Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries
Aqueous zinc ion batteries (AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources, low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly d...
Ausführliche Beschreibung
Autor*in: |
Sinian Yang [verfasserIn] Hongxia Du [verfasserIn] Yuting Li [verfasserIn] Xiangsi Wu [verfasserIn] Bensheng Xiao [verfasserIn] Zhangxing He [verfasserIn] Qiaobao Zhang [verfasserIn] Xianwen Wu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Green Energy & Environment - KeAi Communications Co., Ltd., 2017, 8(2023), 6, Seite 1531-1552 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2023 ; number:6 ; pages:1531-1552 |
Links: |
---|
DOI / URN: |
10.1016/j.gee.2022.08.009 |
---|
Katalog-ID: |
DOAJ096657294 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ096657294 | ||
003 | DE-627 | ||
005 | 20240413154623.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.gee.2022.08.009 |2 doi | |
035 | |a (DE-627)DOAJ096657294 | ||
035 | |a (DE-599)DOAJ363371a41db94b51afd9a23d2d7d9042 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TJ807-830 | |
050 | 0 | |a QH540-549.5 | |
100 | 0 | |a Sinian Yang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Aqueous zinc ion batteries (AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources, low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation, hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional (3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs. | ||
650 | 4 | |a Zinc ion battery | |
650 | 4 | |a Structure design of substrate materials | |
650 | 4 | |a Dendrite-free | |
650 | 4 | |a 3D Zn anode | |
653 | 0 | |a Renewable energy sources | |
653 | 0 | |a Ecology | |
700 | 0 | |a Hongxia Du |e verfasserin |4 aut | |
700 | 0 | |a Yuting Li |e verfasserin |4 aut | |
700 | 0 | |a Xiangsi Wu |e verfasserin |4 aut | |
700 | 0 | |a Bensheng Xiao |e verfasserin |4 aut | |
700 | 0 | |a Zhangxing He |e verfasserin |4 aut | |
700 | 0 | |a Qiaobao Zhang |e verfasserin |4 aut | |
700 | 0 | |a Xianwen Wu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Green Energy & Environment |d KeAi Communications Co., Ltd., 2017 |g 8(2023), 6, Seite 1531-1552 |w (DE-627)880047542 |w (DE-600)2884200-5 |x 24680257 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2023 |g number:6 |g pages:1531-1552 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.gee.2022.08.009 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/363371a41db94b51afd9a23d2d7d9042 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2468025722001315 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2468-0257 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2023 |e 6 |h 1531-1552 |
author_variant |
s y sy h d hd y l yl x w xw b x bx z h zh q z qz x w xw |
---|---|
matchkey_str |
article:24680257:2023----::dacsnhsrcueeinfusrtmtrasoznaoef |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TJ |
publishDate |
2023 |
allfields |
10.1016/j.gee.2022.08.009 doi (DE-627)DOAJ096657294 (DE-599)DOAJ363371a41db94b51afd9a23d2d7d9042 DE-627 ger DE-627 rakwb eng TJ807-830 QH540-549.5 Sinian Yang verfasserin aut Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aqueous zinc ion batteries (AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources, low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation, hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional (3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs. Zinc ion battery Structure design of substrate materials Dendrite-free 3D Zn anode Renewable energy sources Ecology Hongxia Du verfasserin aut Yuting Li verfasserin aut Xiangsi Wu verfasserin aut Bensheng Xiao verfasserin aut Zhangxing He verfasserin aut Qiaobao Zhang verfasserin aut Xianwen Wu verfasserin aut In Green Energy & Environment KeAi Communications Co., Ltd., 2017 8(2023), 6, Seite 1531-1552 (DE-627)880047542 (DE-600)2884200-5 24680257 nnns volume:8 year:2023 number:6 pages:1531-1552 https://doi.org/10.1016/j.gee.2022.08.009 kostenfrei https://doaj.org/article/363371a41db94b51afd9a23d2d7d9042 kostenfrei http://www.sciencedirect.com/science/article/pii/S2468025722001315 kostenfrei https://doaj.org/toc/2468-0257 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 6 1531-1552 |
spelling |
