On Construction of Bounded Sets Not Admitting a General Type of Riesz Spectrum
We construct a bound set that does not admit a Riesz spectrum containing a nonempty periodic set for which the period is a rational multiple of a fixed constant. As a consequence, we obtain a bounded set <i<V</i< with an arbitrarily small Lebesgue measure such that for any positive integ...
Ausführliche Beschreibung
Autor*in: |
Dae Gwan Lee [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Axioms - MDPI AG, 2012, 13(2024), 1, p 36 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2024 ; number:1, p 36 |
Links: |
---|
DOI / URN: |
10.3390/axioms13010036 |
---|
Katalog-ID: |
DOAJ096392509 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ096392509 | ||
003 | DE-627 | ||
005 | 20240413151001.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/axioms13010036 |2 doi | |
035 | |a (DE-627)DOAJ096392509 | ||
035 | |a (DE-599)DOAJ12464d3aaabb49f18f31fd54d2e51ade | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Dae Gwan Lee |e verfasserin |4 aut | |
245 | 1 | 0 | |a On Construction of Bounded Sets Not Admitting a General Type of Riesz Spectrum |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We construct a bound set that does not admit a Riesz spectrum containing a nonempty periodic set for which the period is a rational multiple of a fixed constant. As a consequence, we obtain a bounded set <i<V</i< with an arbitrarily small Lebesgue measure such that for any positive integer <i<N</i<, the set of exponentials with frequencies in any union of cosets of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<N</mi<<mi mathvariant="double-struck"<Z</mi<</mrow<</semantics<</math<</inline-formula< cannot be a frame for the space of square integrable functions over <i<V</i<. These results are based on the proof technique of Olevskii and Ulanovskii from 2008. | ||
650 | 4 | |a complex exponentials | |
650 | 4 | |a spectrum | |
650 | 4 | |a exponential bases | |
650 | 4 | |a Riesz bases | |
650 | 4 | |a Riesz sequences | |
650 | 4 | |a frames | |
653 | 0 | |a Mathematics | |
773 | 0 | 8 | |i In |t Axioms |d MDPI AG, 2012 |g 13(2024), 1, p 36 |w (DE-627)718622030 |w (DE-600)2661511-3 |x 20751680 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2024 |g number:1, p 36 |
856 | 4 | 0 | |u https://doi.org/10.3390/axioms13010036 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/12464d3aaabb49f18f31fd54d2e51ade |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-1680/13/1/36 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-1680 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2024 |e 1, p 36 |
author_variant |
d g l dgl |
---|---|
matchkey_str |
article:20751680:2024----::nosrcinfonestntditnaeeat |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
QA |
publishDate |
2024 |
allfields |
10.3390/axioms13010036 doi (DE-627)DOAJ096392509 (DE-599)DOAJ12464d3aaabb49f18f31fd54d2e51ade DE-627 ger DE-627 rakwb eng QA1-939 Dae Gwan Lee verfasserin aut On Construction of Bounded Sets Not Admitting a General Type of Riesz Spectrum 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We construct a bound set that does not admit a Riesz spectrum containing a nonempty periodic set for which the period is a rational multiple of a fixed constant. As a consequence, we obtain a bounded set <i<V</i< with an arbitrarily small Lebesgue measure such that for any positive integer <i<N</i<, the set of exponentials with frequencies in any union of cosets of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<N</mi<<mi mathvariant="double-struck"<Z</mi<</mrow<</semantics<</math<</inline-formula< cannot be a frame for the space of square integrable functions over <i<V</i<. These results are based on the proof technique of Olevskii and Ulanovskii from 2008. complex exponentials spectrum exponential bases Riesz bases Riesz sequences frames Mathematics In Axioms MDPI AG, 2012 13(2024), 1, p 36 (DE-627)718622030 (DE-600)2661511-3 20751680 nnns volume:13 year:2024 number:1, p 36 https://doi.org/10.3390/axioms13010036 kostenfrei https://doaj.org/article/12464d3aaabb49f18f31fd54d2e51ade kostenfrei https://www.mdpi.com/2075-1680/13/1/36 kostenfrei https://doaj.org/toc/2075-1680 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2024 1, p 36 |
spelling |
10.3390/axioms13010036 doi (DE-627)DOAJ096392509 (DE-599)DOAJ12464d3aaabb49f18f31fd54d2e51ade DE-627 ger DE-627 rakwb eng QA1-939 Dae Gwan Lee verfasserin aut On Construction of Bounded Sets Not Admitting a General Type of Riesz Spectrum 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We construct a bound set that does not admit a Riesz spectrum containing a nonempty periodic set for which the period is a rational multiple of a fixed constant. As a consequence, we obtain a bounded set <i<V</i< with an arbitrarily small Lebesgue measure such that for any positive integer <i<N</i<, the set of exponentials with frequencies in any union of cosets of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<N</mi<<mi mathvariant="double-struck"<Z</mi<</mrow<</semantics<</math<</inline-formula< cannot be a frame for the space of square integrable functions over <i<V</i<. These results are based on the proof technique of Olevskii and Ulanovskii from 2008. complex exponentials spectrum exponential bases Riesz bases Riesz sequences frames Mathematics In Axioms MDPI AG, 2012 13(2024), 1, p 36 (DE-627)718622030 (DE-600)2661511-3 20751680 nnns volume:13 year:2024 number:1, p 36 https://doi.org/10.3390/axioms13010036 kostenfrei https://doaj.org/article/12464d3aaabb49f18f31fd54d2e51ade kostenfrei https://www.mdpi.com/2075-1680/13/1/36 kostenfrei https://doaj.org/toc/2075-1680 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2024 1, p 36 |
