Investigation of cystine as differential diagnostic biomarker between astrocytomas and oligodendrogliomas based on global- and targeted analysis using liquid chromatography/tandem mass spectrometric analysis
Astrocytoma and oligodendroglioma are primary brain tumors classified as gliomas. Because there is difference in the prognostic significance of the extent of resection between IDH-mutant astrocytoma and oligodendroglioma, intraoperative differential diagnosis between them provides important informat...
Ausführliche Beschreibung
Autor*in: |
Masahiro Watanabe [verfasserIn] Masamitsu Maekawa [verfasserIn] Masayuki Kanamori [verfasserIn] Minami Yamauchi [verfasserIn] Ai Abe [verfasserIn] Yoshiteru Shimoda [verfasserIn] Ryuta Saito [verfasserIn] Hidenori Endo [verfasserIn] Nariyasu Mano [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Advances in Biomarker Sciences and Technology - KeAi Communications Co. Ltd., 2021, 5(2023), Seite 76-85 |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2023 ; pages:76-85 |
Links: |
---|
DOI / URN: |
10.1016/j.abst.2023.09.001 |
---|
Katalog-ID: |
DOAJ096656948 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ096656948 | ||
003 | DE-627 | ||
005 | 20240414201331.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.abst.2023.09.001 |2 doi | |
035 | |a (DE-627)DOAJ096656948 | ||
035 | |a (DE-599)DOAJc67ba7b54682409fbf825dcc8d579135 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RA1190-1270 | |
050 | 0 | |a TP248.13-248.65 | |
050 | 0 | |a QH301-705.5 | |
100 | 0 | |a Masahiro Watanabe |e verfasserin |4 aut | |
245 | 1 | 0 | |a Investigation of cystine as differential diagnostic biomarker between astrocytomas and oligodendrogliomas based on global- and targeted analysis using liquid chromatography/tandem mass spectrometric analysis |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Astrocytoma and oligodendroglioma are primary brain tumors classified as gliomas. Because there is difference in the prognostic significance of the extent of resection between IDH-mutant astrocytoma and oligodendroglioma, intraoperative differential diagnosis between them provides important information for optimal extent of resection. Although the characteristics of genetic mutations and chromosomal aberrations in both tumors have been reported, there is no molecular diagnostic methods that is able to be used quickly and simply for differentiate the two tumors. Therefore, we aimed to search for biomarker candidates for differentiating them with metabolome analysis using liquid chromatography/tandem mass spectrometry and develop a molecular diagnostic method based on quantitative analysis. We searched for peaks that differed in two types of gliomas using global metabolomics. Next, we identified five biomarker candidates as hypoxanthine, inosine, cystine, proline and uric acid, respectively. Next, we developed an LC/MS/MS analytical method for five biomarker candidates and quantified them in brain tumors. Cystine had significantly lower amounts in astrocytomas than in oligodendrogliomas. We developed two prediction models for differentiation of the two gliomas and validated them using the separated two dataset. The logistic regression model with only cystine provided the best prediction performance. It was suggested that mass spectrometric analysis of cystine in surgery might be useful for differentiating astrocytoma and oligodendroglioma with 91.7% positive prediction value and 80.0% specificity whereas negative predictive value and sensitivity was lesser than 70%, so that further exploration for unknown metabolite is mandatory. | ||
650 | 4 | |a Biomarkers | |
650 | 4 | |a Astrocytomas | |
650 | 4 | |a Oligodendrogliomas | |
650 | 4 | |a Differentiation | |
650 | 4 | |a Prediction | |
650 | 4 | |a LC/MS | |
653 | 0 | |a Toxicology. Poisons | |
653 | 0 | |a Biotechnology | |
653 | 0 | |a Biology (General) | |
700 | 0 | |a Masamitsu Maekawa |e verfasserin |4 aut | |
700 | 0 | |a Masayuki Kanamori |e verfasserin |4 aut | |
700 | 0 | |a Minami Yamauchi |e verfasserin |4 aut | |
700 | 0 | |a Ai Abe |e verfasserin |4 aut | |
700 | 0 | |a Yoshiteru Shimoda |e verfasserin |4 aut | |
700 | 0 | |a Ryuta Saito |e verfasserin |4 aut | |
700 | 0 | |a Hidenori Endo |e verfasserin |4 aut | |
700 | 0 | |a Nariyasu Mano |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Advances in Biomarker Sciences and Technology |d KeAi Communications Co. Ltd., 2021 |g 5(2023), Seite 76-85 |w (DE-627)1682503631 |w (DE-600)3000891-8 |x 25431064 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2023 |g pages:76-85 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.abst.2023.09.001 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c67ba7b54682409fbf825dcc8d579135 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S254310642300008X |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2543-1064 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2023 |h 76-85 |
author_variant |