10.1016/j.gee.2022.08.009 doi (DE-627)DOAJ096657294 (DE-599)DOAJ363371a41db94b51afd9a23d2d7d9042 DE-627 ger DE-627 rakwb eng TJ807-830 QH540-549.5 Sinian Yang verfasserin aut Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aqueous zinc ion batteries (AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources, low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation, hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional (3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs. Zinc ion battery Structure design of substrate materials Dendrite-free 3D Zn anode Renewable energy sources Ecology Hongxia Du verfasserin aut Yuting Li verfasserin aut Xiangsi Wu verfasserin aut Bensheng Xiao verfasserin aut Zhangxing He verfasserin aut Qiaobao Zhang verfasserin aut Xianwen Wu verfasserin aut In Green Energy & Environment KeAi Communications Co., Ltd., 2017 8(2023), 6, Seite 1531-1552 (DE-627)880047542 (DE-600)2884200-5 24680257 nnns volume:8 year:2023 number:6 pages:1531-1552 https://doi.org/10.1016/j.gee.2022.08.009 kostenfrei https://doaj.org/article/363371a41db94b51afd9a23d2d7d9042 kostenfrei http://www.sciencedirect.com/science/article/pii/S2468025722001315 kostenfrei https://doaj.org/toc/2468-0257 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 6 1531-1552 |
allfields_unstemmed |
10.1016/j.gee.2022.08.009 doi (DE-627)DOAJ096657294 (DE-599)DOAJ363371a41db94b51afd9a23d2d7d9042 DE-627 ger DE-627 rakwb eng TJ807-830 QH540-549.5 Sinian Yang verfasserin aut Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aqueous zinc ion batteries (AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources, low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation, hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional (3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs. Zinc ion battery Structure design of substrate materials Dendrite-free 3D Zn anode Renewable energy sources Ecology Hongxia Du verfasserin aut Yuting Li verfasserin aut Xiangsi Wu verfasserin aut Bensheng Xiao verfasserin aut Zhangxing He verfasserin aut Qiaobao Zhang verfasserin aut Xianwen Wu verfasserin aut In Green Energy & Environment KeAi Communications Co., Ltd., 2017 8(2023), 6, Seite 1531-1552 (DE-627)880047542 (DE-600)2884200-5 24680257 nnns volume:8 year:2023 number:6 pages:1531-1552 https://doi.org/10.1016/j.gee.2022.08.009 kostenfrei https://doaj.org/article/363371a41db94b51afd9a23d2d7d9042 kostenfrei http://www.sciencedirect.com/science/article/pii/S2468025722001315 kostenfrei https://doaj.org/toc/2468-0257 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 6 1531-1552 |
allfieldsGer |
10.1016/j.gee.2022.08.009 doi (DE-627)DOAJ096657294 (DE-599)DOAJ363371a41db94b51afd9a23d2d7d9042 DE-627 ger DE-627 rakwb eng TJ807-830 QH540-549.5 Sinian Yang verfasserin aut Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aqueous zinc ion batteries (AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources, low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation, hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional (3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs. Zinc ion battery Structure design of substrate materials Dendrite-free 3D Zn anode Renewable energy sources Ecology Hongxia Du verfasserin aut Yuting Li verfasserin aut Xiangsi Wu verfasserin aut Bensheng Xiao verfasserin aut Zhangxing He verfasserin aut Qiaobao Zhang verfasserin aut Xianwen Wu verfasserin aut In Green Energy & Environment KeAi Communications Co., Ltd., 2017 8(2023), 6, Seite 1531-1552 (DE-627)880047542 (DE-600)2884200-5 24680257 nnns volume:8 year:2023 number:6 pages:1531-1552 https://doi.org/10.1016/j.gee.2022.08.009 kostenfrei https://doaj.org/article/363371a41db94b51afd9a23d2d7d9042 kostenfrei http://www.sciencedirect.com/science/article/pii/S2468025722001315 kostenfrei https://doaj.org/toc/2468-0257 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 6 1531-1552 |
allfieldsSound |
10.1016/j.gee.2022.08.009 doi (DE-627)DOAJ096657294 (DE-599)DOAJ363371a41db94b51afd9a23d2d7d9042 DE-627 ger DE-627 rakwb eng TJ807-830 QH540-549.5 Sinian Yang verfasserin aut Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aqueous zinc ion batteries (AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources, low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation, hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional (3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs. Zinc ion battery Structure design of substrate materials Dendrite-free 3D Zn anode Renewable energy sources Ecology Hongxia Du verfasserin aut Yuting Li verfasserin aut Xiangsi Wu verfasserin aut Bensheng Xiao verfasserin aut Zhangxing He verfasserin aut Qiaobao Zhang verfasserin aut Xianwen Wu verfasserin aut In Green Energy & Environment KeAi Communications Co., Ltd., 2017 8(2023), 6, Seite 1531-1552 (DE-627)880047542 (DE-600)2884200-5 24680257 nnns volume:8 year:2023 number:6 pages:1531-1552 https://doi.org/10.1016/j.gee.2022.08.009 kostenfrei https://doaj.org/article/363371a41db94b51afd9a23d2d7d9042 kostenfrei http://www.sciencedirect.com/science/article/pii/S2468025722001315 kostenfrei https://doaj.org/toc/2468-0257 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 6 1531-1552 |
