A procedure to estimate variances and covariances on GHG emissions and inventories
This study presents a method for estimating the mean and variance of total CO2 emission from multiple sources used by a company. The procedure is also readily applicable to estimate these parameters for other greenhouse gases (GHG) inventories and to determine a reliable confidence interval for the...
Ausführliche Beschreibung
Autor*in: |
Ernesto C. Marujo [verfasserIn] Gleice G. Rodrigues [verfasserIn] Weber A. N. Amaral [verfasserIn] Fernanda Leonardis [verfasserIn] Arthur Covatti [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Carbon Management - Taylor & Francis Group, 2022, 13(2022), 1, Seite 310-320 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2022 ; number:1 ; pages:310-320 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1080/17583004.2022.2086486 |
---|
Katalog-ID: |
DOAJ096625465 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ096625465 | ||
003 | DE-627 | ||
005 | 20240413154020.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1080/17583004.2022.2086486 |2 doi | |
035 | |a (DE-627)DOAJ096625465 | ||
035 | |a (DE-599)DOAJ97539f41a6d94c068d0fc8cfeb3ec74d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a GE1-350 | |
100 | 0 | |a Ernesto C. Marujo |e verfasserin |4 aut | |
245 | 1 | 2 | |a A procedure to estimate variances and covariances on GHG emissions and inventories |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This study presents a method for estimating the mean and variance of total CO2 emission from multiple sources used by a company. The procedure is also readily applicable to estimate these parameters for other greenhouse gases (GHG) inventories and to determine a reliable confidence interval for the total emissions of GHG of a company. Our method represents an improvement over the existing methods that assume independence between emissions from different sources. The foundation of the proposed method is an iterative decomposition process applied to analyze the emissions correlations among activities, raw materials and other inputs used in a company’s operations. From these correlations and the individual estimates of means and variances of emission factors, we show how to generate a confidence interval for the total GHG emission of a company. The application of the method is illustrated for a hypothetical manufacturing plant of bicycles and car toys, whose total CO2 emission is estimated within a precise confidence interval. | ||
650 | 4 | |a ghg emission inventory | |
650 | 4 | |a correlation of emissions | |
650 | 4 | |a confidence interval for emissions | |
650 | 4 | |a emission errors | |
650 | 4 | |a esg accounting | |
650 | 4 | |a carbon accounting | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Gleice G. Rodrigues |e verfasserin |4 aut | |
700 | 0 | |a Weber A. N. Amaral |e verfasserin |4 aut | |
700 | 0 | |a Fernanda Leonardis |e verfasserin |4 aut | |
700 | 0 | |a Arthur Covatti |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Carbon Management |d Taylor & Francis Group, 2022 |g 13(2022), 1, Seite 310-320 |w (DE-627)644741066 |w (DE-600)2590249-0 |x 17583012 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2022 |g number:1 |g pages:310-320 |
856 | 4 | 0 | |u https://doi.org/10.1080/17583004.2022.2086486 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/97539f41a6d94c068d0fc8cfeb3ec74d |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1080/17583004.2022.2086486 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1758-3004 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1758-3012 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2022 |e 1 |h 310-320 |
author_variant |
e c m ecm g g r ggr w a n a wana f l fl a c ac |
---|---|
matchkey_str |
article:17583012:2022----::poeueosiaeaineadoaineoggm |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
GE |
publishDate |
2022 |
allfields |
10.1080/17583004.2022.2086486 doi (DE-627)DOAJ096625465 (DE-599)DOAJ97539f41a6d94c068d0fc8cfeb3ec74d DE-627 ger DE-627 rakwb eng GE1-350 Ernesto C. Marujo verfasserin aut A procedure to estimate variances and covariances on GHG emissions and inventories 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study presents a method for estimating the mean and variance of total CO2 emission from multiple sources used by a company. The procedure is also readily applicable to estimate these parameters for other greenhouse gases (GHG) inventories and to determine a reliable confidence interval for the total emissions of GHG of a company. Our method represents an improvement over the existing methods that assume independence between emissions from different sources. The foundation of the proposed method is an iterative decomposition process applied to analyze the emissions correlations among activities, raw materials and other inputs used in a company’s operations. From these correlations and the individual estimates of means and variances of emission factors, we show how to generate a confidence interval for the total GHG emission of a company. The application of the method is illustrated for a hypothetical manufacturing plant of bicycles and car toys, whose total CO2 emission is estimated within a precise confidence interval. ghg emission inventory correlation of emissions confidence interval for emissions emission errors esg accounting carbon accounting Environmental sciences Gleice G. Rodrigues verfasserin aut Weber A. N. Amaral verfasserin aut Fernanda Leonardis verfasserin aut Arthur Covatti verfasserin aut In Carbon Management Taylor & Francis Group, 2022 13(2022), 1, Seite 310-320 (DE-627)644741066 (DE-600)2590249-0 17583012 nnns volume:13 year:2022 number:1 pages:310-320 https://doi.org/10.1080/17583004.2022.2086486 kostenfrei https://doaj.org/article/97539f41a6d94c068d0fc8cfeb3ec74d kostenfrei http://dx.doi.org/10.1080/17583004.2022.2086486 kostenfrei https://doaj.org/toc/1758-3004 Journal toc kostenfrei https://doaj.org/toc/1758-3012 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2026 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 1 310-320 |
