogen axial temperature and opens the door for the tuning of the antihydrogen Rydberg states, their de-excitation by pulsed lasers and the manipulation through electric field gradients. In this paper, we present the results achieved by AEgIS in 2018, just before the Long Shutdown 2 (LS2), as well as some of the ongoing improvements to the system, aimed at exploiting the lower energy antiproton beam from ELENA [3]. Physics Auzins M. verfasserin aut Bergmann B. verfasserin aut Bonomi G. verfasserin aut Brusa R.S. verfasserin aut Burian P. verfasserin aut Camper A. verfasserin aut Castelli F. verfasserin aut Ciury R. verfasserin aut Consolati G. verfasserin aut Doser M. verfasserin aut Farricker A. verfasserin aut Glöggler L. verfasserin aut Graczykowski Ł. verfasserin aut Grosbart M. verfasserin aut Guatieri F. verfasserin aut Gusakova N. verfasserin aut Haider S. verfasserin aut Huck S. verfasserin aut Janik M. verfasserin aut Kasprowicz G. verfasserin aut Khatri G. verfasserin aut Kłosowski Ł. verfasserin aut Kornakov G. verfasserin aut Krumins V. verfasserin aut Lappo L. verfasserin aut Linek A. verfasserin aut Malamant J. verfasserin aut Malbrunot C. verfasserin aut Mariazzi S. verfasserin aut Nowak L. verfasserin aut Nowicka D. verfasserin aut Oswald E. verfasserin aut Pagano D. verfasserin aut Penasa L. verfasserin aut Piwiński M. verfasserin aut Pospisil S. verfasserin aut Povolo L. verfasserin aut Prelz F. verfasserin aut Rangwala S. verfasserin aut Rienäcker B. verfasserin aut Røhne O.M. verfasserin aut Rotondi A. verfasserin aut Sandaker H. verfasserin aut Smolyanskiy P. verfasserin aut Sowiński T. verfasserin aut Tefelski D. verfasserin aut Testera G. verfasserin aut Volponi M. verfasserin aut Welsch C.P. verfasserin aut Wolz T. verfasserin aut Zawada M. verfasserin aut Zielinski J. verfasserin aut In EPJ Web of Conferences EDP Sciences, 2010 290, p 07001(2023) (DE-627)647306611 (DE-600)2595425-8 2100014X nnns volume:290, p 07001 year:2023 https://doi.org/10.1051/epjconf/202329007001 kostenfrei https://doaj.org/article/73609153f9984866b1464dac5925c312 kostenfrei https://www.epj-conferences.org/articles/epjconf/pdf/2023/16/epjconf_eunpc2023_07001.pdf kostenfrei https://doaj.org/toc/2100-014X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 290, p 07001 2023 |
allfieldsSound |
10.1051/epjconf/202329007001 doi (DE-627)DOAJ096360208 (DE-599)DOAJ73609153f9984866b1464dac5925c312 DE-627 ger DE-627 rakwb eng QC1-999 Zurlo N. verfasserin aut Pulsed Production of Antihydrogen in AEgIS 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Low-temperature antihydrogen atoms are an effective tool to probe the validity of the fundamental laws of Physics, for example the Weak Equivalence Principle (WEP) for antimatter, and -generally speaking- it is obvious that colder atoms will increase the level of precision. After the first production of cold antihydrogen in 2002 [1], experimental efforts have substantially progressed, with really competitive results already reached by adapting to cold antiatoms some well-known techniques pre- viously developed for ordinary atoms. Unfortunately, the number of antihydrogen atoms that can be produced in dedicated experiments is many orders of magnitude smaller than of hydrogen atoms, so the development of novel techniques to enhance the production of antihydrogen with well defined (and possibly controlled) conditions is essential to improve the sensitivity. We present here some experimental results achieved by the AEgIS Collaboration, based at the CERN AD (Antiproton Decelerator) on the production of antihydrogen in a pulsed mode where the production time of 90% of atoms is known with an uncertainty of ~ 250 ns [2]. The pulsed antihydrogen source is generated by the charge-exchange reaction between Rydberg positronium (Ps*) and an antiproton (p¯): p¯ + Ps* → H¯* + e−, where Ps* is produced via the implantation of a pulsed positron beam into a mesoporous silica target, and excited by two consecutive laser pulses, and antiprotons are trapped, cooled and manipulated in Penning-Malmberg traps. The pulsed production (which is a major milestone for AEgIS) makes it possible to select the antihydrogen axial temperature and opens the door for the tuning of the antihydrogen Rydberg states, their de-excitation by pulsed lasers and the manipulation through electric field gradients. In this paper, we present the results achieved by AEgIS in 2018, just before the Long Shutdown 2 (LS2), as well as some of the ongoing improvements to the system, aimed at exploiting the lower energy antiproton beam from ELENA [3]. Physics Auzins M. verfasserin aut Bergmann B. verfasserin aut Bonomi G. verfasserin aut Brusa R.S. verfasserin aut Burian P. verfasserin aut Camper A. verfasserin aut Castelli F. verfasserin aut Ciury R. verfasserin aut Consolati G. verfasserin aut Doser M. verfasserin aut Farricker A. verfasserin aut Glöggler L. verfasserin aut Graczykowski Ł. verfasserin aut Grosbart M. verfasserin aut Guatieri F. verfasserin aut Gusakova N. verfasserin aut Haider S. verfasserin aut Huck S. verfasserin aut Janik M. verfasserin aut Kasprowicz G. verfasserin aut Khatri G. verfasserin aut Kłosowski Ł. verfasserin