m w mw m m mm m k mk m y my a a aa y s ys r s rs h e he n m nm |
---|---|
matchkey_str |
article:25431064:2023----::netgtoocsiesifrniligotcimrebtensrctmsnoioedoloabsdnlblntreeaayiuigi |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
RA |
publishDate |
2023 |
allfields |
10.1016/j.abst.2023.09.001 doi (DE-627)DOAJ096656948 (DE-599)DOAJc67ba7b54682409fbf825dcc8d579135 DE-627 ger DE-627 rakwb eng RA1190-1270 TP248.13-248.65 QH301-705.5 Masahiro Watanabe verfasserin aut Investigation of cystine as differential diagnostic biomarker between astrocytomas and oligodendrogliomas based on global- and targeted analysis using liquid chromatography/tandem mass spectrometric analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Astrocytoma and oligodendroglioma are primary brain tumors classified as gliomas. Because there is difference in the prognostic significance of the extent of resection between IDH-mutant astrocytoma and oligodendroglioma, intraoperative differential diagnosis between them provides important information for optimal extent of resection. Although the characteristics of genetic mutations and chromosomal aberrations in both tumors have been reported, there is no molecular diagnostic methods that is able to be used quickly and simply for differentiate the two tumors. Therefore, we aimed to search for biomarker candidates for differentiating them with metabolome analysis using liquid chromatography/tandem mass spectrometry and develop a molecular diagnostic method based on quantitative analysis. We searched for peaks that differed in two types of gliomas using global metabolomics. Next, we identified five biomarker candidates as hypoxanthine, inosine, cystine, proline and uric acid, respectively. Next, we developed an LC/MS/MS analytical method for five biomarker candidates and quantified them in brain tumors. Cystine had significantly lower amounts in astrocytomas than in oligodendrogliomas. We developed two prediction models for differentiation of the two gliomas and validated them using the separated two dataset. The logistic regression model with only cystine provided the best prediction performance. It was suggested that mass spectrometric analysis of cystine in surgery might be useful for differentiating astrocytoma and oligodendroglioma with 91.7% positive prediction value and 80.0% specificity whereas negative predictive value and sensitivity was lesser than 70%, so that further exploration for unknown metabolite is mandatory. Biomarkers Astrocytomas Oligodendrogliomas Differentiation Prediction LC/MS Toxicology. Poisons Biotechnology Biology (General) Masamitsu Maekawa verfasserin aut Masayuki Kanamori verfasserin aut Minami Yamauchi verfasserin aut Ai Abe verfasserin aut Yoshiteru Shimoda verfasserin aut Ryuta Saito verfasserin aut Hidenori Endo verfasserin aut Nariyasu Mano verfasserin aut In Advances in Biomarker Sciences and Technology KeAi Communications Co. Ltd., 2021 5(2023), Seite 76-85 (DE-627)1682503631 (DE-600)3000891-8 25431064 nnns volume:5 year:2023 pages:76-85 https://doi.org/10.1016/j.abst.2023.09.001 kostenfrei https://doaj.org/article/c67ba7b54682409fbf825dcc8d579135 kostenfrei http://www.sciencedirect.com/science/article/pii/S254310642300008X kostenfrei https://doaj.org/toc/2543-1064 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 76-85 |
spelling |
10.1016/j.abst.2023.09.001 doi (DE-627)DOAJ096656948 (DE-599)DOAJc67ba7b54682409fbf825dcc8d579135 DE-627 ger DE-627 rakwb eng RA1190-1270 TP248.13-248.65 QH301-705.5 Masahiro Watanabe verfasserin aut Investigation of cystine as differential diagnostic biomarker between astrocytomas and oligodendrogliomas based on global- and targeted analysis using liquid chromatography/tandem mass spectrometric analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Astrocytoma and oligodendroglioma are primary brain tumors classified as gliomas. Because there is difference in the prognostic significance of the extent of resection between IDH-mutant astrocytoma and oligodendroglioma, intraoperative differential diagnosis between them provides important information for optimal extent of resection. Although the characteristics of genetic mutations and chromosomal aberrations in both tumors have been reported, there is no molecular diagnostic methods that is able to be used quickly and simply for differentiate the two tumors. Therefore, we aimed to search for biomarker candidates for differentiating them with metabolome analysis using liquid chromatography/tandem mass spectrometry and develop a molecular diagnostic method based on quantitative analysis. We searched for peaks that differed in two types of gliomas using global metabolomics. Next, we identified five biomarker candidates as hypoxanthine, inosine, cystine, proline and uric acid, respectively. Next, we developed an LC/MS/MS analytical method for five biomarker candidates and quantified them in brain tumors. Cystine had significantly lower amounts in astrocytomas than in oligodendrogliomas. We developed two