Phosphorus availability and speciation in soils amended with upcycled dairy-waste nutrients
The excessive application of dairy manure to soils to supply plant nutrients can result in increased offsite nutrient transport and degraded water quality. However, by concentrating nutrients from dairy-waste onto biochar or as biosolids, a viable alternative fertilizer can be produced that will ben...
Ausführliche Beschreibung
Autor*in: |
Maggi Laan [verfasserIn] Daniel G. Strawn [verfasserIn] Zachary E. Kayler [verfasserIn] Barbara J. Cade-Menun [verfasserIn] Gregory Möller [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Chemical Engineering - Frontiers Media S.A., 2020, 5(2024) |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2024 |
Links: |
---|
DOI / URN: |
10.3389/fceng.2023.1303357 |
---|
Katalog-ID: |
DOAJ096554436 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ096554436 | ||
003 | DE-627 | ||
005 | 20240413152842.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fceng.2023.1303357 |2 doi | |
035 | |a (DE-627)DOAJ096554436 | ||
035 | |a (DE-599)DOAJ5d880178999146eca249395eccadc9c6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Maggi Laan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Phosphorus availability and speciation in soils amended with upcycled dairy-waste nutrients |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The excessive application of dairy manure to soils to supply plant nutrients can result in increased offsite nutrient transport and degraded water quality. However, by concentrating nutrients from dairy-waste onto biochar or as biosolids, a viable alternative fertilizer can be produced that will benefit soil health, promote carbon sequestration, and decrease nutrient leaching into surface waters. In this study, a greenhouse experiment was conducted to assess soil phosphorus (P) speciation and barley plant growth in soils amended with dairy-waste treated biochar and fermented manure. Phosphorus characterization in the post-harvest soils was determined using selective extractions, 31P-NMR and XANES spectroscopy, and isotopic tracing (P-δ18O). Selective extractions and NMR spectroscopy revealed that most of the P in the amended soils occurred as inorganic species (>85%). XANES spectroscopy further showed that the soil P occurred as either calcium-P minerals (54%–87%) or adsorbed P (0%–46%) species. Analysis by P-δ18O in water and sodium bicarbonate extractions of the treated soils showed that the water-extracted P pool is cycled much faster than the sodium bicarbonate extracted P. Although less than 10% of the total P in the dairy-derived bioproducts was extracted using water, plant productivity in the soils treated with these amendments was the same as that in soils treated with equivalent amounts of conventional nitrogen and P fertilizer. This suggests that dairy-derived bioproducts are good soil amendments to supply nutrients and limit leaching. | ||
650 | 4 | |a biochar | |
650 | 4 | |a dairy nutrients | |
650 | 4 | |a phosphorus | |
650 | 4 | |a anaerobic digest | |
650 | 4 | |a soil speciation | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Daniel G. Strawn |e verfasserin |4 aut | |
700 | 0 | |a Zachary E. Kayler |e verfasserin |4 aut | |
700 | 0 | |a Barbara J. Cade-Menun |e verfasserin |4 aut | |
700 | 0 | |a Gregory Möller |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Chemical Engineering |d Frontiers Media S.A., 2020 |g 5(2024) |w (DE-627)1695603885 |w (DE-600)3017796-0 |x 26732718 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2024 |
856 | 4 | 0 | |u https://doi.org/10.3389/fceng.2023.1303357 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5d880178999146eca249395eccadc9c6 |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/fceng.2023.1303357/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2673-2718 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2024 |
author_variant |
m l ml d g s dgs z e k zek b j c m bjcm g m gm |
---|---|
matchkey_str |
article:26732718:2024----::hshrsviaiiynseitoisismnewtucce |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
TP |
publishDate |
2024 |
allfields |
