Further physical research about soliton structures and phase portraits in nonlinear fractional electrical transmission line model
This paper presents several novel contributions in the field of nonlinear fractional low-pass electrical transmission line model (NFLETLM). Firstly, using the modified (G′G2)-expansion method and the extended modified Jacobi elliptic expansion method, we discovered new and accurate solutions for NFL...
Ausführliche Beschreibung
Autor*in: |
Jianming Qi [verfasserIn] Qinghua Cui [verfasserIn] Le Zhang [verfasserIn] Yiqun Sun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Results in Physics - Elsevier, 2015, 53(2023), Seite 106961- |
---|---|
Übergeordnetes Werk: |
volume:53 ; year:2023 ; pages:106961- |
Links: |
---|
DOI / URN: |
10.1016/j.rinp.2023.106961 |
---|
Katalog-ID: |
DOAJ096748729 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ096748729 | ||
003 | DE-627 | ||
005 | 20240413161022.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.rinp.2023.106961 |2 doi | |
035 | |a (DE-627)DOAJ096748729 | ||
035 | |a (DE-599)DOAJ40a75243e15b4224b4d2de58316a925b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC1-999 | |
100 | 0 | |a Jianming Qi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Further physical research about soliton structures and phase portraits in nonlinear fractional electrical transmission line model |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper presents several novel contributions in the field of nonlinear fractional low-pass electrical transmission line model (NFLETLM). Firstly, using the modified (G′G2)-expansion method and the extended modified Jacobi elliptic expansion method, we discovered new and accurate solutions for NFLETLM, which have not been reported in the existing literature (Tala-Tcbuc et al. 2014; Nuruzzaman et al. 2021). These solutions, denoted as U3,U4,U7,U8,U9,U10,U13,U14 and UJ1,UJ2,UJ3,UJ4 represent novel contributions to the fields. Secondly, by utilizing computer simulations, we observed various intriguing phenomena in the wave solution graphs, such as anti-kink waves, periodic waves, intense singular periodic waves, bright singular wave solutions, multi-periodic waves, intense double periodic waves, and alternating patterns of light and shade waves. These findings shed light on previously unexplored aspects of the problem. Thirdly, through an extensive study on the newly discovered solutions, we provided a comprehensive understanding of the solitons inherent in the NFLETLM, including comparison with other derivative solutions. Our conformable fractional derivative solutions showed similarities to beta derivative solutions, distinguishing them from Riemann–Liouville derivative solutions. Lastly, we explored the phase portrait, bifurcation analysis, sensitivity, and potential chaotic behaviors of the NFLETLM, which have not been addressed in previous works (Tala-Tcbuc et al. 2014; Nuruzzaman et al. 2021). This innovative contribution expands our understanding of the NFLETLM model and uncovers new dynamics and phenomena. | ||
650 | 4 | |a Fraction order | |
650 | 4 | |a Nonlinear electrical transmission | |
650 | 4 | |a Jacobi elliptic function | |
650 | 4 | |a Exact solutions | |
650 | 4 | |a Bifurcation | |
650 | 4 | |a Chaos behaviors | |
653 | 0 | |a Physics | |
700 | 0 | |a Qinghua Cui |e verfasserin |4 aut | |
700 | 0 | |a Le Zhang |e verfasserin |4 aut | |
700 | 0 | |a Yiqun Sun |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Results in Physics |d Elsevier, 2015 |g 53(2023), Seite 106961- |w (DE-627)670211257 |w (DE-600)2631798-9 |x 22113797 |7 nnns |
773 | 1 | 8 | |g volume:53 |g year:2023 |g pages:106961- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.rinp.2023.106961 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/40a75243e15b4224b4d2de58316a925b |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2211379723007544 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2211-3797 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 53 |j 2023 |h 106961- |
author_variant |
j q jq q c qc l z lz y s ys |
---|---|
matchkey_str |