prediction models for differentiation of the two gliomas and validated them using the separated two dataset. The logistic regression model with only cystine provided the best prediction performance. It was suggested that mass spectrometric analysis of cystine in surgery might be useful for differentiating astrocytoma and oligodendroglioma with 91.7% positive prediction value and 80.0% specificity whereas negative predictive value and sensitivity was lesser than 70%, so that further exploration for unknown metabolite is mandatory. Biomarkers Astrocytomas Oligodendrogliomas Differentiation Prediction LC/MS Toxicology. Poisons Biotechnology Biology (General) Masamitsu Maekawa verfasserin aut Masayuki Kanamori verfasserin aut Minami Yamauchi verfasserin aut Ai Abe verfasserin aut Yoshiteru Shimoda verfasserin aut Ryuta Saito verfasserin aut Hidenori Endo verfasserin aut Nariyasu Mano verfasserin aut In Advances in Biomarker Sciences and Technology KeAi Communications Co. Ltd., 2021 5(2023), Seite 76-85 (DE-627)1682503631 (DE-600)3000891-8 25431064 nnns volume:5 year:2023 pages:76-85 https://doi.org/10.1016/j.abst.2023.09.001 kostenfrei https://doaj.org/article/c67ba7b54682409fbf825dcc8d579135 kostenfrei http://www.sciencedirect.com/science/article/pii/S254310642300008X kostenfrei https://doaj.org/toc/2543-1064 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 76-85 |
allfields_unstemmed |
10.1016/j.abst.2023.09.001 doi (DE-627)DOAJ096656948 (DE-599)DOAJc67ba7b54682409fbf825dcc8d579135 DE-627 ger DE-627 rakwb eng RA1190-1270 TP248.13-248.65 QH301-705.5 Masahiro Watanabe verfasserin aut Investigation of cystine as differential diagnostic biomarker between astrocytomas and oligodendrogliomas based on global- and targeted analysis using liquid chromatography/tandem mass spectrometric analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Astrocytoma and oligodendroglioma are primary brain tumors classified as gliomas. Because there is difference in the prognostic significance of the extent of resection between IDH-mutant astrocytoma and oligodendroglioma, intraoperative differential diagnosis between them provides important information for optimal extent of resection. Although the characteristics of genetic mutations and chromosomal aberrations in both tumors have been reported, there is no molecular diagnostic methods that is able to be used quickly and simply for differentiate the two tumors. Therefore, we aimed to search for biomarker candidates for differentiating them with metabolome analysis using liquid chromatography/tandem mass spectrometry and develop a molecular diagnostic method based on quantitative analysis. We searched for peaks that differed in two types of gliomas using global metabolomics. Next, we identified five biomarker candidates as hypoxanthine, inosine, cystine, proline and uric acid, respectively. Next, we developed an LC/MS/MS analytical method for five biomarker candidates and quantified them in brain tumors. Cystine had significantly lower amounts in astrocytomas than in oligodendrogliomas. We developed two prediction models for differentiation of the two gliomas and validated them using the separated two dataset. The logistic regression model with only cystine provided the best prediction performance. It was suggested that mass spectrometric analysis of cystine in surgery might be useful for differentiating astrocytoma and oligodendroglioma with 91.7% positive prediction value and 80.0% specificity whereas negative predictive value and sensitivity was lesser than 70%, so that further exploration for unknown metabolite is mandatory. Biomarkers Astrocytomas Oligodendrogliomas Differentiation Prediction LC/MS Toxicology. Poisons Biotechnology Biology (General) Masamitsu Maekawa verfasserin aut Masayuki Kanamori verfasserin aut Minami Yamauchi verfasserin aut Ai Abe verfasserin aut Yoshiteru Shimoda verfasserin aut Ryuta Saito verfasserin aut Hidenori Endo verfasserin aut Nariyasu Mano verfasserin aut In Advances in Biomarker Sciences and Technology KeAi Communications Co. Ltd., 2021 5(2023), Seite 76-85 (DE-627)1682503631 (DE-600)3000891-8 25431064 nnns volume:5 year:2023 pages:76-85 https://doi.org/10.1016/j.abst.2023.09.001 kostenfrei https://doaj.org/article/c67ba7b54682409fbf825dcc8d579135 kostenfrei http://www.sciencedirect.com/science/article/pii/S254310642300008X kostenfrei https://doaj.org/toc/2543-1064 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 76-85 |
allfieldsGer |
