The Carbon-to-oxygen Ratio in Cool Brown Dwarfs and Giant Exoplanets. I. The Benchmark Late-T Dwarfs GJ 570D, HD 3651B, and Ross 458C
Measurements of the C/O ratio in brown dwarfs are lacking, in part due to past models adopting solar C/O only. We have expanded the ATMO 2020 atmosphere model grid to include nonsolar metallicities and C/O ratios in the T dwarf regime. We change the C/O ratio by altering either the carbon or oxygen...
Ausführliche Beschreibung
Autor*in: |
Mark W. Phillips [verfasserIn] Michael C. Liu [verfasserIn] Zhoujian Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: The Astrophysical Journal - IOP Publishing, 2022, 961(2024), 2, p 210 |
---|---|
Übergeordnetes Werk: |
volume:961 ; year:2024 ; number:2, p 210 |
Links: |
---|
DOI / URN: |
10.3847/1538-4357/ad06ba |
---|
Katalog-ID: |
DOAJ096404442 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ096404442 | ||
003 | DE-627 | ||
005 | 20240413151120.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3847/1538-4357/ad06ba |2 doi | |
035 | |a (DE-627)DOAJ096404442 | ||
035 | |a (DE-599)DOAJ2a9642978de4432d822602927119cc4b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB460-466 | |
100 | 0 | |a Mark W. Phillips |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Carbon-to-oxygen Ratio in Cool Brown Dwarfs and Giant Exoplanets. I. The Benchmark Late-T Dwarfs GJ 570D, HD 3651B, and Ross 458C |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Measurements of the C/O ratio in brown dwarfs are lacking, in part due to past models adopting solar C/O only. We have expanded the ATMO 2020 atmosphere model grid to include nonsolar metallicities and C/O ratios in the T dwarf regime. We change the C/O ratio by altering either the carbon or oxygen elemental abundances, and we find that nonsolar abundances of these elements can be distinguished based on the shapes of the H and K bands. We compare these new models with medium-resolution ( R ≈ 1700), near-infrared (0.8–2.4 μ m) Gemini Near-Infrared Spectrograph (GNIRS) spectra of three benchmark late-T dwarfs, GJ 570D, HD 3651B, and Ross 458C. We find solar C/O ratios and best-fitting parameters ( T _eff , $\mathrm{log}(g)$ , Z ) broadly consistent with other analyses in the literature based on low-resolution ( R ∼ 100) data. The model-data discrepancies in the near-infrared spectra are consistent across all three objects. These discrepancies are alleviated when fitting the Y , J , H , and K bands individually, but the resulting best-fit parameters are inconsistent and disagree with the results from the full spectrum. By examining the model atmosphere properties we find this is due to the interplay of gravity and metallicity on H _2 –H _2 collisionally induced absorption. We therefore conclude that there are no significant issues with the molecular opacity tables used in the models at this spectral resolution. Instead, deficiencies are more likely to lie in the model assumptions regarding the thermal structures. Finally, we find a discrepancy between the GNIRS, SpeX, and other near-infrared spectra in the literature of Ross 458C, indicating potential spectroscopic variability. | ||
650 | 4 | |a Brown dwarfs | |
650 | 4 | |a T dwarfs | |
650 | 4 | |a Spectroscopy | |
650 | 4 | |a Near infrared astronomy | |
650 | 4 | |a Exoplanet atmospheres | |
653 | 0 | |a Astrophysics | |
700 | 0 | |a Michael C. Liu |e verfasserin |4 aut | |
700 | 0 | |a Zhoujian Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t The Astrophysical Journal |d IOP Publishing, 2022 |g 961(2024), 2, p 210 |w (DE-627)269019219 |w (DE-600)1473835-1 |x 15384357 |7 nnns |
773 | 1 | 8 | |g volume:961 |g year:2024 |g number:2, p 210 |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/ad06ba |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/2a9642978de4432d822602927119cc4b |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/ad06ba |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1538-4357 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 961 |j 2024 |e 2, p 210 |
author_variant |
m w p mwp m c l mcl z z zz |
---|---|
matchkey_str |
article:15384357:2024----::hcrotoyertonolrwdafadineolntihbnhakaeda |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
QB |
publishDate |
2024 |
allfields |