language |
English |
source |
In Green Energy & Environment 8(2023), 6, Seite 1531-1552 volume:8 year:2023 number:6 pages:1531-1552 |
sourceStr |
In Green Energy & Environment 8(2023), 6, Seite 1531-1552 volume:8 year:2023 number:6 pages:1531-1552 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Zinc ion battery Structure design of substrate materials Dendrite-free 3D Zn anode Renewable energy sources Ecology |
isfreeaccess_bool |
true |
container_title |
Green Energy & Environment |
authorswithroles_txt_mv |
Sinian Yang @@aut@@ Hongxia Du @@aut@@ Yuting Li @@aut@@ Xiangsi Wu @@aut@@ Bensheng Xiao @@aut@@ Zhangxing He @@aut@@ Qiaobao Zhang @@aut@@ Xianwen Wu @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
880047542 |
id |
DOAJ096657294 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096657294</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413154623.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.gee.2022.08.009</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096657294</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ363371a41db94b51afd9a23d2d7d9042</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH540-549.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sinian Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Aqueous zinc ion batteries (AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources, low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation, hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional (3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zinc ion battery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structure design of substrate materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dendrite-free</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D Zn anode</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongxia Du</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuting Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiangsi Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bensheng Xiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhangxing He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiaobao Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xianwen Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Green Energy & Environment</subfield><subfield code="d">KeAi Communications Co., Ltd., 2017</subfield><subfield code="g">8(2023), 6, Seite 1531-1552</subfield><subfield code="w">(DE-627)880047542</subfield><subfield code="w">(DE-600)2884200-5</subfield><subfield code="x">24680257</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:1531-1552</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.gee.2022.08.009</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/363371a41db94b51afd9a23d2d7d9042</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2468025722001315</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2468-0257</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2023</subfield><subfield code="e">6</subfield><subfield code="h">1531-1552</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Sinian Yang |
spellingShingle |
Sinian Yang misc TJ807-830 misc QH540-549.5 misc Zinc ion battery misc Structure design of substrate materials misc Dendrite-free misc 3D Zn anode misc Renewable energy sources misc Ecology Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries |
authorStr |
Sinian Yang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)880047542 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TJ807-830 |
illustrated |
Not Illustrated |
issn |
24680257 |
topic_title |
TJ807-830 QH540-549.5 Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries Zinc ion battery Structure design of substrate materials Dendrite-free 3D Zn anode |
topic |
misc TJ807-830 misc QH540-549.5 misc Zinc ion battery misc Structure design of substrate materials misc Dendrite-free misc 3D Zn anode misc Renewable energy sources misc Ecology |
topic_unstemmed |
misc TJ807-830 misc QH540-549.5 misc Zinc ion battery misc Structure design of substrate materials misc Dendrite-free misc 3D Zn anode misc Renewable energy sources misc Ecology |
topic_browse |
misc TJ807-830 misc QH540-549.5 misc Zinc ion battery misc Structure design of substrate materials misc Dendrite-free misc 3D Zn anode misc Renewable energy sources misc Ecology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Green Energy & Environment |
hierarchy_parent_id |
880047542 |
hierarchy_top_title |
Green Energy & Environment |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)880047542 (DE-600)2884200-5 |
title |
Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries |
ctrlnum |
(DE-627)DOAJ096657294 (DE-599)DOAJ363371a41db94b51afd9a23d2d7d9042 |
title_full |
Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries |
author_sort |
Sinian Yang |
journal |
Green Energy & Environment |
journalStr |
Green Energy & Environment |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
1531 |
author_browse |
Sinian Yang Hongxia Du Yuting Li Xiangsi Wu Bensheng Xiao Zhangxing He Qiaobao Zhang Xianwen Wu |
container_volume |
8 |
class |
TJ807-830 QH540-549.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Sinian Yang |
doi_str_mv |
10.1016/j.gee.2022.08.009 |
author2-role |
verfasserin |
title_sort |
advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries |
callnumber |
TJ807-830 |
title_auth |
Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries |
abstract |
Aqueous zinc ion batteries (AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources, low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation, hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional (3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs. |
abstractGer |
Aqueous zinc ion batteries (AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources, low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation, hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional (3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs. |
abstract_unstemmed |
Aqueous zinc ion batteries (AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources, low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation, hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional (3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries |
url |
https://doi.org/10.1016/j.gee.2022.08.009 https://doaj.org/article/363371a41db94b51afd9a23d2d7d9042 http://www.sciencedirect.com/science/article/pii/S2468025722001315 https://doaj.org/toc/2468-0257 |
remote_bool |
true |
author2 |
Hongxia Du Yuting Li Xiangsi Wu Bensheng Xiao Zhangxing He Qiaobao Zhang Xianwen Wu |
author2Str |
Hongxia Du Yuting Li Xiangsi Wu Bensheng Xiao Zhangxing He Qiaobao Zhang Xianwen Wu |
ppnlink |
880047542 |
callnumber-subject |
TJ - Mechanical Engineering and Machinery |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.gee.2022.08.009 |
callnumber-a |
TJ807-830 |
up_date |
2024-07-03T21:22:47.458Z |
_version_ |
1803594516360331264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096657294</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413154623.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.gee.2022.08.009</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096657294</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ363371a41db94b51afd9a23d2d7d9042</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH540-549.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sinian Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Aqueous zinc ion batteries (AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources, low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation, hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional (3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zinc ion battery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structure design of substrate materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dendrite-free</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D Zn anode</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongxia Du</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuting Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiangsi Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bensheng Xiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhangxing He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiaobao Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xianwen Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Green Energy & Environment</subfield><subfield code="d">KeAi Communications Co., Ltd., 2017</subfield><subfield code="g">8(2023), 6, Seite 1531-1552</subfield><subfield code="w">(DE-627)880047542</subfield><subfield code="w">(DE-600)2884200-5</subfield><subfield code="x">24680257</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:1531-1552</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.gee.2022.08.009</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/363371a41db94b51afd9a23d2d7d9042</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2468025722001315</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2468-0257</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2023</subfield><subfield code="e">6</subfield><subfield code="h">1531-1552</subfield></datafield></record></collection>
|
score |
7.3996716 |