10.1016/j.abst.2023.09.001 doi (DE-627)DOAJ096656948 (DE-599)DOAJc67ba7b54682409fbf825dcc8d579135 DE-627 ger DE-627 rakwb eng RA1190-1270 TP248.13-248.65 QH301-705.5 Masahiro Watanabe verfasserin aut Investigation of cystine as differential diagnostic biomarker between astrocytomas and oligodendrogliomas based on global- and targeted analysis using liquid chromatography/tandem mass spectrometric analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Astrocytoma and oligodendroglioma are primary brain tumors classified as gliomas. Because there is difference in the prognostic significance of the extent of resection between IDH-mutant astrocytoma and oligodendroglioma, intraoperative differential diagnosis between them provides important information for optimal extent of resection. Although the characteristics of genetic mutations and chromosomal aberrations in both tumors have been reported, there is no molecular diagnostic methods that is able to be used quickly and simply for differentiate the two tumors. Therefore, we aimed to search for biomarker candidates for differentiating them with metabolome analysis using liquid chromatography/tandem mass spectrometry and develop a molecular diagnostic method based on quantitative analysis. We searched for peaks that differed in two types of gliomas using global metabolomics. Next, we identified five biomarker candidates as hypoxanthine, inosine, cystine, proline and uric acid, respectively. Next, we developed an LC/MS/MS analytical method for five biomarker candidates and quantified them in brain tumors. Cystine had significantly lower amounts in astrocytomas than in oligodendrogliomas. We developed two prediction models for differentiation of the two gliomas and validated them using the separated two dataset. The logistic regression model with only cystine provided the best prediction performance. It was suggested that mass spectrometric analysis of cystine in surgery might be useful for differentiating astrocytoma and oligodendroglioma with 91.7% positive prediction value and 80.0% specificity whereas negative predictive value and sensitivity was lesser than 70%, so that further exploration for unknown metabolite is mandatory. Biomarkers Astrocytomas Oligodendrogliomas Differentiation Prediction LC/MS Toxicology. Poisons Biotechnology Biology (General) Masamitsu Maekawa verfasserin aut Masayuki Kanamori verfasserin aut Minami Yamauchi verfasserin aut Ai Abe verfasserin aut Yoshiteru Shimoda verfasserin aut Ryuta Saito verfasserin aut Hidenori Endo verfasserin aut Nariyasu Mano verfasserin aut In Advances in Biomarker Sciences and Technology KeAi Communications Co. Ltd., 2021 5(2023), Seite 76-85 (DE-627)1682503631 (DE-600)3000891-8 25431064 nnns volume:5 year:2023 pages:76-85 https://doi.org/10.1016/j.abst.2023.09.001 kostenfrei https://doaj.org/article/c67ba7b54682409fbf825dcc8d579135 kostenfrei http://www.sciencedirect.com/science/article/pii/S254310642300008X kostenfrei https://doaj.org/toc/2543-1064 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 76-85 |
allfieldsSound |
10.1016/j.abst.2023.09.001 doi (DE-627)DOAJ096656948 (DE-599)DOAJc67ba7b54682409fbf825dcc8d579135 DE-627 ger DE-627 rakwb eng RA1190-1270 TP248.13-248.65 QH301-705.5 Masahiro Watanabe verfasserin aut Investigation of cystine as differential diagnostic biomarker between astrocytomas and oligodendrogliomas based on global- and targeted analysis using liquid chromatography/tandem mass spectrometric analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Astrocytoma and oligodendroglioma are primary brain tumors classified as gliomas. Because there is difference in the prognostic significance of the extent of resection between IDH-mutant astrocytoma and oligodendroglioma, intraoperative differential diagnosis between them provides important information for optimal extent of resection. Although the characteristics of genetic mutations and chromosomal aberrations in both tumors have been reported, there is no molecular diagnostic methods that is able to be used quickly and simply for differentiate the two tumors. Therefore, we aimed to search for biomarker candidates for differentiating them with metabolome analysis using liquid chromatography/tandem mass spectrometry and develop a molecular diagnostic method based on quantitative analysis. We searched for peaks that differed in two types of gliomas using global metabolomics. Next, we identified five biomarker candidates as hypoxanthine, inosine, cystine, proline and uric acid, respectively. Next, we developed an LC/MS/MS analytical method for five biomarker candidates and quantified them in brain tumors. Cystine had significantly lower amounts in astrocytomas than in oligodendrogliomas. We developed two prediction models for differentiation of the two gliomas and validated them using the separated two dataset. The logistic regression model with only cystine provided the best prediction performance. It was suggested that mass spectrometric analysis of cystine in surgery might be useful for differentiating astrocytoma and oligodendroglioma with 91.7% positive prediction value and 80.0% specificity whereas negative predictive value and sensitivity was lesser than 70%, so that further exploration for unknown metabolite is mandatory. Biomarkers Astrocytomas Oligodendrogliomas Differentiation Prediction LC/MS Toxicology. Poisons Biotechnology Biology (General) Masamitsu Maekawa verfasserin aut Masayuki Kanamori verfasserin aut Minami Yamauchi verfasserin aut Ai Abe verfasserin aut Yoshiteru Shimoda verfasserin aut Ryuta Saito verfasserin aut Hidenori Endo verfasserin aut Nariyasu Mano verfasserin aut In Advances in Biomarker Sciences and Technology KeAi Communications Co. Ltd., 2021 5(2023), Seite 76-85 (DE-627)1682503631 (DE-600)3000891-8 25431064 nnns volume:5 year:2023 pages:76-85 https://doi.org/10.1016/j.abst.2023.09.001 kostenfrei https://doaj.org/article/c67ba7b54682409fbf825dcc8d579135 kostenfrei http://www.sciencedirect.com/science/article/pii/S254310642300008X kostenfrei https://doaj.org/toc/2543-1064 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 76-85 |