aut Kornakov G. verfasserin aut Krumins V. verfasserin aut Lappo L. verfasserin aut Linek A. verfasserin aut Malamant J. verfasserin aut Malbrunot C. verfasserin aut Mariazzi S. verfasserin aut Nowak L. verfasserin aut Nowicka D. verfasserin aut Oswald E. verfasserin aut Pagano D. verfasserin aut Penasa L. verfasserin aut Piwiński M. verfasserin aut Pospisil S. verfasserin aut Povolo L. verfasserin aut Prelz F. verfasserin aut Rangwala S. verfasserin aut Rienäcker B. verfasserin aut Røhne O.M. verfasserin aut Rotondi A. verfasserin aut Sandaker H. verfasserin aut Smolyanskiy P. verfasserin aut Sowiński T. verfasserin aut Tefelski D. verfasserin aut Testera G. verfasserin aut Volponi M. verfasserin aut Welsch C.P. verfasserin aut Wolz T. verfasserin aut Zawada M. verfasserin aut Zielinski J. verfasserin aut In EPJ Web of Conferences EDP Sciences, 2010 290, p 07001(2023) (DE-627)647306611 (DE-600)2595425-8 2100014X nnns volume:290, p 07001 year:2023 https://doi.org/10.1051/epjconf/202329007001 kostenfrei https://doaj.org/article/73609153f9984866b1464dac5925c312 kostenfrei https://www.epj-conferences.org/articles/epjconf/pdf/2023/16/epjconf_eunpc2023_07001.pdf kostenfrei https://doaj.org/toc/2100-014X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 290, p 07001 2023 |
language |
English |
source |
In EPJ Web of Conferences 290, p 07001(2023) volume:290, p 07001 year:2023 |
sourceStr |
In EPJ Web of Conferences 290, p 07001(2023) volume:290, p 07001 year:2023 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Physics |
isfreeaccess_bool |
true |
container_title |
EPJ Web of Conferences |
authorswithroles_txt_mv |
Zurlo N. @@aut@@ Auzins M. @@aut@@ Bergmann B. @@aut@@ Bonomi G. @@aut@@ Brusa R.S. @@aut@@ Burian P. @@aut@@ Camper A. @@aut@@ Castelli F. @@aut@@ Ciury R. @@aut@@ Consolati G. @@aut@@ Doser M. @@aut@@ Farricker A. @@aut@@ Glöggler L. @@aut@@ Graczykowski Ł. @@aut@@ Grosbart M. @@aut@@ Guatieri F. @@aut@@ Gusakova N. @@aut@@ Haider S. @@aut@@ Huck S. @@aut@@ Janik M. @@aut@@ Kasprowicz G. @@aut@@ Khatri G. @@aut@@ Kłosowski Ł. @@aut@@ Kornakov G. @@aut@@ Krumins V. @@aut@@ Lappo L. @@aut@@ Linek A. @@aut@@ Malamant J. @@aut@@ Malbrunot C. @@aut@@ Mariazzi S. @@aut@@ Nowak L. @@aut@@ Nowicka D. @@aut@@ Oswald E. @@aut@@ Pagano D. @@aut@@ Penasa L. @@aut@@ Piwiński M. @@aut@@ Pospisil S. @@aut@@ Povolo L. @@aut@@ Prelz F. @@aut@@ Rangwala S. @@aut@@ Rienäcker B. @@aut@@ Røhne O.M. @@aut@@ Rotondi A. @@aut@@ Sandaker H. @@aut@@ Smolyanskiy P. @@aut@@ Sowiński T. @@aut@@ Tefelski D. @@aut@@ Testera G. @@aut@@ Volponi M. @@aut@@ Welsch C.P. @@aut@@ Wolz T. @@aut@@ Zawada M. @@aut@@ Zielinski J. @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
647306611 |
id |
DOAJ096360208 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096360208</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413150642.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/epjconf/202329007001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096360208</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ73609153f9984866b1464dac5925c312</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zurlo N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pulsed Production of Antihydrogen in AEgIS</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Low-temperature antihydrogen atoms are an effective tool to probe the validity of the fundamental laws of Physics, for example the Weak Equivalence Principle (WEP) for antimatter, and -generally speaking- it is obvious that colder atoms will increase the level of precision. After the first production of cold antihydrogen in 2002 [1], experimental efforts have substantially progressed, with really competitive results already reached by adapting to cold antiatoms some well-known techniques pre- viously developed for ordinary atoms. Unfortunately, the number of antihydrogen atoms that can be produced in dedicated experiments is many orders of magnitude smaller than of hydrogen atoms, so the development of novel techniques to enhance the production of antihydrogen with well defined (and possibly controlled) conditions is essential to improve the sensitivity. We present here some experimental results achieved by the AEgIS Collaboration, based at the CERN AD (Antiproton Decelerator) on the production of antihydrogen in a pulsed mode where the production time of 90% of atoms is known with an uncertainty of ~ 250 ns [2]. The pulsed antihydrogen source is generated by the charge-exchange reaction between Rydberg positronium (Ps*) and an antiproton (p¯): p¯ + Ps* → H¯* + e−, where Ps* is produced via the implantation of a pulsed positron beam into a mesoporous silica target, and excited by two consecutive laser pulses, and antiprotons are trapped, cooled and manipulated in Penning-Malmberg traps. The pulsed production (which is a major milestone for AEgIS) makes it possible to select the antihydrogen axial temperature and opens the door for the tuning of the antihydrogen Rydberg states, their de-excitation by pulsed lasers and the manipulation through electric field gradients. In this paper, we present the results achieved by AEgIS in 2018, just before the Long Shutdown 2 (LS2), as well as some of the ongoing improvements to the system, aimed at exploiting the lower energy antiproton beam from ELENA [3].