allfields_unstemmed |
10.3390/axioms13010036 doi (DE-627)DOAJ096392509 (DE-599)DOAJ12464d3aaabb49f18f31fd54d2e51ade DE-627 ger DE-627 rakwb eng QA1-939 Dae Gwan Lee verfasserin aut On Construction of Bounded Sets Not Admitting a General Type of Riesz Spectrum 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We construct a bound set that does not admit a Riesz spectrum containing a nonempty periodic set for which the period is a rational multiple of a fixed constant. As a consequence, we obtain a bounded set <i<V</i< with an arbitrarily small Lebesgue measure such that for any positive integer <i<N</i<, the set of exponentials with frequencies in any union of cosets of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<N</mi<<mi mathvariant="double-struck"<Z</mi<</mrow<</semantics<</math<</inline-formula< cannot be a frame for the space of square integrable functions over <i<V</i<. These results are based on the proof technique of Olevskii and Ulanovskii from 2008. complex exponentials spectrum exponential bases Riesz bases Riesz sequences frames Mathematics In Axioms MDPI AG, 2012 13(2024), 1, p 36 (DE-627)718622030 (DE-600)2661511-3 20751680 nnns volume:13 year:2024 number:1, p 36 https://doi.org/10.3390/axioms13010036 kostenfrei https://doaj.org/article/12464d3aaabb49f18f31fd54d2e51ade kostenfrei https://www.mdpi.com/2075-1680/13/1/36 kostenfrei https://doaj.org/toc/2075-1680 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2024 1, p 36 |
allfieldsGer |
10.3390/axioms13010036 doi (DE-627)DOAJ096392509 (DE-599)DOAJ12464d3aaabb49f18f31fd54d2e51ade DE-627 ger DE-627 rakwb eng QA1-939 Dae Gwan Lee verfasserin aut On Construction of Bounded Sets Not Admitting a General Type of Riesz Spectrum 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We construct a bound set that does not admit a Riesz spectrum containing a nonempty periodic set for which the period is a rational multiple of a fixed constant. As a consequence, we obtain a bounded set <i<V</i< with an arbitrarily small Lebesgue measure such that for any positive integer <i<N</i<, the set of exponentials with frequencies in any union of cosets of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<N</mi<<mi mathvariant="double-struck"<Z</mi<</mrow<</semantics<</math<</inline-formula< cannot be a frame for the space of square integrable functions over <i<V</i<. These results are based on the proof technique of Olevskii and Ulanovskii from 2008. complex exponentials spectrum exponential bases Riesz bases Riesz sequences frames Mathematics In Axioms MDPI AG, 2012 13(2024), 1, p 36 (DE-627)718622030 (DE-600)2661511-3 20751680 nnns volume:13 year:2024 number:1, p 36 https://doi.org/10.3390/axioms13010036 kostenfrei https://doaj.org/article/12464d3aaabb49f18f31fd54d2e51ade kostenfrei https://www.mdpi.com/2075-1680/13/1/36 kostenfrei https://doaj.org/toc/2075-1680 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2024 1, p 36 |
allfieldsSound |
10.3390/axioms13010036 doi (DE-627)DOAJ096392509 (DE-599)DOAJ12464d3aaabb49f18f31fd54d2e51ade DE-627 ger DE-627 rakwb eng QA1-939 Dae Gwan Lee verfasserin aut On Construction of Bounded Sets Not Admitting a General Type of Riesz Spectrum 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We construct a bound set that does not admit a Riesz spectrum containing a nonempty periodic set for which the period is a rational multiple of a fixed constant. As a consequence, we obtain a bounded set <i<V</i< with an arbitrarily small Lebesgue measure such that for any positive integer <i<N</i<, the set of exponentials with frequencies in any union of cosets of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<N</mi<<mi mathvariant="double-struck"<Z</mi<</mrow<</semantics<</math<</inline-formula< cannot be a frame for the space of square integrable functions over <i<V</i<. These results are based on the proof technique of Olevskii and Ulanovskii from 2008. complex exponentials spectrum exponential bases Riesz bases Riesz sequences frames Mathematics In Axioms MDPI AG, 2012 13(2024), 1, p 36 (DE-627)718622030 (DE-600)2661511-3 20751680 nnns volume:13 year:2024 number:1, p 36 https://doi.org/10.3390/axioms13010036 kostenfrei https://doaj.org/article/12464d3aaabb49f18f31fd54d2e51ade kostenfrei https://www.mdpi.com/2075-1680/13/1/36 kostenfrei https://doaj.org/toc/2075-1680 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2024 1, p 36 |