language |
English |
source |
In Advances in Biomarker Sciences and Technology 5(2023), Seite 76-85 volume:5 year:2023 pages:76-85 |
sourceStr |
In Advances in Biomarker Sciences and Technology 5(2023), Seite 76-85 volume:5 year:2023 pages:76-85 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Biomarkers Astrocytomas Oligodendrogliomas Differentiation Prediction LC/MS Toxicology. Poisons Biotechnology Biology (General) |
isfreeaccess_bool |
true |
container_title |
Advances in Biomarker Sciences and Technology |
authorswithroles_txt_mv |
Masahiro Watanabe @@aut@@ Masamitsu Maekawa @@aut@@ Masayuki Kanamori @@aut@@ Minami Yamauchi @@aut@@ Ai Abe @@aut@@ Yoshiteru Shimoda @@aut@@ Ryuta Saito @@aut@@ Hidenori Endo @@aut@@ Nariyasu Mano @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
1682503631 |
id |
DOAJ096656948 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ096656948</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414201331.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.abst.2023.09.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096656948</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc67ba7b54682409fbf825dcc8d579135</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RA1190-1270</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.13-248.65</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Masahiro Watanabe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigation of cystine as differential diagnostic biomarker between astrocytomas and oligodendrogliomas based on global- and targeted analysis using liquid chromatography/tandem mass spectrometric analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Astrocytoma and oligodendroglioma are primary brain tumors classified as gliomas. Because there is difference in the prognostic significance of the extent of resection between IDH-mutant astrocytoma and oligodendroglioma, intraoperative differential diagnosis between them provides important information for optimal extent of resection. Although the characteristics of genetic mutations and chromosomal aberrations in both tumors have been reported, there is no molecular diagnostic methods that is able to be used quickly and simply for differentiate the two tumors. Therefore, we aimed to search for biomarker candidates for differentiating them with metabolome analysis using liquid chromatography/tandem mass spectrometry and develop a molecular diagnostic method based on quantitative analysis. We searched for peaks that differed in two types of gliomas using global metabolomics. Next, we identified five biomarker candidates as hypoxanthine, inosine, cystine, proline and uric acid, respectively. Next, we developed an LC/MS/MS analytical method for five biomarker candidates and quantified them in brain tumors. Cystine had significantly lower amounts in astrocytomas than in oligodendrogliomas. We developed two prediction models for differentiation of the two gliomas and validated them using the separated two dataset. The logistic regression model with only cystine provided the best prediction performance. It was suggested that mass spectrometric analysis of cystine in surgery might be useful for differentiating astrocytoma and oligodendroglioma with 91.7% positive prediction value and 80.0% specificity whereas negative predictive value and sensitivity was lesser than 70%, so that further exploration for unknown metabolite is mandatory.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomarkers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astrocytomas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oligodendrogliomas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LC/MS</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Toxicology. Poisons</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Masamitsu Maekawa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Masayuki Kanamori</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Minami Yamauchi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ai Abe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yoshiteru Shimoda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ryuta Saito</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hidenori Endo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nariyasu Mano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Advances in Biomarker