spelling |
10.1080/17583004.2022.2086486 doi (DE-627)DOAJ096625465 (DE-599)DOAJ97539f41a6d94c068d0fc8cfeb3ec74d DE-627 ger DE-627 rakwb eng GE1-350 Ernesto C. Marujo verfasserin aut A procedure to estimate variances and covariances on GHG emissions and inventories 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study presents a method for estimating the mean and variance of total CO2 emission from multiple sources used by a company. The procedure is also readily applicable to estimate these parameters for other greenhouse gases (GHG) inventories and to determine a reliable confidence interval for the total emissions of GHG of a company. Our method represents an improvement over the existing methods that assume independence between emissions from different sources. The foundation of the proposed method is an iterative decomposition process applied to analyze the emissions correlations among activities, raw materials and other inputs used in a company’s operations. From these correlations and the individual estimates of means and variances of emission factors, we show how to generate a confidence interval for the total GHG emission of a company. The application of the method is illustrated for a hypothetical manufacturing plant of bicycles and car toys, whose total CO2 emission is estimated within a precise confidence interval. ghg emission inventory correlation of emissions confidence interval for emissions emission errors esg accounting carbon accounting Environmental sciences Gleice G. Rodrigues verfasserin aut Weber A. N. Amaral verfasserin aut Fernanda Leonardis verfasserin aut Arthur Covatti verfasserin aut In Carbon Management Taylor & Francis Group, 2022 13(2022), 1, Seite 310-320 (DE-627)644741066 (DE-600)2590249-0 17583012 nnns volume:13 year:2022 number:1 pages:310-320 https://doi.org/10.1080/17583004.2022.2086486 kostenfrei https://doaj.org/article/97539f41a6d94c068d0fc8cfeb3ec74d kostenfrei http://dx.doi.org/10.1080/17583004.2022.2086486 kostenfrei https://doaj.org/toc/1758-3004 Journal toc kostenfrei https://doaj.org/toc/1758-3012 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2026 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 1 310-320 |
allfields_unstemmed |
10.1080/17583004.2022.2086486 doi (DE-627)DOAJ096625465 (DE-599)DOAJ97539f41a6d94c068d0fc8cfeb3ec74d DE-627 ger DE-627 rakwb eng GE1-350 Ernesto C. Marujo verfasserin aut A procedure to estimate variances and covariances on GHG emissions and inventories 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study presents a method for estimating the mean and variance of total CO2 emission from multiple sources used by a company. The procedure is also readily applicable to estimate these parameters for other greenhouse gases (GHG) inventories and to determine a reliable confidence interval for the total emissions of GHG of a company. Our method represents an improvement over the existing methods that assume independence between emissions from different sources. The foundation of the proposed method is an iterative decomposition process applied to analyze the emissions correlations among activities, raw materials and other inputs used in a company’s operations. From these correlations and the individual estimates of means and variances of emission factors, we show how to generate a confidence interval for the total GHG emission of a company. The application of the method is illustrated for a hypothetical manufacturing plant of bicycles and car toys, whose total CO2 emission is estimated within a precise confidence interval. ghg emission inventory correlation of emissions confidence interval for emissions emission errors esg accounting carbon accounting Environmental sciences Gleice G. Rodrigues verfasserin aut Weber A. N. Amaral verfasserin aut Fernanda Leonardis verfasserin aut Arthur Covatti verfasserin aut In Carbon Management Taylor & Francis Group, 2022 13(2022), 1, Seite 310-320 (DE-627)644741066 (DE-600)2590249-0 17583012 nnns volume:13 year:2022 number:1 pages:310-320 https://doi.org/10.1080/17583004.2022.2086486 kostenfrei https://doaj.org/article/97539f41a6d94c068d0fc8cfeb3ec74d kostenfrei http://dx.doi.org/10.1080/17583004.2022.2086486 kostenfrei https://doaj.org/toc/1758-3004 Journal toc kostenfrei https://doaj.org/toc/1758-3012 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2026 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 1 310-320 |
allfieldsGer |
10.1080/17583004.2022.2086486 doi (DE-627)DOAJ096625465 (DE-599)DOAJ97539f41a6d94c068d0fc8cfeb3ec74d DE-627 ger DE-627 rakwb eng GE1-350 Ernesto C. Marujo verfasserin aut A procedure to estimate variances and covariances on GHG emissions and inventories 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study presents a method for estimating the mean and variance of total CO2 emission from multiple sources used by a company. The procedure is also readily applicable to estimate these parameters for other greenhouse gases (GHG) inventories and to determine a reliable confidence interval for the total emissions of GHG of a company. Our method represents an improvement over the existing methods that assume independence between emissions from different sources. The foundation of the proposed method is an iterative decomposition process applied to analyze the emissions correlations among activities, raw materials and other inputs used in a company’s operations. From these correlations and