10.3389/fceng.2023.1303357 doi (DE-627)DOAJ096554436 (DE-599)DOAJ5d880178999146eca249395eccadc9c6 DE-627 ger DE-627 rakwb eng TP1-1185 Maggi Laan verfasserin aut Phosphorus availability and speciation in soils amended with upcycled dairy-waste nutrients 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The excessive application of dairy manure to soils to supply plant nutrients can result in increased offsite nutrient transport and degraded water quality. However, by concentrating nutrients from dairy-waste onto biochar or as biosolids, a viable alternative fertilizer can be produced that will benefit soil health, promote carbon sequestration, and decrease nutrient leaching into surface waters. In this study, a greenhouse experiment was conducted to assess soil phosphorus (P) speciation and barley plant growth in soils amended with dairy-waste treated biochar and fermented manure. Phosphorus characterization in the post-harvest soils was determined using selective extractions, 31P-NMR and XANES spectroscopy, and isotopic tracing (P-δ18O). Selective extractions and NMR spectroscopy revealed that most of the P in the amended soils occurred as inorganic species (>85%). XANES spectroscopy further showed that the soil P occurred as either calcium-P minerals (54%–87%) or adsorbed P (0%–46%) species. Analysis by P-δ18O in water and sodium bicarbonate extractions of the treated soils showed that the water-extracted P pool is cycled much faster than the sodium bicarbonate extracted P. Although less than 10% of the total P in the dairy-derived bioproducts was extracted using water, plant productivity in the soils treated with these amendments was the same as that in soils treated with equivalent amounts of conventional nitrogen and P fertilizer. This suggests that dairy-derived bioproducts are good soil amendments to supply nutrients and limit leaching. biochar dairy nutrients phosphorus anaerobic digest soil speciation Technology T Chemical technology Daniel G. Strawn verfasserin aut Zachary E. Kayler verfasserin aut Barbara J. Cade-Menun verfasserin aut Gregory Möller verfasserin aut In Frontiers in Chemical Engineering Frontiers Media S.A., 2020 5(2024) (DE-627)1695603885 (DE-600)3017796-0 26732718 nnns volume:5 year:2024 https://doi.org/10.3389/fceng.2023.1303357 kostenfrei https://doaj.org/article/5d880178999146eca249395eccadc9c6 kostenfrei https://www.frontiersin.org/articles/10.3389/fceng.2023.1303357/full kostenfrei https://doaj.org/toc/2673-2718 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2024 |
spelling |
10.3389/fceng.2023.1303357 doi (DE-627)DOAJ096554436 (DE-599)DOAJ5d880178999146eca249395eccadc9c6 DE-627 ger DE-627 rakwb eng TP1-1185 Maggi Laan verfasserin aut Phosphorus availability and speciation in soils amended with upcycled dairy-waste nutrients 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The excessive application of dairy manure to soils to supply plant nutrients can result in increased offsite nutrient transport and degraded water quality. However, by concentrating nutrients from dairy-waste onto biochar or as biosolids, a viable alternative fertilizer can be produced that will benefit soil health, promote carbon sequestration, and decrease nutrient leaching into surface waters. In this study, a greenhouse experiment was conducted to assess soil phosphorus (P) speciation and barley plant growth in soils amended with dairy-waste treated biochar and fermented manure. Phosphorus characterization in the post-harvest soils was determined using selective extractions, 31P-NMR and XANES spectroscopy, and isotopic tracing (P-δ18O). Selective extractions and NMR spectroscopy revealed that most of the P in the amended soils occurred as inorganic species (>85%). XANES spectroscopy further showed that the soil P occurred as either calcium-P minerals (54%–87%) or adsorbed P (0%–46%) species. Analysis by P-δ18O in water and sodium bicarbonate extractions of the treated soils showed that the water-extracted P pool is cycled much faster than the sodium bicarbonate extracted P. Although less than 10% of the total P in the dairy-derived bioproducts was extracted using water, plant productivity in the soils treated with these amendments was the same as that in soils treated with equivalent amounts of conventional nitrogen and P fertilizer. This suggests that dairy-derived bioproducts are good soil amendments to supply nutrients and limit leaching. biochar dairy nutrients phosphorus anaerobic digest soil speciation Technology T Chemical technology Daniel G. Strawn verfasserin aut Zachary E. Kayler verfasserin aut Barbara J. Cade-Menun verfasserin aut Gregory Möller verfasserin aut In Frontiers in Chemical Engineering Frontiers Media S.A., 2020 5(2024) (DE-627)1695603885 (DE-600)3017796-0 26732718 nnns volume:5 year:2024 https://doi.org/10.3389/fceng.2023.1303357 kostenfrei https://doaj.org/article/5d880178999146eca249395eccadc9c6 kostenfrei https://www.frontiersin.org/articles/10.3389/fceng.2023.1303357/full kostenfrei https://doaj.org/toc/2673-2718 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2024 |
allfields_unstemmed |