Sciences and Technology</subfield><subfield code="d">KeAi Communications Co. Ltd., 2021</subfield><subfield code="g">5(2023), Seite 76-85</subfield><subfield code="w">(DE-627)1682503631</subfield><subfield code="w">(DE-600)3000891-8</subfield><subfield code="x">25431064</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:76-85</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.abst.2023.09.001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c67ba7b54682409fbf825dcc8d579135</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S254310642300008X</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2543-1064</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2023</subfield><subfield code="h">76-85</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Masahiro Watanabe |
spellingShingle |
Masahiro Watanabe misc RA1190-1270 misc TP248.13-248.65 misc QH301-705.5 misc Biomarkers misc Astrocytomas misc Oligodendrogliomas misc Differentiation misc Prediction misc LC/MS misc Toxicology. Poisons misc Biotechnology misc Biology (General) Investigation of cystine as differential diagnostic biomarker between astrocytomas and oligodendrogliomas based on global- and targeted analysis using liquid chromatography/tandem mass spectrometric analysis |
authorStr |
Masahiro Watanabe |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1682503631 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RA1190-1270 |
illustrated |
Not Illustrated |
issn |
25431064 |
topic_title |
RA1190-1270 TP248.13-248.65 QH301-705.5 Investigation of cystine as differential diagnostic biomarker between astrocytomas and oligodendrogliomas based on global- and targeted analysis using liquid chromatography/tandem mass spectrometric analysis Biomarkers Astrocytomas Oligodendrogliomas Differentiation Prediction LC/MS |
topic |
misc RA1190-1270 misc TP248.13-248.65 misc QH301-705.5 misc Biomarkers misc Astrocytomas misc Oligodendrogliomas misc Differentiation misc Prediction misc LC/MS misc Toxicology. Poisons misc Biotechnology misc Biology (General) |
topic_unstemmed |
misc RA1190-1270 misc TP248.13-248.65 misc QH301-705.5 misc Biomarkers misc Astrocytomas misc Oligodendrogliomas misc Differentiation misc Prediction misc LC/MS misc Toxicology. Poisons misc Biotechnology misc Biology (General) |
topic_browse |
misc RA1190-1270 misc TP248.13-248.65 misc QH301-705.5 misc Biomarkers misc Astrocytomas misc Oligodendrogliomas misc Differentiation misc Prediction misc LC/MS misc Toxicology. Poisons misc Biotechnology misc Biology (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Advances in Biomarker Sciences and Technology |
hierarchy_parent_id |
1682503631 |
hierarchy_top_title |
Advances in Biomarker Sciences and Technology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1682503631 (DE-600)3000891-8 |
title |
Investigation of cystine as differential diagnostic biomarker between astrocytomas and oligodendrogliomas based on global- and targeted analysis using liquid chromatography/tandem mass spectrometric analysis |
ctrlnum |
(DE-627)DOAJ096656948 (DE-599)DOAJc67ba7b54682409fbf825dcc8d579135 |
title_full |
Investigation of cystine as differential diagnostic biomarker between astrocytomas and oligodendrogliomas based on global- and targeted analysis using liquid chromatography/tandem mass spectrometric analysis |
author_sort |
Masahiro Watanabe |
journal |
Advances in Biomarker Sciences and Technology |
journalStr |
Advances in Biomarker Sciences and Technology |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
76 |
author_browse |
Masahiro Watanabe Masamitsu Maekawa Masayuki Kanamori Minami Yamauchi Ai Abe Yoshiteru Shimoda Ryuta Saito Hidenori Endo Nariyasu Mano |
container_volume |
5 |
class |
RA1190-1270 TP248.13-248.65 QH301-705.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Masahiro Watanabe |
doi_str_mv |
10.1016/j.abst.2023.09.001 |
author2-role |
verfasserin |
title_sort |
investigation of cystine as differential diagnostic biomarker between astrocytomas and oligodendrogliomas based on global- and targeted analysis using liquid chromatography/tandem mass spectrometric analysis |
callnumber |
RA1190-1270 |
title_auth |
Investigation of cystine as differential diagnostic biomarker between astrocytomas and oligodendrogliomas based on global- and targeted analysis using liquid chromatography/tandem mass spectrometric analysis |
abstract |