article:22113797:2023----::utepyiarsacaotoiosrcueadhsprrisnolnafatoae |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QC |
publishDate |
2023 |
allfields |
10.1016/j.rinp.2023.106961 doi (DE-627)DOAJ096748729 (DE-599)DOAJ40a75243e15b4224b4d2de58316a925b DE-627 ger DE-627 rakwb eng QC1-999 Jianming Qi verfasserin aut Further physical research about soliton structures and phase portraits in nonlinear fractional electrical transmission line model 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents several novel contributions in the field of nonlinear fractional low-pass electrical transmission line model (NFLETLM). Firstly, using the modified (G′G2)-expansion method and the extended modified Jacobi elliptic expansion method, we discovered new and accurate solutions for NFLETLM, which have not been reported in the existing literature (Tala-Tcbuc et al. 2014; Nuruzzaman et al. 2021). These solutions, denoted as U3,U4,U7,U8,U9,U10,U13,U14 and UJ1,UJ2,UJ3,UJ4 represent novel contributions to the fields. Secondly, by utilizing computer simulations, we observed various intriguing phenomena in the wave solution graphs, such as anti-kink waves, periodic waves, intense singular periodic waves, bright singular wave solutions, multi-periodic waves, intense double periodic waves, and alternating patterns of light and shade waves. These findings shed light on previously unexplored aspects of the problem. Thirdly, through an extensive study on the newly discovered solutions, we provided a comprehensive understanding of the solitons inherent in the NFLETLM, including comparison with other derivative solutions. Our conformable fractional derivative solutions showed similarities to beta derivative solutions, distinguishing them from Riemann–Liouville derivative solutions. Lastly, we explored the phase portrait, bifurcation analysis, sensitivity, and potential chaotic behaviors of the NFLETLM, which have not been addressed in previous works (Tala-Tcbuc et al. 2014; Nuruzzaman et al. 2021). This innovative contribution expands our understanding of the NFLETLM model and uncovers new dynamics and phenomena. Fraction order Nonlinear electrical transmission Jacobi elliptic function Exact solutions Bifurcation Chaos behaviors Physics Qinghua Cui verfasserin aut Le Zhang verfasserin aut Yiqun Sun verfasserin aut In Results in Physics Elsevier, 2015 53(2023), Seite 106961- (DE-627)670211257 (DE-600)2631798-9 22113797 nnns volume:53 year:2023 pages:106961- https://doi.org/10.1016/j.rinp.2023.106961 kostenfrei https://doaj.org/article/40a75243e15b4224b4d2de58316a925b kostenfrei http://www.sciencedirect.com/science/article/pii/S2211379723007544 kostenfrei https://doaj.org/toc/2211-3797 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 53 2023 106961- |
spelling |
10.1016/j.rinp.2023.106961 doi (DE-627)DOAJ096748729 (DE-599)DOAJ40a75243e15b4224b4d2de58316a925b DE-627 ger DE-627 rakwb eng QC1-999 Jianming Qi verfasserin aut Further physical research about soliton structures and phase portraits in nonlinear fractional electrical transmission line model 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents several novel contributions in the field of nonlinear fractional low-pass electrical transmission line model (NFLETLM). Firstly, using the modified (G′G2)-expansion method and the extended modified Jacobi elliptic expansion method, we discovered new and accurate solutions for NFLETLM, which have not been reported in the existing literature (Tala-Tcbuc et al. 2014; Nuruzzaman et al. 2021). These solutions, denoted as U3,U4,U7,U8,U9,U10,U13,U14 and UJ1,UJ2,UJ3,UJ4 represent novel contributions to the fields. Secondly, by utilizing computer simulations, we observed various intriguing phenomena in the wave solution graphs, such as anti-kink waves, periodic waves, intense singular periodic waves, bright singular wave solutions, multi-periodic waves, intense double periodic waves, and alternating patterns of light and shade waves. These findings shed light on previously unexplored aspects of the problem. Thirdly, through an extensive study on the newly discovered