the individual estimates of means and variances of emission factors, we show how to generate a confidence interval for the total GHG emission of a company. The application of the method is illustrated for a hypothetical manufacturing plant of bicycles and car toys, whose total CO2 emission is estimated within a precise confidence interval. ghg emission inventory correlation of emissions confidence interval for emissions emission errors esg accounting carbon accounting Environmental sciences Gleice G. Rodrigues verfasserin aut Weber A. N. Amaral verfasserin aut Fernanda Leonardis verfasserin aut Arthur Covatti verfasserin aut In Carbon Management Taylor & Francis Group, 2022 13(2022), 1, Seite 310-320 (DE-627)644741066 (DE-600)2590249-0 17583012 nnns volume:13 year:2022 number:1 pages:310-320 https://doi.org/10.1080/17583004.2022.2086486 kostenfrei https://doaj.org/article/97539f41a6d94c068d0fc8cfeb3ec74d kostenfrei http://dx.doi.org/10.1080/17583004.2022.2086486 kostenfrei https://doaj.org/toc/1758-3004 Journal toc kostenfrei https://doaj.org/toc/1758-3012 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2026 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 1 310-320 |
allfieldsSound |
10.1080/17583004.2022.2086486 doi (DE-627)DOAJ096625465 (DE-599)DOAJ97539f41a6d94c068d0fc8cfeb3ec74d DE-627 ger DE-627 rakwb eng GE1-350 Ernesto C. Marujo verfasserin aut A procedure to estimate variances and covariances on GHG emissions and inventories 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study presents a method for estimating the mean and variance of total CO2 emission from multiple sources used by a company. The procedure is also readily applicable to estimate these parameters for other greenhouse gases (GHG) inventories and to determine a reliable confidence interval for the total emissions of GHG of a company. Our method represents an improvement over the existing methods that assume independence between emissions from different sources. The foundation of the proposed method is an iterative decomposition process applied to analyze the emissions correlations among activities, raw materials and other inputs used in a company’s operations. From these correlations and the individual estimates of means and variances of emission factors, we show how to generate a confidence interval for the total GHG emission of a company. The application of the method is illustrated for a hypothetical manufacturing plant of bicycles and car toys, whose total CO2 emission is estimated within a precise confidence interval. ghg emission inventory correlation of emissions confidence interval for emissions emission errors esg accounting carbon accounting Environmental sciences Gleice G. Rodrigues verfasserin aut Weber A. N. Amaral verfasserin aut Fernanda Leonardis verfasserin aut Arthur Covatti verfasserin aut In Carbon Management Taylor & Francis Group, 2022 13(2022), 1, Seite 310-320 (DE-627)644741066 (DE-600)2590249-0 17583012 nnns volume:13 year:2022 number:1 pages:310-320 https://doi.org/10.1080/17583004.2022.2086486 kostenfrei https://doaj.org/article/97539f41a6d94c068d0fc8cfeb3ec74d kostenfrei http://dx.doi.org/10.1080/17583004.2022.2086486 kostenfrei https://doaj.org/toc/1758-3004 Journal toc kostenfrei https://doaj.org/toc/1758-3012 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2026 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 1 310-320 |
language |
English |
source |
In Carbon Management 13(2022), 1, Seite 310-320 volume:13 year:2022 number:1 pages:310-320 |
sourceStr |
In Carbon Management 13(2022), 1, Seite 310-320 volume:13 year:2022 number:1 pages:310-320 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
ghg emission inventory correlation of emissions confidence interval for emissions emission errors esg accounting carbon accounting Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Carbon Management |
authorswithroles_txt_mv |
Ernesto C. Marujo @@aut@@ Gleice G. Rodrigues @@aut@@ Weber A. N. Amaral @@aut@@ Fernanda Leonardis @@aut@@ Arthur Covatti @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
644741066 |
id |
DOAJ096625465 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096625465</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413154020.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/17583004.2022.2086486</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096625465</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ97539f41a6d94c068d0fc8cfeb3ec74d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ernesto C. Marujo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A procedure to estimate variances and covariances on GHG emissions and inventories</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study presents a method for estimating the mean and variance of total CO2 emission from multiple sources used by a company. The procedure is also readily applicable to estimate these parameters for other greenhouse gases (GHG) inventories and to determine a reliable confidence interval for the total emissions of GHG of a company. Our method represents an improvement over the existing methods that assume independence between emissions from different sources. The foundation of the proposed method is an iterative decomposition process applied to analyze the emissions correlations among activities, raw materials and other inputs used in a company’s operations. From these correlations and the individual estimates of means and variances of emission factors, we show how to generate a confidence interval for the total GHG emission of a company. The application of the method is illustrated for a hypothetical manufacturing plant of bicycles and car toys, whose total CO2 emission is estimated within a precise confidence interval.