10.3389/fceng.2023.1303357 doi (DE-627)DOAJ096554436 (DE-599)DOAJ5d880178999146eca249395eccadc9c6 DE-627 ger DE-627 rakwb eng TP1-1185 Maggi Laan verfasserin aut Phosphorus availability and speciation in soils amended with upcycled dairy-waste nutrients 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The excessive application of dairy manure to soils to supply plant nutrients can result in increased offsite nutrient transport and degraded water quality. However, by concentrating nutrients from dairy-waste onto biochar or as biosolids, a viable alternative fertilizer can be produced that will benefit soil health, promote carbon sequestration, and decrease nutrient leaching into surface waters. In this study, a greenhouse experiment was conducted to assess soil phosphorus (P) speciation and barley plant growth in soils amended with dairy-waste treated biochar and fermented manure. Phosphorus characterization in the post-harvest soils was determined using selective extractions, 31P-NMR and XANES spectroscopy, and isotopic tracing (P-δ18O). Selective extractions and NMR spectroscopy revealed that most of the P in the amended soils occurred as inorganic species (>85%). XANES spectroscopy further showed that the soil P occurred as either calcium-P minerals (54%–87%) or adsorbed P (0%–46%) species. Analysis by P-δ18O in water and sodium bicarbonate extractions of the treated soils showed that the water-extracted P pool is cycled much faster than the sodium bicarbonate extracted P. Although less than 10% of the total P in the dairy-derived bioproducts was extracted using water, plant productivity in the soils treated with these amendments was the same as that in soils treated with equivalent amounts of conventional nitrogen and P fertilizer. This suggests that dairy-derived bioproducts are good soil amendments to supply nutrients and limit leaching. biochar dairy nutrients phosphorus anaerobic digest soil speciation Technology T Chemical technology Daniel G. Strawn verfasserin aut Zachary E. Kayler verfasserin aut Barbara J. Cade-Menun verfasserin aut Gregory Möller verfasserin aut In Frontiers in Chemical Engineering Frontiers Media S.A., 2020 5(2024) (DE-627)1695603885 (DE-600)3017796-0 26732718 nnns volume:5 year:2024 https://doi.org/10.3389/fceng.2023.1303357 kostenfrei https://doaj.org/article/5d880178999146eca249395eccadc9c6 kostenfrei https://www.frontiersin.org/articles/10.3389/fceng.2023.1303357/full kostenfrei https://doaj.org/toc/2673-2718 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2024 |
allfieldsGer |
10.3389/fceng.2023.1303357 doi (DE-627)DOAJ096554436 (DE-599)DOAJ5d880178999146eca249395eccadc9c6 DE-627 ger DE-627 rakwb eng TP1-1185 Maggi Laan verfasserin aut Phosphorus availability and speciation in soils amended with upcycled dairy-waste nutrients 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The excessive application of dairy manure to soils to supply plant nutrients can result in increased offsite nutrient transport and degraded water quality. However, by concentrating nutrients from dairy-waste onto biochar or as biosolids, a viable alternative fertilizer can be produced that will benefit soil health, promote carbon sequestration, and decrease nutrient leaching into surface waters. In this study, a greenhouse experiment was conducted to assess soil phosphorus (P) speciation and barley plant growth in soils amended with dairy-waste treated biochar and fermented manure. Phosphorus characterization in the post-harvest soils was determined using selective extractions, 31P-NMR and XANES spectroscopy, and isotopic tracing (P-δ18O). Selective extractions and NMR spectroscopy revealed that most of the P in the amended soils occurred as inorganic species (>85%). XANES spectroscopy further showed that the soil P occurred as either calcium-P minerals (54%–87%) or adsorbed P (0%–46%) species. Analysis by P-δ18O in water and sodium bicarbonate extractions of the treated soils showed that the water-extracted P pool is cycled much faster than the sodium bicarbonate extracted P. Although less than 10% of the total P in the dairy-derived bioproducts was extracted using water, plant productivity in the soils treated with these amendments was the same as that in soils treated with equivalent amounts of conventional nitrogen and P fertilizer. This suggests that dairy-derived bioproducts are good soil amendments to supply nutrients and limit leaching. biochar dairy nutrients phosphorus anaerobic digest soil speciation Technology T Chemical technology Daniel G. Strawn verfasserin aut Zachary E. Kayler verfasserin aut Barbara J. Cade-Menun verfasserin aut Gregory Möller verfasserin aut In Frontiers in Chemical Engineering Frontiers Media S.A., 2020 5(2024) (DE-627)1695603885 (DE-600)3017796-0 26732718 nnns volume:5 year:2024 https://doi.org/10.3389/fceng.2023.1303357 kostenfrei https://doaj.org/article/5d880178999146eca249395eccadc9c6 kostenfrei https://www.frontiersin.org/articles/10.3389/fceng.2023.1303357/full kostenfrei https://doaj.org/toc/2673-2718 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2024 |