10.3847/1538-4357/ad06ba doi (DE-627)DOAJ096404442 (DE-599)DOAJ2a9642978de4432d822602927119cc4b DE-627 ger DE-627 rakwb eng QB460-466 Mark W. Phillips verfasserin aut The Carbon-to-oxygen Ratio in Cool Brown Dwarfs and Giant Exoplanets. I. The Benchmark Late-T Dwarfs GJ 570D, HD 3651B, and Ross 458C 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Measurements of the C/O ratio in brown dwarfs are lacking, in part due to past models adopting solar C/O only. We have expanded the ATMO 2020 atmosphere model grid to include nonsolar metallicities and C/O ratios in the T dwarf regime. We change the C/O ratio by altering either the carbon or oxygen elemental abundances, and we find that nonsolar abundances of these elements can be distinguished based on the shapes of the H and K bands. We compare these new models with medium-resolution ( R ≈ 1700), near-infrared (0.8–2.4 μ m) Gemini Near-Infrared Spectrograph (GNIRS) spectra of three benchmark late-T dwarfs, GJ 570D, HD 3651B, and Ross 458C. We find solar C/O ratios and best-fitting parameters ( T _eff , $\mathrm{log}(g)$ , Z ) broadly consistent with other analyses in the literature based on low-resolution ( R ∼ 100) data. The model-data discrepancies in the near-infrared spectra are consistent across all three objects. These discrepancies are alleviated when fitting the Y , J , H , and K bands individually, but the resulting best-fit parameters are inconsistent and disagree with the results from the full spectrum. By examining the model atmosphere properties we find this is due to the interplay of gravity and metallicity on H _2 –H _2 collisionally induced absorption. We therefore conclude that there are no significant issues with the molecular opacity tables used in the models at this spectral resolution. Instead, deficiencies are more likely to lie in the model assumptions regarding the thermal structures. Finally, we find a discrepancy between the GNIRS, SpeX, and other near-infrared spectra in the literature of Ross 458C, indicating potential spectroscopic variability. Brown dwarfs T dwarfs Spectroscopy Near infrared astronomy Exoplanet atmospheres Astrophysics Michael C. Liu verfasserin aut Zhoujian Zhang verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 961(2024), 2, p 210 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:961 year:2024 number:2, p 210 https://doi.org/10.3847/1538-4357/ad06ba kostenfrei https://doaj.org/article/2a9642978de4432d822602927119cc4b kostenfrei https://doi.org/10.3847/1538-4357/ad06ba kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 961 2024 2, p 210 |
spelling |
10.3847/1538-4357/ad06ba doi (DE-627)DOAJ096404442 (DE-599)DOAJ2a9642978de4432d822602927119cc4b DE-627 ger DE-627 rakwb eng QB460-466 Mark W. Phillips verfasserin aut The Carbon-to-oxygen Ratio in Cool Brown Dwarfs and Giant Exoplanets. I. The Benchmark Late-T Dwarfs GJ 570D, HD 3651B, and Ross 458C 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Measurements of the C/O ratio in brown dwarfs are lacking, in part due to past models adopting solar C/O only. We have expanded the ATMO 2020 atmosphere model grid to include nonsolar metallicities and C/O ratios in the T dwarf regime. We change the C/O ratio by altering either the carbon or oxygen elemental abundances, and we find that nonsolar abundances of these elements can be distinguished based on the shapes of the H and K bands. We compare these new models with medium-resolution ( R ≈ 1700), near-infrared (0.8–2.4 μ m) Gemini Near-Infrared Spectrograph (GNIRS) spectra of three benchmark late-T dwarfs, GJ 570D, HD 3651B, and Ross 458C. We find solar C/O ratios and best-fitting parameters ( T _eff , $\mathrm{log}(g)$ , Z ) broadly consistent with other analyses in the literature based on low-resolution ( R ∼ 100) data. The model-data discrepancies in the near-infrared spectra are consistent across all three objects. These discrepancies are alleviated when fitting the Y , J , H , and K bands individually, but the resulting best-fit parameters are inconsistent and disagree with the results from the full spectrum. By examining the model atmosphere properties we find this is due to the interplay of gravity and metallicity on H _2 –H _2 collisionally induced absorption. We therefore conclude that there are no significant issues with the molecular opacity tables used in the models at this spectral resolution. Instead, deficiencies are more likely to lie in the model assumptions regarding the thermal structures. Finally, we find a discrepancy between the GNIRS, SpeX, and other near-infrared spectra in the literature of Ross 458C, indicating potential spectroscopic variability. Brown dwarfs T dwarfs Spectroscopy Near infrared astronomy Exoplanet atmospheres Astrophysics Michael C. Liu verfasserin aut Zhoujian Zhang verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 961(2024), 2, p 210 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:961 year:2024 number:2, p 210 https://doi.org/10.3847/1538-4357/ad06ba kostenfrei https://doaj.org/article/2a9642978de4432d822602927119cc4b kostenfrei https://doi.org/10.3847/1538-4357/ad06ba kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 961 2024 2, p 210 |