solutions, we provided a comprehensive understanding of the solitons inherent in the NFLETLM, including comparison with other derivative solutions. Our conformable fractional derivative solutions showed similarities to beta derivative solutions, distinguishing them from Riemann–Liouville derivative solutions. Lastly, we explored the phase portrait, bifurcation analysis, sensitivity, and potential chaotic behaviors of the NFLETLM, which have not been addressed in previous works (Tala-Tcbuc et al. 2014; Nuruzzaman et al. 2021). This innovative contribution expands our understanding of the NFLETLM model and uncovers new dynamics and phenomena. Fraction order Nonlinear electrical transmission Jacobi elliptic function Exact solutions Bifurcation Chaos behaviors Physics Qinghua Cui verfasserin aut Le Zhang verfasserin aut Yiqun Sun verfasserin aut In Results in Physics Elsevier, 2015 53(2023), Seite 106961- (DE-627)670211257 (DE-600)2631798-9 22113797 nnns volume:53 year:2023 pages:106961- https://doi.org/10.1016/j.rinp.2023.106961 kostenfrei https://doaj.org/article/40a75243e15b4224b4d2de58316a925b kostenfrei http://www.sciencedirect.com/science/article/pii/S2211379723007544 kostenfrei https://doaj.org/toc/2211-3797 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 53 2023 106961- |
allfields_unstemmed |
10.1016/j.rinp.2023.106961 doi (DE-627)DOAJ096748729 (DE-599)DOAJ40a75243e15b4224b4d2de58316a925b DE-627 ger DE-627 rakwb eng QC1-999 Jianming Qi verfasserin aut Further physical research about soliton structures and phase portraits in nonlinear fractional electrical transmission line model 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents several novel contributions in the field of nonlinear fractional low-pass electrical transmission line model (NFLETLM). Firstly, using the modified (G′G2)-expansion method and the extended modified Jacobi elliptic expansion method, we discovered new and accurate solutions for NFLETLM, which have not been reported in the existing literature (Tala-Tcbuc et al. 2014; Nuruzzaman et al. 2021). These solutions, denoted as U3,U4,U7,U8,U9,U10,U13,U14 and UJ1,UJ2,UJ3,UJ4 represent novel contributions to the fields. Secondly, by utilizing computer simulations, we observed various intriguing phenomena in the wave solution graphs, such as anti-kink waves, periodic waves, intense singular periodic waves, bright singular wave solutions, multi-periodic waves, intense double periodic waves, and alternating patterns of light and shade waves. These findings shed light on previously unexplored aspects of the problem. Thirdly, through an extensive study on the newly discovered solutions, we provided a comprehensive understanding of the solitons inherent in the NFLETLM, including comparison with other derivative solutions. Our conformable fractional derivative solutions showed similarities to beta derivative solutions, distinguishing them from Riemann–Liouville derivative solutions. Lastly, we explored the phase portrait, bifurcation analysis, sensitivity, and potential chaotic behaviors of the NFLETLM, which have not been addressed in previous works (Tala-Tcbuc et al. 2014; Nuruzzaman et al. 2021). This innovative contribution expands our understanding of the NFLETLM model and uncovers new dynamics and phenomena. Fraction order Nonlinear electrical transmission Jacobi elliptic function Exact solutions Bifurcation Chaos behaviors Physics Qinghua Cui verfasserin aut Le Zhang verfasserin aut Yiqun Sun verfasserin aut In Results in Physics Elsevier, 2015 53(2023), Seite 106961- (DE-627)670211257 (DE-600)2631798-9 22113797 nnns volume:53 year:2023 pages:106961- https://doi.org/10.1016/j.rinp.2023.106961 kostenfrei https://doaj.org/article/40a75243e15b4224b4d2de58316a925b kostenfrei http://www.sciencedirect.com/science/article/pii/S2211379723007544 kostenfrei https://doaj.org/toc/2211-3797 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 53 2023 106961- |
allfieldsGer |