allfieldsSound |
10.3389/fceng.2023.1303357 doi (DE-627)DOAJ096554436 (DE-599)DOAJ5d880178999146eca249395eccadc9c6 DE-627 ger DE-627 rakwb eng TP1-1185 Maggi Laan verfasserin aut Phosphorus availability and speciation in soils amended with upcycled dairy-waste nutrients 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The excessive application of dairy manure to soils to supply plant nutrients can result in increased offsite nutrient transport and degraded water quality. However, by concentrating nutrients from dairy-waste onto biochar or as biosolids, a viable alternative fertilizer can be produced that will benefit soil health, promote carbon sequestration, and decrease nutrient leaching into surface waters. In this study, a greenhouse experiment was conducted to assess soil phosphorus (P) speciation and barley plant growth in soils amended with dairy-waste treated biochar and fermented manure. Phosphorus characterization in the post-harvest soils was determined using selective extractions, 31P-NMR and XANES spectroscopy, and isotopic tracing (P-δ18O). Selective extractions and NMR spectroscopy revealed that most of the P in the amended soils occurred as inorganic species (>85%). XANES spectroscopy further showed that the soil P occurred as either calcium-P minerals (54%–87%) or adsorbed P (0%–46%) species. Analysis by P-δ18O in water and sodium bicarbonate extractions of the treated soils showed that the water-extracted P pool is cycled much faster than the sodium bicarbonate extracted P. Although less than 10% of the total P in the dairy-derived bioproducts was extracted using water, plant productivity in the soils treated with these amendments was the same as that in soils treated with equivalent amounts of conventional nitrogen and P fertilizer. This suggests that dairy-derived bioproducts are good soil amendments to supply nutrients and limit leaching. biochar dairy nutrients phosphorus anaerobic digest soil speciation Technology T Chemical technology Daniel G. Strawn verfasserin aut Zachary E. Kayler verfasserin aut Barbara J. Cade-Menun verfasserin aut Gregory Möller verfasserin aut In Frontiers in Chemical Engineering Frontiers Media S.A., 2020 5(2024) (DE-627)1695603885 (DE-600)3017796-0 26732718 nnns volume:5 year:2024 https://doi.org/10.3389/fceng.2023.1303357 kostenfrei https://doaj.org/article/5d880178999146eca249395eccadc9c6 kostenfrei https://www.frontiersin.org/articles/10.3389/fceng.2023.1303357/full kostenfrei https://doaj.org/toc/2673-2718 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2024 |
language |
English |
source |
In Frontiers in Chemical Engineering 5(2024) volume:5 year:2024 |
sourceStr |
In Frontiers in Chemical Engineering 5(2024) volume:5 year:2024 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
biochar dairy nutrients phosphorus anaerobic digest soil speciation Technology T Chemical technology |
isfreeaccess_bool |
true |
container_title |
Frontiers in Chemical Engineering |
authorswithroles_txt_mv |
Maggi Laan @@aut@@ Daniel G. Strawn @@aut@@ Zachary E. Kayler @@aut@@ Barbara J. Cade-Menun @@aut@@ Gregory Möller @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
1695603885 |
id |
DOAJ096554436 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096554436</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413152842.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fceng.2023.1303357</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096554436</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5d880178999146eca249395eccadc9c6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Maggi Laan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phosphorus availability and speciation in soils amended with upcycled dairy-waste nutrients</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The excessive application of dairy manure to soils to supply plant nutrients can result in increased offsite nutrient transport and degraded water quality. However, by concentrating nutrients from dairy-waste onto biochar or as biosolids, a viable alternative fertilizer can be produced that will benefit soil health, promote carbon sequestration, and decrease nutrient