allfields_unstemmed |
10.3847/1538-4357/ad06ba doi (DE-627)DOAJ096404442 (DE-599)DOAJ2a9642978de4432d822602927119cc4b DE-627 ger DE-627 rakwb eng QB460-466 Mark W. Phillips verfasserin aut The Carbon-to-oxygen Ratio in Cool Brown Dwarfs and Giant Exoplanets. I. The Benchmark Late-T Dwarfs GJ 570D, HD 3651B, and Ross 458C 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Measurements of the C/O ratio in brown dwarfs are lacking, in part due to past models adopting solar C/O only. We have expanded the ATMO 2020 atmosphere model grid to include nonsolar metallicities and C/O ratios in the T dwarf regime. We change the C/O ratio by altering either the carbon or oxygen elemental abundances, and we find that nonsolar abundances of these elements can be distinguished based on the shapes of the H and K bands. We compare these new models with medium-resolution ( R ≈ 1700), near-infrared (0.8–2.4 μ m) Gemini Near-Infrared Spectrograph (GNIRS) spectra of three benchmark late-T dwarfs, GJ 570D, HD 3651B, and Ross 458C. We find solar C/O ratios and best-fitting parameters ( T _eff , $\mathrm{log}(g)$ , Z ) broadly consistent with other analyses in the literature based on low-resolution ( R ∼ 100) data. The model-data discrepancies in the near-infrared spectra are consistent across all three objects. These discrepancies are alleviated when fitting the Y , J , H , and K bands individually, but the resulting best-fit parameters are inconsistent and disagree with the results from the full spectrum. By examining the model atmosphere properties we find this is due to the interplay of gravity and metallicity on H _2 –H _2 collisionally induced absorption. We therefore conclude that there are no significant issues with the molecular opacity tables used in the models at this spectral resolution. Instead, deficiencies are more likely to lie in the model assumptions regarding the thermal structures. Finally, we find a discrepancy between the GNIRS, SpeX, and other near-infrared spectra in the literature of Ross 458C, indicating potential spectroscopic variability. Brown dwarfs T dwarfs Spectroscopy Near infrared astronomy Exoplanet atmospheres Astrophysics Michael C. Liu verfasserin aut Zhoujian Zhang verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 961(2024), 2, p 210 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:961 year:2024 number:2, p 210 https://doi.org/10.3847/1538-4357/ad06ba kostenfrei https://doaj.org/article/2a9642978de4432d822602927119cc4b kostenfrei https://doi.org/10.3847/1538-4357/ad06ba kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 961 2024 2, p 210 |
allfieldsGer |
10.3847/1538-4357/ad06ba doi (DE-627)DOAJ096404442 (DE-599)DOAJ2a9642978de4432d822602927119cc4b DE-627 ger DE-627 rakwb eng QB460-466 Mark W. Phillips verfasserin aut The Carbon-to-oxygen Ratio in Cool Brown Dwarfs and Giant Exoplanets. I. The Benchmark Late-T Dwarfs GJ 570D, HD 3651B, and Ross 458C 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Measurements of the C/O ratio in brown dwarfs are lacking, in part due to past models adopting solar C/O only. We have expanded the ATMO 2020 atmosphere model grid to include nonsolar metallicities and C/O ratios in the T dwarf regime. We change the C/O ratio by altering either the carbon or oxygen elemental abundances, and we find that nonsolar abundances of these elements can be distinguished based on the shapes of the H and K bands. We compare these new models with medium-resolution ( R ≈ 1700), near-infrared (0.8–2.4 μ m) Gemini Near-Infrared Spectrograph (GNIRS) spectra of three benchmark late-T dwarfs, GJ 570D, HD 3651B, and Ross 458C. We find solar C/O ratios and best-fitting parameters ( T _eff , $\mathrm{log}(g)$ , Z ) broadly consistent with other analyses in the literature based on low-resolution ( R ∼ 100) data. The model-data discrepancies in the near-infrared spectra are consistent across all three objects. These discrepancies are alleviated when fitting the Y , J , H , and K bands individually, but the resulting best-fit parameters are inconsistent and disagree with the results from the full spectrum. By examining the model atmosphere properties we find this is due to the interplay of gravity and metallicity on H _2 –H _2 collisionally induced absorption. We therefore conclude that there are no significant issues with the molecular opacity tables used in the models at this spectral resolution. Instead, deficiencies are more likely to lie in the model assumptions regarding the thermal structures. Finally, we find a discrepancy between the GNIRS, SpeX, and other near-infrared spectra in the literature of Ross 458C, indicating potential spectroscopic variability. Brown dwarfs T dwarfs Spectroscopy Near infrared astronomy Exoplanet atmospheres Astrophysics Michael C. Liu verfasserin aut Zhoujian Zhang verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 961(2024), 2, p 210 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:961 year:2024 number:2, p 210 https://doi.org/10.3847/1538-4357/ad06ba kostenfrei https://doaj.org/article/2a9642978de4432d822602927119cc4b kostenfrei https://doi.org/10.3847/1538-4357/ad06ba kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 961 2024 2, p 210 |