</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Auzins M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bergmann B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bonomi G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Brusa R.S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Burian P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Camper A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Castelli F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ciury R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Consolati G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Doser M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Farricker A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Glöggler L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Graczykowski Ł.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Grosbart M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guatieri F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gusakova N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haider S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huck S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Janik M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kasprowicz G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Khatri G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kłosowski Ł.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kornakov G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Krumins V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lappo L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Linek A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Malamant J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Malbrunot C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mariazzi S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nowak L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nowicka D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Oswald E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pagano D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Penasa L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Piwiński M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pospisil S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Povolo L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Prelz F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rangwala S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rienäcker B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Røhne O.M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rotondi A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sandaker H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Smolyanskiy P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sowiński T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tefelski D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Testera G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Volponi M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Welsch C.P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wolz T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zawada M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zielinski J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">EPJ Web of Conferences</subfield><subfield code="d">EDP Sciences, 2010</subfield><subfield code="g">290, p 07001(2023)</subfield><subfield code="w">(DE-627)647306611</subfield><subfield code="w">(DE-600)2595425-8</subfield><subfield code="x">2100014X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:290, p 07001</subfield><subfield code="g">year:2023</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/epjconf/202329007001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/73609153f9984866b1464dac5925c312</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.epj-conferences.org/articles/epjconf/pdf/2023/16/epjconf_eunpc2023_07001.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2100-014X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">290, p 07001</subfield><subfield code="j">2023</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Zurlo N. |
spellingShingle |
Zurlo N. misc QC1-999 misc Physics Pulsed Production of Antihydrogen in AEgIS |
authorStr |
Zurlo N. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)647306611 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC1-999 |
illustrated |
Not Illustrated |
issn |
2100014X |
topic_title |
QC1-999 Pulsed Production of Antihydrogen in AEgIS |
topic |
misc QC1-999 misc Physics |
topic_unstemmed |
misc QC1-999 misc Physics |
topic_browse |
misc QC1-999 misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
EPJ Web of Conferences |
hierarchy_parent_id |
647306611 |
hierarchy_top_title |
EPJ Web of Conferences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)647306611 (DE-600)2595425-8 |
title |
Pulsed Production of Antihydrogen in AEgIS |
ctrlnum |
(DE-627)DOAJ096360208 (DE-599)DOAJ73609153f9984866b1464dac5925c312 |
title_full |
Pulsed Production of Antihydrogen in AEgIS |
author_sort |
Zurlo N. |
journal |