language |
English |
source |
In Axioms 13(2024), 1, p 36 volume:13 year:2024 number:1, p 36 |
sourceStr |
In Axioms 13(2024), 1, p 36 volume:13 year:2024 number:1, p 36 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
complex exponentials spectrum exponential bases Riesz bases Riesz sequences frames Mathematics |
isfreeaccess_bool |
true |
container_title |
Axioms |
authorswithroles_txt_mv |
Dae Gwan Lee @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
718622030 |
id |
DOAJ096392509 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096392509</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413151001.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/axioms13010036</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096392509</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ12464d3aaabb49f18f31fd54d2e51ade</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dae Gwan Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On Construction of Bounded Sets Not Admitting a General Type of Riesz Spectrum</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We construct a bound set that does not admit a Riesz spectrum containing a nonempty periodic set for which the period is a rational multiple of a fixed constant. As a consequence, we obtain a bounded set <i<V</i< with an arbitrarily small Lebesgue measure such that for any positive integer <i<N</i<, the set of exponentials with frequencies in any union of cosets of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<N</mi<<mi mathvariant="double-struck"<Z</mi<</mrow<</semantics<</math<</inline-formula< cannot be a frame for the space of square integrable functions over <i<V</i<. These results are based on the proof technique of Olevskii and Ulanovskii from 2008.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">complex exponentials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spectrum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">exponential bases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riesz bases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riesz sequences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frames</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Axioms</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2024), 1, p 36</subfield><subfield code="w">(DE-627)718622030</subfield><subfield code="w">(DE-600)2661511-3</subfield><subfield code="x">20751680</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1, p 36</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/axioms13010036</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/12464d3aaabb49f18f31fd54d2e51ade</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-1680/13/1/36</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-1680</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2024</subfield><subfield code="e">1, p 36</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Dae Gwan Lee |
spellingShingle |
Dae Gwan Lee misc QA1-939 misc complex exponentials misc spectrum misc exponential bases misc Riesz bases misc Riesz sequences misc frames misc Mathematics On Construction of Bounded Sets Not Admitting a General Type of Riesz Spectrum |
authorStr |
Dae Gwan Lee |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718622030 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
20751680 |
topic_title |
QA1-939 On Construction of Bounded Sets Not Admitting a General Type of Riesz Spectrum complex exponentials spectrum exponential bases Riesz bases Riesz sequences frames |
topic |
misc QA1-939 misc complex exponentials misc spectrum misc exponential bases misc Riesz bases misc Riesz sequences misc frames misc Mathematics |
topic_unstemmed |
misc QA1-939 misc complex exponentials misc spectrum misc exponential bases misc Riesz bases misc Riesz sequences misc frames misc Mathematics |
topic_browse |
misc QA1-939 misc complex exponentials misc spectrum misc exponential bases misc Riesz bases misc Riesz sequences misc frames misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Axioms |
hierarchy_parent_id |
718622030 |
hierarchy_top_title |
Axioms |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718622030 (DE-600)2661511-3 |
title |
On Construction of Bounded Sets Not Admitting a General Type of Riesz Spectrum |
ctrlnum |
(DE-627)DOAJ096392509 (DE-599)DOAJ12464d3aaabb49f18f31fd54d2e51ade |
title_full |
On Construction of Bounded Sets Not Admitting a General Type of Riesz Spectrum |
author_sort |
Dae Gwan Lee |
journal |
Axioms |
journalStr |
Axioms |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Dae Gwan Lee |
container_volume |
13 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Dae Gwan Lee |
doi_str_mv |
10.3390/axioms13010036 |
title_sort |
on construction of bounded sets not admitting a general type of riesz spectrum |
callnumber |
QA1-939 |
title_auth |
On Construction of Bounded Sets Not Admitting a General Type of Riesz Spectrum |
abstract |