allfieldsSound |
10.3847/1538-4357/ad06ba doi (DE-627)DOAJ096404442 (DE-599)DOAJ2a9642978de4432d822602927119cc4b DE-627 ger DE-627 rakwb eng QB460-466 Mark W. Phillips verfasserin aut The Carbon-to-oxygen Ratio in Cool Brown Dwarfs and Giant Exoplanets. I. The Benchmark Late-T Dwarfs GJ 570D, HD 3651B, and Ross 458C 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Measurements of the C/O ratio in brown dwarfs are lacking, in part due to past models adopting solar C/O only. We have expanded the ATMO 2020 atmosphere model grid to include nonsolar metallicities and C/O ratios in the T dwarf regime. We change the C/O ratio by altering either the carbon or oxygen elemental abundances, and we find that nonsolar abundances of these elements can be distinguished based on the shapes of the H and K bands. We compare these new models with medium-resolution ( R ≈ 1700), near-infrared (0.8–2.4 μ m) Gemini Near-Infrared Spectrograph (GNIRS) spectra of three benchmark late-T dwarfs, GJ 570D, HD 3651B, and Ross 458C. We find solar C/O ratios and best-fitting parameters ( T _eff , $\mathrm{log}(g)$ , Z ) broadly consistent with other analyses in the literature based on low-resolution ( R ∼ 100) data. The model-data discrepancies in the near-infrared spectra are consistent across all three objects. These discrepancies are alleviated when fitting the Y , J , H , and K bands individually, but the resulting best-fit parameters are inconsistent and disagree with the results from the full spectrum. By examining the model atmosphere properties we find this is due to the interplay of gravity and metallicity on H _2 –H _2 collisionally induced absorption. We therefore conclude that there are no significant issues with the molecular opacity tables used in the models at this spectral resolution. Instead, deficiencies are more likely to lie in the model assumptions regarding the thermal structures. Finally, we find a discrepancy between the GNIRS, SpeX, and other near-infrared spectra in the literature of Ross 458C, indicating potential spectroscopic variability. Brown dwarfs T dwarfs Spectroscopy Near infrared astronomy Exoplanet atmospheres Astrophysics Michael C. Liu verfasserin aut Zhoujian Zhang verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 961(2024), 2, p 210 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:961 year:2024 number:2, p 210 https://doi.org/10.3847/1538-4357/ad06ba kostenfrei https://doaj.org/article/2a9642978de4432d822602927119cc4b kostenfrei https://doi.org/10.3847/1538-4357/ad06ba kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 961 2024 2, p 210 |
language |
English |
source |
In The Astrophysical Journal 961(2024), 2, p 210 volume:961 year:2024 number:2, p 210 |
sourceStr |
In The Astrophysical Journal 961(2024), 2, p 210 volume:961 year:2024 number:2, p 210 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Brown dwarfs T dwarfs Spectroscopy Near infrared astronomy Exoplanet atmospheres Astrophysics |
isfreeaccess_bool |
true |
container_title |
The Astrophysical Journal |
authorswithroles_txt_mv |
Mark W. Phillips @@aut@@ Michael C. Liu @@aut@@ Zhoujian Zhang @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
269019219 |
id |
DOAJ096404442 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096404442</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413151120.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/ad06ba</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096404442</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2a9642978de4432d822602927119cc4b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mark W. Phillips</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Carbon-to-oxygen Ratio in Cool Brown Dwarfs and Giant Exoplanets. I. The Benchmark Late-T Dwarfs GJ 570D, HD 3651B, and Ross 458C</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Measurements of the C/O ratio in brown dwarfs are lacking, in part due to past models adopting solar C/O only. We have expanded the ATMO 2020 atmosphere model grid to include nonsolar metallicities and C/O ratios in the T dwarf regime. We change the C/O ratio by altering either the