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ghg emission inventory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">correlation of emissions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">confidence interval for emissions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">emission errors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">esg accounting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">carbon accounting</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gleice G. Rodrigues</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weber A. N. Amaral</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fernanda Leonardis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arthur Covatti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Carbon Management</subfield><subfield code="d">Taylor & Francis Group, 2022</subfield><subfield code="g">13(2022), 1, Seite 310-320</subfield><subfield code="w">(DE-627)644741066</subfield><subfield code="w">(DE-600)2590249-0</subfield><subfield code="x">17583012</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:310-320</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/17583004.2022.2086486</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/97539f41a6d94c068d0fc8cfeb3ec74d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1080/17583004.2022.2086486</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1758-3004</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1758-3012</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">310-320</subfield></datafield></record></collection>
|
callnumber-first |
G - Geography, Anthropology, Recreation |
author |
Ernesto C. Marujo |
spellingShingle |
Ernesto C. Marujo misc GE1-350 misc ghg emission inventory misc correlation of emissions misc confidence interval for emissions misc emission errors misc esg accounting misc carbon accounting misc Environmental sciences A procedure to estimate variances and covariances on GHG emissions and inventories |
authorStr |
Ernesto C. Marujo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)644741066 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
GE1-350 |
illustrated |
Not Illustrated |
issn |
17583012 |
topic_title |
GE1-350 A procedure to estimate variances and covariances on GHG emissions and inventories ghg emission inventory correlation of emissions confidence interval for emissions emission errors esg accounting carbon accounting |
topic |
misc GE1-350 misc ghg emission inventory misc correlation of emissions misc confidence interval for emissions misc emission errors misc esg accounting misc carbon accounting misc Environmental sciences |
topic_unstemmed |
misc GE1-350 misc ghg emission inventory misc correlation of emissions misc confidence interval for emissions misc emission errors misc esg accounting misc carbon accounting misc Environmental sciences |
topic_browse |
misc GE1-350 misc ghg emission inventory misc correlation of emissions misc confidence interval for emissions misc emission errors misc esg accounting misc carbon accounting misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Carbon Management |
hierarchy_parent_id |
644741066 |
hierarchy_top_title |
Carbon Management |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)644741066 (DE-600)2590249-0 |
title |
A procedure to estimate variances and covariances on GHG emissions and inventories |
ctrlnum |
(DE-627)DOAJ096625465 (DE-599)DOAJ97539f41a6d94c068d0fc8cfeb3ec74d |
title_full |
A procedure to estimate variances and covariances on GHG emissions and inventories |
author_sort |
Ernesto C. Marujo |
journal |
Carbon Management |
journalStr |
Carbon Management |
callnumber-first-code |
G |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
310 |
author_browse |
Ernesto C. Marujo Gleice G. Rodrigues Weber A. N. Amaral Fernanda Leonardis Arthur Covatti |
container_volume |
13 |
class |
GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Ernesto C. Marujo |
doi_str_mv |
10.1080/17583004.2022.2086486 |
author2-role |
verfasserin |
title_sort |
procedure to estimate variances and covariances on ghg emissions and inventories |
callnumber |
GE1-350 |
title_auth |
A procedure to estimate variances and covariances on GHG emissions and inventories |
abstract |
This study presents a method for estimating the mean and variance of total CO2 emission from multiple sources used by a company. The procedure is also readily applicable to estimate these parameters for other greenhouse gases (GHG) inventories and to determine a reliable confidence interval for the total emissions of GHG of a company. Our method represents an improvement over the existing methods that assume independence between emissions from different sources. The foundation of the proposed method is an iterative decomposition process applied to analyze the emissions correlations among activities, raw materials and other inputs used in a company’s operations. From these correlations and the individual estimates of means and variances of emission factors, we show how to generate a confidence interval for the total GHG emission of a company. The application of the method is illustrated for a hypothetical manufacturing plant of bicycles and car toys, whose total CO2 emission is estimated within a precise confidence interval. |
abstractGer |