EPJ Web of Conferences |
journalStr |
EPJ Web of Conferences |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Zurlo N. Auzins M. Bergmann B. Bonomi G. Brusa R.S. Burian P. Camper A. Castelli F. Ciury R. Consolati G. Doser M. Farricker A. Glöggler L. Graczykowski Ł. Grosbart M. Guatieri F. Gusakova N. Haider S. Huck S. Janik M. Kasprowicz G. Khatri G. Kłosowski Ł. Kornakov G. Krumins V. Lappo L. Linek A. Malamant J. Malbrunot C. Mariazzi S. Nowak L. Nowicka D. Oswald E. Pagano D. Penasa L. Piwiński M. Pospisil S. Povolo L. Prelz F. Rangwala S. Rienäcker B. Røhne O.M. Rotondi A. Sandaker H. Smolyanskiy P. Sowiński T. Tefelski D. Testera G. Volponi M. Welsch C.P. Wolz T. Zawada M. Zielinski J. |
container_volume |
290, p 07001 |
class |
QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Zurlo N. |
doi_str_mv |
10.1051/epjconf/202329007001 |
author2-role |
verfasserin |
title_sort |
pulsed production of antihydrogen in aegis |
callnumber |
QC1-999 |
title_auth |
Pulsed Production of Antihydrogen in AEgIS |
abstract |
Low-temperature antihydrogen atoms are an effective tool to probe the validity of the fundamental laws of Physics, for example the Weak Equivalence Principle (WEP) for antimatter, and -generally speaking- it is obvious that colder atoms will increase the level of precision. After the first production of cold antihydrogen in 2002 [1], experimental efforts have substantially progressed, with really competitive results already reached by adapting to cold antiatoms some well-known techniques pre- viously developed for ordinary atoms. Unfortunately, the number of antihydrogen atoms that can be produced in dedicated experiments is many orders of magnitude smaller than of hydrogen atoms, so the development of novel techniques to enhance the production of antihydrogen with well defined (and possibly controlled) conditions is essential to improve the sensitivity. We present here some experimental results achieved by the AEgIS Collaboration, based at the CERN AD (Antiproton Decelerator) on the production of antihydrogen in a pulsed mode where the production time of 90% of atoms is known with an uncertainty of ~ 250 ns [2]. The pulsed antihydrogen source is generated by the charge-exchange reaction between Rydberg positronium (Ps*) and an antiproton (p¯): p¯ + Ps* → H¯* + e−, where Ps* is produced via the implantation of a pulsed positron beam into a mesoporous silica target, and excited by two consecutive laser pulses, and antiprotons are trapped, cooled and manipulated in Penning-Malmberg traps. The pulsed production (which is a major milestone for AEgIS) makes it possible to select the antihydrogen axial temperature and opens the door for the tuning of the antihydrogen Rydberg states, their de-excitation by pulsed lasers and the manipulation through electric field gradients. In this paper, we present the results achieved by AEgIS in 2018, just before the Long Shutdown 2 (LS2), as well as some of the ongoing improvements to the system, aimed at exploiting the lower energy antiproton beam from ELENA [3]. |
abstractGer |
Low-temperature antihydrogen atoms are an effective tool to probe the validity of the fundamental laws of Physics, for example the Weak Equivalence Principle (WEP) for antimatter, and -generally speaking- it is obvious that colder atoms will increase the level of precision. After the first production of cold antihydrogen in 2002 [1], experimental efforts have substantially progressed, with really competitive results already reached by adapting to cold antiatoms some well-known techniques pre- viously developed for ordinary atoms. Unfortunately, the number of antihydrogen atoms that can be produced in dedicated experiments is many orders of magnitude smaller than of hydrogen atoms, so the development of novel techniques to enhance the production of antihydrogen with well defined (and possibly controlled) conditions is essential to improve the sensitivity. We present here some experimental results achieved by the AEgIS Collaboration, based at the CERN AD (Antiproton Decelerator) on the production of antihydrogen in a pulsed mode where the production time of 90% of atoms is known with an uncertainty of ~ 250 ns [2]. The pulsed antihydrogen source is generated by the charge-exchange reaction between Rydberg positronium (Ps*) and an antiproton (p¯): p¯ + Ps* → H¯* + e−, where Ps* is produced via the implantation of a pulsed positron beam into a mesoporous silica target, and excited by two consecutive laser pulses, and antiprotons are trapped, cooled and manipulated in Penning-Malmberg traps. The pulsed production (which is a major milestone for AEgIS) makes it possible to select the antihydrogen axial temperature and opens the door for the tuning of the antihydrogen Rydberg states, their de-excitation by pulsed lasers and the manipulation through electric field gradients. In this paper, we present the results achieved by AEgIS in 2018, just before the Long Shutdown 2 (LS2), as well as some of the ongoing improvements to the system, aimed at exploiting the lower energy antiproton beam from ELENA [3]. |
abstract_unstemmed |