Astrocytoma and oligodendroglioma are primary brain tumors classified as gliomas. Because there is difference in the prognostic significance of the extent of resection between IDH-mutant astrocytoma and oligodendroglioma, intraoperative differential diagnosis between them provides important information for optimal extent of resection. Although the characteristics of genetic mutations and chromosomal aberrations in both tumors have been reported, there is no molecular diagnostic methods that is able to be used quickly and simply for differentiate the two tumors. Therefore, we aimed to search for biomarker candidates for differentiating them with metabolome analysis using liquid chromatography/tandem mass spectrometry and develop a molecular diagnostic method based on quantitative analysis. We searched for peaks that differed in two types of gliomas using global metabolomics. Next, we identified five biomarker candidates as hypoxanthine, inosine, cystine, proline and uric acid, respectively. Next, we developed an LC/MS/MS analytical method for five biomarker candidates and quantified them in brain tumors. Cystine had significantly lower amounts in astrocytomas than in oligodendrogliomas. We developed two prediction models for differentiation of the two gliomas and validated them using the separated two dataset. The logistic regression model with only cystine provided the best prediction performance. It was suggested that mass spectrometric analysis of cystine in surgery might be useful for differentiating astrocytoma and oligodendroglioma with 91.7% positive prediction value and 80.0% specificity whereas negative predictive value and sensitivity was lesser than 70%, so that further exploration for unknown metabolite is mandatory. |
abstractGer |
Astrocytoma and oligodendroglioma are primary brain tumors classified as gliomas. Because there is difference in the prognostic significance of the extent of resection between IDH-mutant astrocytoma and oligodendroglioma, intraoperative differential diagnosis between them provides important information for optimal extent of resection. Although the characteristics of genetic mutations and chromosomal aberrations in both tumors have been reported, there is no molecular diagnostic methods that is able to be used quickly and simply for differentiate the two tumors. Therefore, we aimed to search for biomarker candidates for differentiating them with metabolome analysis using liquid chromatography/tandem mass spectrometry and develop a molecular diagnostic method based on quantitative analysis. We searched for peaks that differed in two types of gliomas using global metabolomics. Next, we identified five biomarker candidates as hypoxanthine, inosine, cystine, proline and uric acid, respectively. Next, we developed an LC/MS/MS analytical method for five biomarker candidates and quantified them in brain tumors. Cystine had significantly lower amounts in astrocytomas than in oligodendrogliomas. We developed two prediction models for differentiation of the two gliomas and validated them using the separated two dataset. The logistic regression model with only cystine provided the best prediction performance. It was suggested that mass spectrometric analysis of cystine in surgery might be useful for differentiating astrocytoma and oligodendroglioma with 91.7% positive prediction value and 80.0% specificity whereas negative predictive value and sensitivity was lesser than 70%, so that further exploration for unknown metabolite is mandatory. |
abstract_unstemmed |
Astrocytoma and oligodendroglioma are primary brain tumors classified as gliomas. Because there is difference in the prognostic significance of the extent of resection between IDH-mutant astrocytoma and oligodendroglioma, intraoperative differential diagnosis between them provides important information for optimal extent of resection. Although the characteristics of genetic mutations and chromosomal aberrations in both tumors have been reported, there is no molecular diagnostic methods that is able to be used quickly and simply for differentiate the two tumors. Therefore, we aimed to search for biomarker candidates for differentiating them with metabolome analysis using liquid chromatography/tandem mass spectrometry and develop a molecular diagnostic method based on quantitative analysis. We searched for peaks that differed in two types of gliomas using global metabolomics. Next, we identified five biomarker candidates as hypoxanthine, inosine, cystine, proline and uric acid, respectively. Next, we developed an LC/MS/MS analytical method for five biomarker candidates and quantified them in brain tumors. Cystine had significantly lower amounts in astrocytomas than in oligodendrogliomas. We developed two prediction models for differentiation of the two gliomas and validated them using the separated two dataset. The logistic regression model with only cystine provided the best prediction performance. It was suggested that mass spectrometric analysis of cystine in surgery might be useful for differentiating astrocytoma and oligodendroglioma with 91.7% positive prediction value and 80.0% specificity whereas negative predictive value and sensitivity was lesser than 70%, so that further exploration for unknown metabolite is mandatory. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Investigation of cystine as differential diagnostic biomarker between astrocytomas and oligodendrogliomas based on global- and targeted analysis using liquid chromatography/tandem mass spectrometric analysis |
url |