leaching into surface waters. In this study, a greenhouse experiment was conducted to assess soil phosphorus (P) speciation and barley plant growth in soils amended with dairy-waste treated biochar and fermented manure. Phosphorus characterization in the post-harvest soils was determined using selective extractions, 31P-NMR and XANES spectroscopy, and isotopic tracing (P-δ18O). Selective extractions and NMR spectroscopy revealed that most of the P in the amended soils occurred as inorganic species (&gt;85%). XANES spectroscopy further showed that the soil P occurred as either calcium-P minerals (54%–87%) or adsorbed P (0%–46%) species. Analysis by P-δ18O in water and sodium bicarbonate extractions of the treated soils showed that the water-extracted P pool is cycled much faster than the sodium bicarbonate extracted P. Although less than 10% of the total P in the dairy-derived bioproducts was extracted using water, plant productivity in the soils treated with these amendments was the same as that in soils treated with equivalent amounts of conventional nitrogen and P fertilizer. This suggests that dairy-derived bioproducts are good soil amendments to supply nutrients and limit leaching.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biochar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dairy nutrients</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phosphorus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anaerobic digest</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soil speciation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniel G. Strawn</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zachary E. Kayler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Barbara J. Cade-Menun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gregory Möller</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Chemical Engineering</subfield><subfield code="d">Frontiers Media S.A., 2020</subfield><subfield code="g">5(2024)</subfield><subfield code="w">(DE-627)1695603885</subfield><subfield code="w">(DE-600)3017796-0</subfield><subfield code="x">26732718</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2024</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fceng.2023.1303357</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5d880178999146eca249395eccadc9c6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fceng.2023.1303357/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2673-2718</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2024</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Maggi Laan |
spellingShingle |
Maggi Laan misc TP1-1185 misc biochar misc dairy nutrients misc phosphorus misc anaerobic digest misc soil speciation misc Technology misc T misc Chemical technology Phosphorus availability and speciation in soils amended with upcycled dairy-waste nutrients |
authorStr |
Maggi Laan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1695603885 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
26732718 |
topic_title |
TP1-1185 Phosphorus availability and speciation in soils amended with upcycled dairy-waste nutrients biochar dairy nutrients phosphorus anaerobic digest soil speciation |
topic |
misc TP1-1185 misc biochar misc dairy nutrients misc phosphorus misc anaerobic digest misc soil speciation misc Technology misc T misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc biochar misc dairy nutrients misc phosphorus misc anaerobic digest misc soil speciation misc Technology misc T misc Chemical technology |
topic_browse |
misc TP1-1185 misc biochar misc dairy nutrients misc phosphorus misc anaerobic digest misc soil speciation misc Technology misc T misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Chemical Engineering |
hierarchy_parent_id |
1695603885 |
hierarchy_top_title |
Frontiers in Chemical Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1695603885 (DE-600)3017796-0 |
title |
Phosphorus availability and speciation in soils amended with upcycled dairy-waste nutrients |
ctrlnum |
(DE-627)DOAJ096554436 (DE-599)DOAJ5d880178999146eca249395eccadc9c6 |
title_full |
Phosphorus availability and speciation in soils amended with upcycled dairy-waste nutrients |
author_sort |
Maggi Laan |
journal |
Frontiers in Chemical Engineering |
journalStr |
Frontiers in Chemical Engineering |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Maggi Laan Daniel G. Strawn Zachary E. Kayler Barbara J. Cade-Menun Gregory Möller |
container_volume |
5 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Maggi Laan |
doi_str_mv |
10.3389/fceng.2023.1303357 |
author2-role |
verfasserin |
title_sort |