Low-temperature antihydrogen atoms are an effective tool to probe the validity of the fundamental laws of Physics, for example the Weak Equivalence Principle (WEP) for antimatter, and -generally speaking- it is obvious that colder atoms will increase the level of precision. After the first production of cold antihydrogen in 2002 [1], experimental efforts have substantially progressed, with really competitive results already reached by adapting to cold antiatoms some well-known techniques pre- viously developed for ordinary atoms. Unfortunately, the number of antihydrogen atoms that can be produced in dedicated experiments is many orders of magnitude smaller than of hydrogen atoms, so the development of novel techniques to enhance the production of antihydrogen with well defined (and possibly controlled) conditions is essential to improve the sensitivity. We present here some experimental results achieved by the AEgIS Collaboration, based at the CERN AD (Antiproton Decelerator) on the production of antihydrogen in a pulsed mode where the production time of 90% of atoms is known with an uncertainty of ~ 250 ns [2]. The pulsed antihydrogen source is generated by the charge-exchange reaction between Rydberg positronium (Ps*) and an antiproton (p¯): p¯ + Ps* → H¯* + e−, where Ps* is produced via the implantation of a pulsed positron beam into a mesoporous silica target, and excited by two consecutive laser pulses, and antiprotons are trapped, cooled and manipulated in Penning-Malmberg traps. The pulsed production (which is a major milestone for AEgIS) makes it possible to select the antihydrogen axial temperature and opens the door for the tuning of the antihydrogen Rydberg states, their de-excitation by pulsed lasers and the manipulation through electric field gradients. In this paper, we present the results achieved by AEgIS in 2018, just before the Long Shutdown 2 (LS2), as well as some of the ongoing improvements to the system, aimed at exploiting the lower energy antiproton beam from ELENA [3]. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Pulsed Production of Antihydrogen in AEgIS |
url |
https://doi.org/10.1051/epjconf/202329007001 https://doaj.org/article/73609153f9984866b1464dac5925c312 https://www.epj-conferences.org/articles/epjconf/pdf/2023/16/epjconf_eunpc2023_07001.pdf https://doaj.org/toc/2100-014X |
remote_bool |
true |
author2 |
Auzins M. Bergmann B. Bonomi G. Brusa R.S. Burian P. Camper A. Castelli F. Ciury R. Consolati G. Doser M. Farricker A. Glöggler L. Graczykowski Ł. Grosbart M. Guatieri F. Gusakova N. Haider S. Huck S. Janik M. Kasprowicz G. Khatri G. Kłosowski Ł. Kornakov G. Krumins V. Lappo L. Linek A. Malamant J. Malbrunot C. Mariazzi S. Nowak L. Nowicka D. Oswald E. Pagano D. Penasa L. Piwiński M. Pospisil S. Povolo L. Prelz F. Rangwala S. Rienäcker B. Røhne O.M. Rotondi A. Sandaker H. Smolyanskiy P. Sowiński T. Tefelski D. Testera G. Volponi M. Welsch C.P. Wolz T. Zawada M. Zielinski J. |
author2Str |
Auzins M. Bergmann B. Bonomi G. Brusa R.S. Burian P. Camper A. Castelli F. Ciury R. Consolati G. Doser M. Farricker A. Glöggler L. Graczykowski Ł. Grosbart M. Guatieri F. Gusakova N. Haider S. Huck S. Janik M. Kasprowicz G. Khatri G. Kłosowski Ł. Kornakov G. Krumins V. Lappo L. Linek A. Malamant J. Malbrunot C. Mariazzi S. Nowak L. Nowicka D. Oswald E. Pagano D. Penasa L. Piwiński M. Pospisil S. Povolo L. Prelz F. Rangwala S. Rienäcker B. Røhne O.M. Rotondi A. Sandaker H. Smolyanskiy P. Sowiński T. Tefelski D. Testera G. Volponi M. Welsch C.P. Wolz T. Zawada M. Zielinski J. |
ppnlink |
647306611 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1051/epjconf/202329007001 |
callnumber-a |
QC1-999 |
up_date |
2024-07-03T19:43:48.279Z |
_version_ |
1803588288692355072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096360208</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413150642.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/epjconf/202329007001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096360208</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ73609153f9984866b1464dac5925c312</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zurlo N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pulsed Production of Antihydrogen in AEgIS</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Low-temperature antihydrogen atoms are an effective tool to probe the validity of the fundamental laws of Physics, for example the Weak Equivalence Principle (WEP) for antimatter, and -generally speaking- it is obvious that colder atoms will increase the level of precision. After the first production of cold antihydrogen in 2002 [1], experimental efforts have substantially progressed, with really competitive results already reached by adapting to cold antiatoms some well-known techniques pre- viously developed for ordinary atoms. Unfortunately, the number of antihydrogen atoms that can be produced in dedicated experiments is many orders of magnitude smaller than of hydrogen atoms, so the development of novel techniques to enhance the production of antihydrogen with well defined (and possibly controlled) conditions is essential to improve the sensitivity. We present here some experimental results achieved by the AEgIS Collaboration, based at the CERN AD (Antiproton