https://doi.org/10.1016/j.abst.2023.09.001 https://doaj.org/article/c67ba7b54682409fbf825dcc8d579135 http://www.sciencedirect.com/science/article/pii/S254310642300008X https://doaj.org/toc/2543-1064 |
remote_bool |
true |
author2 |
Masamitsu Maekawa Masayuki Kanamori Minami Yamauchi Ai Abe Yoshiteru Shimoda Ryuta Saito Hidenori Endo Nariyasu Mano |
author2Str |
Masamitsu Maekawa Masayuki Kanamori Minami Yamauchi Ai Abe Yoshiteru Shimoda Ryuta Saito Hidenori Endo Nariyasu Mano |
ppnlink |
1682503631 |
callnumber-subject |
RA - Public Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.abst.2023.09.001 |
callnumber-a |
RA1190-1270 |
up_date |
2024-07-03T21:22:39.300Z |
_version_ |
1803594507815485440 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ096656948</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414201331.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.abst.2023.09.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096656948</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc67ba7b54682409fbf825dcc8d579135</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RA1190-1270</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.13-248.65</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Masahiro Watanabe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigation of cystine as differential diagnostic biomarker between astrocytomas and oligodendrogliomas based on global- and targeted analysis using liquid chromatography/tandem mass spectrometric analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Astrocytoma and oligodendroglioma are primary brain tumors classified as gliomas. Because there is difference in the prognostic significance of the extent of resection between IDH-mutant astrocytoma and oligodendroglioma, intraoperative differential diagnosis between them provides important information for optimal extent of resection. Although the characteristics of genetic mutations and chromosomal aberrations in both tumors have been reported, there is no molecular diagnostic methods that is able to be used quickly and simply for differentiate the two tumors. Therefore, we aimed to search for biomarker candidates for differentiating them with metabolome analysis using liquid chromatography/tandem mass spectrometry and develop a molecular diagnostic method based on quantitative analysis. We searched for peaks that differed in two types of gliomas using global metabolomics. Next, we identified five biomarker candidates as hypoxanthine, inosine, cystine, proline and uric acid, respectively. Next, we developed an LC/MS/MS analytical method for five biomarker candidates and quantified them in brain tumors. Cystine had significantly lower amounts in astrocytomas than in oligodendrogliomas. We developed two prediction models for differentiation of the two gliomas and validated them using the separated two dataset. The logistic regression model with only cystine provided the best prediction performance. It was suggested that mass spectrometric analysis of cystine in surgery might be useful for differentiating astrocytoma and oligodendroglioma with 91.7% positive prediction value and 80.0% specificity whereas negative predictive value and sensitivity was lesser than 70%, so that further exploration for unknown metabolite is mandatory.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomarkers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astrocytomas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oligodendrogliomas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LC/MS</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Toxicology. Poisons</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Masamitsu Maekawa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Masayuki Kanamori</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Minami Yamauchi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ai Abe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yoshiteru Shimoda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ryuta Saito</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hidenori Endo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nariyasu Mano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Advances in Biomarker Sciences and Technology</subfield><subfield code="d">KeAi Communications Co. Ltd., 2021</subfield><subfield code="g">5(2023), Seite 76-85</subfield><subfield code="w">(DE-627)1682503631</subfield><subfield code="w">(DE-600)3000891-8</subfield><subfield code="x">25431064</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:76-85</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.abst.2023.09.001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c67ba7b54682409fbf825dcc8d579135</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S254310642300008X</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2543-1064</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2023</subfield><subfield code="h">76-85</subfield></datafield></record></collection>
|
score |
7.401388 |