phosphorus availability and speciation in soils amended with upcycled dairy-waste nutrients |
callnumber |
TP1-1185 |
title_auth |
Phosphorus availability and speciation in soils amended with upcycled dairy-waste nutrients |
abstract |
The excessive application of dairy manure to soils to supply plant nutrients can result in increased offsite nutrient transport and degraded water quality. However, by concentrating nutrients from dairy-waste onto biochar or as biosolids, a viable alternative fertilizer can be produced that will benefit soil health, promote carbon sequestration, and decrease nutrient leaching into surface waters. In this study, a greenhouse experiment was conducted to assess soil phosphorus (P) speciation and barley plant growth in soils amended with dairy-waste treated biochar and fermented manure. Phosphorus characterization in the post-harvest soils was determined using selective extractions, 31P-NMR and XANES spectroscopy, and isotopic tracing (P-δ18O). Selective extractions and NMR spectroscopy revealed that most of the P in the amended soils occurred as inorganic species (>85%). XANES spectroscopy further showed that the soil P occurred as either calcium-P minerals (54%–87%) or adsorbed P (0%–46%) species. Analysis by P-δ18O in water and sodium bicarbonate extractions of the treated soils showed that the water-extracted P pool is cycled much faster than the sodium bicarbonate extracted P. Although less than 10% of the total P in the dairy-derived bioproducts was extracted using water, plant productivity in the soils treated with these amendments was the same as that in soils treated with equivalent amounts of conventional nitrogen and P fertilizer. This suggests that dairy-derived bioproducts are good soil amendments to supply nutrients and limit leaching. |
abstractGer |
The excessive application of dairy manure to soils to supply plant nutrients can result in increased offsite nutrient transport and degraded water quality. However, by concentrating nutrients from dairy-waste onto biochar or as biosolids, a viable alternative fertilizer can be produced that will benefit soil health, promote carbon sequestration, and decrease nutrient leaching into surface waters. In this study, a greenhouse experiment was conducted to assess soil phosphorus (P) speciation and barley plant growth in soils amended with dairy-waste treated biochar and fermented manure. Phosphorus characterization in the post-harvest soils was determined using selective extractions, 31P-NMR and XANES spectroscopy, and isotopic tracing (P-δ18O). Selective extractions and NMR spectroscopy revealed that most of the P in the amended soils occurred as inorganic species (>85%). XANES spectroscopy further showed that the soil P occurred as either calcium-P minerals (54%–87%) or adsorbed P (0%–46%) species. Analysis by P-δ18O in water and sodium bicarbonate extractions of the treated soils showed that the water-extracted P pool is cycled much faster than the sodium bicarbonate extracted P. Although less than 10% of the total P in the dairy-derived bioproducts was extracted using water, plant productivity in the soils treated with these amendments was the same as that in soils treated with equivalent amounts of conventional nitrogen and P fertilizer. This suggests that dairy-derived bioproducts are good soil amendments to supply nutrients and limit leaching. |
abstract_unstemmed |
The excessive application of dairy manure to soils to supply plant nutrients can result in increased offsite nutrient transport and degraded water quality. However, by concentrating nutrients from dairy-waste onto biochar or as biosolids, a viable alternative fertilizer can be produced that will benefit soil health, promote carbon sequestration, and decrease nutrient leaching into surface waters. In this study, a greenhouse experiment was conducted to assess soil phosphorus (P) speciation and barley plant growth in soils amended with dairy-waste treated biochar and fermented manure. Phosphorus characterization in the post-harvest soils was determined using selective extractions, 31P-NMR and XANES spectroscopy, and isotopic tracing (P-δ18O). Selective extractions and NMR spectroscopy revealed that most of the P in the amended soils occurred as inorganic species (>85%). XANES spectroscopy further showed that the soil P occurred as either calcium-P minerals (54%–87%) or adsorbed P (0%–46%) species. Analysis by P-δ18O in water and sodium bicarbonate extractions of the treated soils showed that the water-extracted P pool is cycled much faster than the sodium bicarbonate extracted P. Although less than 10% of the total P in the dairy-derived bioproducts was extracted using water, plant productivity in the soils treated with these amendments was the same as that in soils treated with equivalent amounts of conventional nitrogen and P fertilizer. This suggests that dairy-derived bioproducts are good soil amendments to supply nutrients and limit leaching. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Phosphorus availability and speciation in soils amended with upcycled dairy-waste nutrients |