We construct a bound set that does not admit a Riesz spectrum containing a nonempty periodic set for which the period is a rational multiple of a fixed constant. As a consequence, we obtain a bounded set <i<V</i< with an arbitrarily small Lebesgue measure such that for any positive integer <i<N</i<, the set of exponentials with frequencies in any union of cosets of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<N</mi<<mi mathvariant="double-struck"<Z</mi<</mrow<</semantics<</math<</inline-formula< cannot be a frame for the space of square integrable functions over <i<V</i<. These results are based on the proof technique of Olevskii and Ulanovskii from 2008. |
abstractGer |
We construct a bound set that does not admit a Riesz spectrum containing a nonempty periodic set for which the period is a rational multiple of a fixed constant. As a consequence, we obtain a bounded set <i<V</i< with an arbitrarily small Lebesgue measure such that for any positive integer <i<N</i<, the set of exponentials with frequencies in any union of cosets of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<N</mi<<mi mathvariant="double-struck"<Z</mi<</mrow<</semantics<</math<</inline-formula< cannot be a frame for the space of square integrable functions over <i<V</i<. These results are based on the proof technique of Olevskii and Ulanovskii from 2008. |
abstract_unstemmed |
We construct a bound set that does not admit a Riesz spectrum containing a nonempty periodic set for which the period is a rational multiple of a fixed constant. As a consequence, we obtain a bounded set <i<V</i< with an arbitrarily small Lebesgue measure such that for any positive integer <i<N</i<, the set of exponentials with frequencies in any union of cosets of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<N</mi<<mi mathvariant="double-struck"<Z</mi<</mrow<</semantics<</math<</inline-formula< cannot be a frame for the space of square integrable functions over <i<V</i<. These results are based on the proof technique of Olevskii and Ulanovskii from 2008. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 36 |
title_short |
On Construction of Bounded Sets Not Admitting a General Type of Riesz Spectrum |
url |
https://doi.org/10.3390/axioms13010036 https://doaj.org/article/12464d3aaabb49f18f31fd54d2e51ade https://www.mdpi.com/2075-1680/13/1/36 https://doaj.org/toc/2075-1680 |
remote_bool |
true |
ppnlink |
718622030 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/axioms13010036 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T19:55:32.004Z |
_version_ |
1803589026583674880 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096392509</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413151001.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/axioms13010036</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096392509</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ12464d3aaabb49f18f31fd54d2e51ade</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dae Gwan Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On Construction of Bounded Sets Not Admitting a General Type of Riesz Spectrum</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We construct a bound set that does not admit a Riesz spectrum containing a nonempty periodic set for which the period is a rational multiple of a fixed constant. As a consequence, we obtain a bounded set <i<V</i< with an arbitrarily small Lebesgue measure such that for any positive integer <i<N</i<, the set of exponentials with frequencies in any union of cosets of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<N</mi<<mi mathvariant="double-struck"<Z</mi<</mrow<</semantics<</math<</inline-formula< cannot be a frame for the space of square integrable functions over <i<V</i<. These results are based on the proof technique of Olevskii and Ulanovskii from 2008.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">complex exponentials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spectrum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">exponential bases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riesz bases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riesz sequences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frames</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Axioms</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2024), 1, p 36</subfield><subfield code="w">(DE-627)718622030</subfield><subfield code="w">(DE-600)2661511-3</subfield><subfield code="x">20751680</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1, p 36</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/axioms13010036</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/12464d3aaabb49f18f31fd54d2e51ade</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-1680/13/1/36</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-1680</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2024</subfield><subfield code="e">1, p 36</subfield></datafield></record></collection>
|
score |
7.4022284 |