Decelerator) on the production of antihydrogen in a pulsed mode where the production time of 90% of atoms is known with an uncertainty of ~ 250 ns [2]. The pulsed antihydrogen source is generated by the charge-exchange reaction between Rydberg positronium (Ps*) and an antiproton (p¯): p¯ + Ps* → H¯* + e−, where Ps* is produced via the implantation of a pulsed positron beam into a mesoporous silica target, and excited by two consecutive laser pulses, and antiprotons are trapped, cooled and manipulated in Penning-Malmberg traps. The pulsed production (which is a major milestone for AEgIS) makes it possible to select the antihydrogen axial temperature and opens the door for the tuning of the antihydrogen Rydberg states, their de-excitation by pulsed lasers and the manipulation through electric field gradients. In this paper, we present the results achieved by AEgIS in 2018, just before the Long Shutdown 2 (LS2), as well as some of the ongoing improvements to the system, aimed at exploiting the lower energy antiproton beam from ELENA [3].</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Auzins M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bergmann B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bonomi G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Brusa R.S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Burian P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Camper A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Castelli F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ciury R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Consolati G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Doser M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Farricker A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Glöggler L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Graczykowski Ł.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Grosbart M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guatieri F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gusakova N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haider S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huck S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Janik M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kasprowicz G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Khatri G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kłosowski Ł.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kornakov G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Krumins V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lappo L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Linek A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Malamant J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Malbrunot C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mariazzi S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nowak L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nowicka D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Oswald E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pagano D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Penasa L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Piwiński M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pospisil S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Povolo L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Prelz F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rangwala S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rienäcker B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Røhne O.M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rotondi A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sandaker H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Smolyanskiy P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sowiński T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tefelski D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Testera G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Volponi M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Welsch C.P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wolz T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zawada M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zielinski J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">EPJ Web of Conferences</subfield><subfield code="d">EDP Sciences, 2010</subfield><subfield code="g">290, p 07001(2023)</subfield><subfield code="w">(DE-627)647306611</subfield><subfield code="w">(DE-600)2595425-8</subfield><subfield code="x">2100014X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:290, p 07001</subfield><subfield code="g">year:2023</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/epjconf/202329007001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/73609153f9984866b1464dac5925c312</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.epj-conferences.org/articles/epjconf/pdf/2023/16/epjconf_eunpc2023_07001.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2100-014X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">290, p 07001</subfield><subfield code="j">2023</subfield></datafield></record></collection>
|
score |
7.399131 |