This study presents a method for estimating the mean and variance of total CO2 emission from multiple sources used by a company. The procedure is also readily applicable to estimate these parameters for other greenhouse gases (GHG) inventories and to determine a reliable confidence interval for the total emissions of GHG of a company. Our method represents an improvement over the existing methods that assume independence between emissions from different sources. The foundation of the proposed method is an iterative decomposition process applied to analyze the emissions correlations among activities, raw materials and other inputs used in a company’s operations. From these correlations and the individual estimates of means and variances of emission factors, we show how to generate a confidence interval for the total GHG emission of a company. The application of the method is illustrated for a hypothetical manufacturing plant of bicycles and car toys, whose total CO2 emission is estimated within a precise confidence interval. |
abstract_unstemmed |
This study presents a method for estimating the mean and variance of total CO2 emission from multiple sources used by a company. The procedure is also readily applicable to estimate these parameters for other greenhouse gases (GHG) inventories and to determine a reliable confidence interval for the total emissions of GHG of a company. Our method represents an improvement over the existing methods that assume independence between emissions from different sources. The foundation of the proposed method is an iterative decomposition process applied to analyze the emissions correlations among activities, raw materials and other inputs used in a company’s operations. From these correlations and the individual estimates of means and variances of emission factors, we show how to generate a confidence interval for the total GHG emission of a company. The application of the method is illustrated for a hypothetical manufacturing plant of bicycles and car toys, whose total CO2 emission is estimated within a precise confidence interval. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2026 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
A procedure to estimate variances and covariances on GHG emissions and inventories |
url |
https://doi.org/10.1080/17583004.2022.2086486 https://doaj.org/article/97539f41a6d94c068d0fc8cfeb3ec74d http://dx.doi.org/10.1080/17583004.2022.2086486 https://doaj.org/toc/1758-3004 https://doaj.org/toc/1758-3012 |
remote_bool |
true |
author2 |
Gleice G. Rodrigues Weber A. N. Amaral Fernanda Leonardis Arthur Covatti |
author2Str |
Gleice G. Rodrigues Weber A. N. Amaral Fernanda Leonardis Arthur Covatti |
ppnlink |
644741066 |
callnumber-subject |
GE - Environmental Sciences |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1080/17583004.2022.2086486 |
callnumber-a |
GE1-350 |
up_date |
2024-07-03T21:13:03.579Z |
_version_ |
1803593904113582080 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096625465</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413154020.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/17583004.2022.2086486</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096625465</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ97539f41a6d94c068d0fc8cfeb3ec74d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ernesto C. Marujo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A procedure to estimate variances and covariances on GHG emissions and inventories</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study presents a method for estimating the mean and variance of total CO2 emission from multiple sources used by a company. The procedure is also readily applicable to estimate these parameters for other greenhouse gases (GHG) inventories and to determine a reliable confidence interval for the total emissions of GHG of a company. Our method represents an improvement over the existing methods that assume independence between emissions from different sources. The foundation of the proposed method is an iterative decomposition process applied to analyze the emissions correlations among activities, raw materials and other inputs used in a company’s operations. From these correlations and the individual estimates of means and variances of emission factors, we show how to generate a confidence interval for the total GHG emission of a company. The application of the method is illustrated for a hypothetical manufacturing plant of bicycles and car toys, whose total CO2 emission is estimated within a precise confidence interval.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ghg emission inventory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">correlation of emissions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">confidence interval for emissions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">emission errors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">esg accounting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">carbon accounting</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gleice G. Rodrigues</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weber A. N. Amaral</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fernanda Leonardis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arthur Covatti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Carbon Management</subfield><subfield code="d">Taylor & Francis Group, 2022</subfield><subfield code="g">13(2022), 1, Seite 310-320</subfield><subfield code="w">(DE-627)644741066</subfield><subfield code="w">(DE-600)2590249-0</subfield><subfield code="x">17583012</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:310-320</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/17583004.2022.2086486</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/97539f41a6d94c068d0fc8cfeb3ec74d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1080/17583004.2022.2086486</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1758-3004</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1758-3012</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">310-320</subfield></datafield></record></collection>
|
score |
7.401309 |