carbon or oxygen elemental abundances, and we find that nonsolar abundances of these elements can be distinguished based on the shapes of the H and K bands. We compare these new models with medium-resolution ( R ≈ 1700), near-infrared (0.8–2.4 μ m) Gemini Near-Infrared Spectrograph (GNIRS) spectra of three benchmark late-T dwarfs, GJ 570D, HD 3651B, and Ross 458C. We find solar C/O ratios and best-fitting parameters ( T _eff , $\mathrm{log}(g)$ , Z ) broadly consistent with other analyses in the literature based on low-resolution ( R ∼ 100) data. The model-data discrepancies in the near-infrared spectra are consistent across all three objects. These discrepancies are alleviated when fitting the Y , J , H , and K bands individually, but the resulting best-fit parameters are inconsistent and disagree with the results from the full spectrum. By examining the model atmosphere properties we find this is due to the interplay of gravity and metallicity on H _2 –H _2 collisionally induced absorption. We therefore conclude that there are no significant issues with the molecular opacity tables used in the models at this spectral resolution. Instead, deficiencies are more likely to lie in the model assumptions regarding the thermal structures. Finally, we find a discrepancy between the GNIRS, SpeX, and other near-infrared spectra in the literature of Ross 458C, indicating potential spectroscopic variability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brown dwarfs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">T dwarfs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Near infrared astronomy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exoplanet atmospheres</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michael C. Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhoujian Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">961(2024), 2, p 210</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:961</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2, p 210</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad06ba</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2a9642978de4432d822602927119cc4b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad06ba</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">961</subfield><subfield code="j">2024</subfield><subfield code="e">2, p 210</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Mark W. Phillips |
spellingShingle |
Mark W. Phillips misc QB460-466 misc Brown dwarfs misc T dwarfs misc Spectroscopy misc Near infrared astronomy misc Exoplanet atmospheres misc Astrophysics The Carbon-to-oxygen Ratio in Cool Brown Dwarfs and Giant Exoplanets. I. The Benchmark Late-T Dwarfs GJ 570D, HD 3651B, and Ross 458C |
authorStr |
Mark W. Phillips |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)269019219 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB460-466 |
illustrated |
Not Illustrated |
issn |
15384357 |
topic_title |
QB460-466 The Carbon-to-oxygen Ratio in Cool Brown Dwarfs and Giant Exoplanets. I. The Benchmark Late-T Dwarfs GJ 570D, HD 3651B, and Ross 458C Brown dwarfs T dwarfs Spectroscopy Near infrared astronomy Exoplanet atmospheres |
topic |
misc QB460-466 misc Brown dwarfs misc T dwarfs misc Spectroscopy misc Near infrared astronomy misc Exoplanet atmospheres misc Astrophysics |
topic_unstemmed |
misc QB460-466 misc Brown dwarfs misc T dwarfs misc Spectroscopy misc Near infrared astronomy misc Exoplanet atmospheres misc Astrophysics |
topic_browse |
misc QB460-466 misc Brown dwarfs misc T dwarfs misc Spectroscopy misc Near infrared astronomy misc Exoplanet atmospheres misc Astrophysics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Astrophysical Journal |
hierarchy_parent_id |
269019219 |
hierarchy_top_title |
The Astrophysical Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)269019219 (DE-600)1473835-1 |
title |
The Carbon-to-oxygen Ratio in Cool Brown Dwarfs and Giant Exoplanets. I. The Benchmark Late-T Dwarfs GJ 570D, HD 3651B, and Ross 458C |
ctrlnum |
(DE-627)DOAJ096404442 (DE-599)DOAJ2a9642978de4432d822602927119cc4b |
title_full |
The Carbon-to-oxygen Ratio in Cool Brown Dwarfs and Giant Exoplanets. I. The Benchmark Late-T Dwarfs GJ 570D, HD 3651B, and Ross 458C |
author_sort |
Mark W. Phillips |
journal |
The Astrophysical Journal |
journalStr |
The Astrophysical Journal |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Mark W. Phillips Michael C. Liu Zhoujian Zhang |
container_volume |
961 |
class |
QB460-466 |
format_se |
Elektronische Aufsätze |
author-letter |
Mark W. Phillips |
doi_str_mv |
10.3847/1538-4357/ad06ba |
author2-role |
verfasserin |
title_sort |