url |
https://doi.org/10.3389/fceng.2023.1303357 https://doaj.org/article/5d880178999146eca249395eccadc9c6 https://www.frontiersin.org/articles/10.3389/fceng.2023.1303357/full https://doaj.org/toc/2673-2718 |
remote_bool |
true |
author2 |
Daniel G. Strawn Zachary E. Kayler Barbara J. Cade-Menun Gregory Möller |
author2Str |
Daniel G. Strawn Zachary E. Kayler Barbara J. Cade-Menun Gregory Möller |
ppnlink |
1695603885 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fceng.2023.1303357 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T20:49:06.144Z |
_version_ |
1803592396857933824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096554436</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413152842.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fceng.2023.1303357</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096554436</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5d880178999146eca249395eccadc9c6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Maggi Laan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phosphorus availability and speciation in soils amended with upcycled dairy-waste nutrients</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The excessive application of dairy manure to soils to supply plant nutrients can result in increased offsite nutrient transport and degraded water quality. However, by concentrating nutrients from dairy-waste onto biochar or as biosolids, a viable alternative fertilizer can be produced that will benefit soil health, promote carbon sequestration, and decrease nutrient leaching into surface waters. In this study, a greenhouse experiment was conducted to assess soil phosphorus (P) speciation and barley plant growth in soils amended with dairy-waste treated biochar and fermented manure. Phosphorus characterization in the post-harvest soils was determined using selective extractions, 31P-NMR and XANES spectroscopy, and isotopic tracing (P-δ18O). Selective extractions and NMR spectroscopy revealed that most of the P in the amended soils occurred as inorganic species (&gt;85%). XANES spectroscopy further showed that the soil P occurred as either calcium-P minerals (54%–87%) or adsorbed P (0%–46%) species. Analysis by P-δ18O in water and sodium bicarbonate extractions of the treated soils showed that the water-extracted P pool is cycled much faster than the sodium bicarbonate extracted P. Although less than 10% of the total P in the dairy-derived bioproducts was extracted using water, plant productivity in the soils treated with these amendments was the same as that in soils treated with equivalent amounts of conventional nitrogen and P fertilizer. This suggests that dairy-derived bioproducts are good soil amendments to supply nutrients and limit leaching.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biochar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dairy nutrients</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phosphorus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anaerobic digest</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soil speciation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniel G. Strawn</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zachary E. Kayler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Barbara J. Cade-Menun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gregory Möller</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Chemical Engineering</subfield><subfield code="d">Frontiers Media S.A., 2020</subfield><subfield code="g">5(2024)</subfield><subfield code="w">(DE-627)1695603885</subfield><subfield code="w">(DE-600)3017796-0</subfield><subfield code="x">26732718</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2024</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fceng.2023.1303357</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5d880178999146eca249395eccadc9c6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fceng.2023.1303357/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2673-2718</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2024</subfield></datafield></record></collection>
|
score |
7.401143 |