carbon-to-oxygen ratio in cool brown dwarfs and giant exoplanets. i. the benchmark late-t dwarfs gj 570d, hd 3651b, and ross 458c |
callnumber |
QB460-466 |
title_auth |
The Carbon-to-oxygen Ratio in Cool Brown Dwarfs and Giant Exoplanets. I. The Benchmark Late-T Dwarfs GJ 570D, HD 3651B, and Ross 458C |
abstract |
Measurements of the C/O ratio in brown dwarfs are lacking, in part due to past models adopting solar C/O only. We have expanded the ATMO 2020 atmosphere model grid to include nonsolar metallicities and C/O ratios in the T dwarf regime. We change the C/O ratio by altering either the carbon or oxygen elemental abundances, and we find that nonsolar abundances of these elements can be distinguished based on the shapes of the H and K bands. We compare these new models with medium-resolution ( R ≈ 1700), near-infrared (0.8–2.4 μ m) Gemini Near-Infrared Spectrograph (GNIRS) spectra of three benchmark late-T dwarfs, GJ 570D, HD 3651B, and Ross 458C. We find solar C/O ratios and best-fitting parameters ( T _eff , $\mathrm{log}(g)$ , Z ) broadly consistent with other analyses in the literature based on low-resolution ( R ∼ 100) data. The model-data discrepancies in the near-infrared spectra are consistent across all three objects. These discrepancies are alleviated when fitting the Y , J , H , and K bands individually, but the resulting best-fit parameters are inconsistent and disagree with the results from the full spectrum. By examining the model atmosphere properties we find this is due to the interplay of gravity and metallicity on H _2 –H _2 collisionally induced absorption. We therefore conclude that there are no significant issues with the molecular opacity tables used in the models at this spectral resolution. Instead, deficiencies are more likely to lie in the model assumptions regarding the thermal structures. Finally, we find a discrepancy between the GNIRS, SpeX, and other near-infrared spectra in the literature of Ross 458C, indicating potential spectroscopic variability. |
abstractGer |
Measurements of the C/O ratio in brown dwarfs are lacking, in part due to past models adopting solar C/O only. We have expanded the ATMO 2020 atmosphere model grid to include nonsolar metallicities and C/O ratios in the T dwarf regime. We change the C/O ratio by altering either the carbon or oxygen elemental abundances, and we find that nonsolar abundances of these elements can be distinguished based on the shapes of the H and K bands. We compare these new models with medium-resolution ( R ≈ 1700), near-infrared (0.8–2.4 μ m) Gemini Near-Infrared Spectrograph (GNIRS) spectra of three benchmark late-T dwarfs, GJ 570D, HD 3651B, and Ross 458C. We find solar C/O ratios and best-fitting parameters ( T _eff , $\mathrm{log}(g)$ , Z ) broadly consistent with other analyses in the literature based on low-resolution ( R ∼ 100) data. The model-data discrepancies in the near-infrared spectra are consistent across all three objects. These discrepancies are alleviated when fitting the Y , J , H , and K bands individually, but the resulting best-fit parameters are inconsistent and disagree with the results from the full spectrum. By examining the model atmosphere properties we find this is due to the interplay of gravity and metallicity on H _2 –H _2 collisionally induced absorption. We therefore conclude that there are no significant issues with the molecular opacity tables used in the models at this spectral resolution. Instead, deficiencies are more likely to lie in the model assumptions regarding the thermal structures. Finally, we find a discrepancy between the GNIRS, SpeX, and other near-infrared spectra in the literature of Ross 458C, indicating potential spectroscopic variability. |
abstract_unstemmed |
Measurements of the C/O ratio in brown dwarfs are lacking, in part due to past models adopting solar C/O only. We have expanded the ATMO 2020 atmosphere model grid to include nonsolar metallicities and C/O ratios in the T dwarf regime. We change the C/O ratio by altering either the carbon or oxygen elemental abundances, and we find that nonsolar abundances of these elements can be distinguished based on the shapes of the H and K bands. We compare these new models with medium-resolution ( R ≈ 1700), near-infrared (0.8–2.4 μ m) Gemini Near-Infrared Spectrograph (GNIRS) spectra of three benchmark late-T dwarfs, GJ 570D, HD 3651B, and Ross 458C. We find solar C/O ratios and best-fitting parameters ( T _eff , $\mathrm{log}(g)$ , Z ) broadly consistent with other analyses in the literature based on low-resolution ( R ∼ 100) data. The model-data discrepancies in the near-infrared spectra are consistent across all three objects. These discrepancies are alleviated when fitting the Y , J , H , and K bands individually, but the resulting best-fit parameters are inconsistent and disagree with the results from the full spectrum. By examining the model atmosphere properties we find this is due to the interplay of gravity and metallicity on H _2 –H _2 collisionally induced absorption. We therefore conclude that there are no significant issues with the molecular opacity tables used in the models at this spectral resolution. Instead, deficiencies are more likely to lie in the model assumptions regarding the thermal structures. Finally, we find a discrepancy between the GNIRS, SpeX, and other near-infrared spectra in the literature of Ross 458C, indicating potential spectroscopic variability. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 210 |
title_short |
The Carbon-to-oxygen Ratio in Cool Brown Dwarfs and Giant Exoplanets. I. The Benchmark Late-T Dwarfs GJ 570D, HD 3651B, and Ross 458C |
url |
https://doi.org/10.3847/1538-4357/ad06ba https://doaj.org/article/2a9642978de4432d822602927119cc4b https://doaj.org/toc/1538-4357 |
remote_bool |
true |
author2 |
Michael C. Liu Zhoujian Zhang |
author2Str |
Michael C. Liu Zhoujian Zhang |
ppnlink |
269019219 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3847/1538-4357/ad06ba |
callnumber-a |
QB460-466 |
up_date |
2024-07-03T20:00:03.524Z |
_version_ |
1803589311294078976 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096404442</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413151120.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/ad06ba</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096404442</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2a9642978de4432d822602927119cc4b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mark W. Phillips</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Carbon-to-oxygen Ratio in Cool Brown Dwarfs and Giant Exoplanets. I. The Benchmark Late-T Dwarfs GJ 570D, HD 3651B, and Ross 458C</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Measurements of the C/O ratio in brown dwarfs are lacking, in part due to past models adopting solar C/O only. We have expanded the ATMO 2020 atmosphere model grid to include nonsolar metallicities and C/O ratios in the T dwarf regime. We change the C/O ratio by altering either the carbon or oxygen elemental abundances, and we find that nonsolar abundances of these elements can be distinguished based on the shapes of the H and K bands. We compare these new models with medium-resolution ( R ≈ 1700), near-infrared (0.8–2.4 μ m) Gemini Near-Infrared Spectrograph (GNIRS) spectra of three benchmark late-T dwarfs, GJ 570D, HD 3651B, and Ross 458C. We find solar C/O ratios and best-fitting parameters ( T _eff , $\mathrm{log}(g)$ , Z ) broadly consistent with other analyses in the literature based on low-resolution ( R ∼ 100) data. The model-data discrepancies in the near-infrared spectra are consistent across all three objects. These discrepancies are alleviated when fitting the Y , J , H , and K bands individually, but the resulting best-fit parameters are inconsistent and disagree with the results from the full spectrum. By examining the model atmosphere properties we find this is due to the interplay of gravity and metallicity on H _2 –H _2 collisionally induced absorption. We therefore conclude that there are no significant issues with the molecular opacity tables used in the models at this spectral resolution. Instead, deficiencies are more likely to lie in the model assumptions regarding the thermal structures. Finally, we find a discrepancy between the GNIRS, SpeX, and other near-infrared spectra in the literature of Ross 458C, indicating potential spectroscopic variability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brown dwarfs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">T dwarfs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Near infrared astronomy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exoplanet atmospheres</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michael C. Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhoujian Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">961(2024), 2, p 210</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:961</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2, p 210</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad06ba</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2a9642978de4432d822602927119cc4b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad06ba</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">961</subfield><subfield code="j">2024</subfield><subfield code="e">2, p 210</subfield></datafield></record></collection>
|
score |
7.4021664 |