10.1016/j.rinp.2023.106961 doi (DE-627)DOAJ096748729 (DE-599)DOAJ40a75243e15b4224b4d2de58316a925b DE-627 ger DE-627 rakwb eng QC1-999 Jianming Qi verfasserin aut Further physical research about soliton structures and phase portraits in nonlinear fractional electrical transmission line model 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents several novel contributions in the field of nonlinear fractional low-pass electrical transmission line model (NFLETLM). Firstly, using the modified (G′G2)-expansion method and the extended modified Jacobi elliptic expansion method, we discovered new and accurate solutions for NFLETLM, which have not been reported in the existing literature (Tala-Tcbuc et al. 2014; Nuruzzaman et al. 2021). These solutions, denoted as U3,U4,U7,U8,U9,U10,U13,U14 and UJ1,UJ2,UJ3,UJ4 represent novel contributions to the fields. Secondly, by utilizing computer simulations, we observed various intriguing phenomena in the wave solution graphs, such as anti-kink waves, periodic waves, intense singular periodic waves, bright singular wave solutions, multi-periodic waves, intense double periodic waves, and alternating patterns of light and shade waves. These findings shed light on previously unexplored aspects of the problem. Thirdly, through an extensive study on the newly discovered solutions, we provided a comprehensive understanding of the solitons inherent in the NFLETLM, including comparison with other derivative solutions. Our conformable fractional derivative solutions showed similarities to beta derivative solutions, distinguishing them from Riemann–Liouville derivative solutions. Lastly, we explored the phase portrait, bifurcation analysis, sensitivity, and potential chaotic behaviors of the NFLETLM, which have not been addressed in previous works (Tala-Tcbuc et al. 2014; Nuruzzaman et al. 2021). This innovative contribution expands our understanding of the NFLETLM model and uncovers new dynamics and phenomena. Fraction order Nonlinear electrical transmission Jacobi elliptic function Exact solutions Bifurcation Chaos behaviors Physics Qinghua Cui verfasserin aut Le Zhang verfasserin aut Yiqun Sun verfasserin aut In Results in Physics Elsevier, 2015 53(2023), Seite 106961- (DE-627)670211257 (DE-600)2631798-9 22113797 nnns volume:53 year:2023 pages:106961- https://doi.org/10.1016/j.rinp.2023.106961 kostenfrei https://doaj.org/article/40a75243e15b4224b4d2de58316a925b kostenfrei http://www.sciencedirect.com/science/article/pii/S2211379723007544 kostenfrei https://doaj.org/toc/2211-3797 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 53 2023 106961- |
allfieldsSound |
10.1016/j.rinp.2023.106961 doi (DE-627)DOAJ096748729 (DE-599)DOAJ40a75243e15b4224b4d2de58316a925b DE-627 ger DE-627 rakwb eng QC1-999 Jianming Qi verfasserin aut Further physical research about soliton structures and phase portraits in nonlinear fractional electrical transmission line model 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents several novel contributions in the field of nonlinear fractional low-pass electrical transmission line model (NFLETLM). Firstly, using the modified (G′G2)-expansion method and the extended modified Jacobi elliptic expansion method, we discovered new and accurate solutions for NFLETLM, which have not been reported in the existing literature (Tala-Tcbuc et al. 2014; Nuruzzaman et al. 2021). These solutions, denoted as U3,U4,U7,U8,U9,U10,U13,U14 and UJ1,UJ2,UJ3,UJ4 represent novel contributions to the fields. Secondly, by utilizing computer simulations, we observed various intriguing phenomena in the wave solution graphs, such as anti-kink waves, periodic waves, intense singular periodic waves, bright singular wave solutions, multi-periodic waves, intense double periodic waves, and alternating patterns of light and shade waves. These findings shed light on previously unexplored aspects of the problem. Thirdly, through an extensive study on the newly discovered solutions, we provided a comprehensive understanding of the solitons inherent in the NFLETLM, including comparison with other derivative solutions. Our conformable fractional derivative solutions showed similarities to beta derivative solutions, distinguishing them from Riemann–Liouville derivative solutions. Lastly, we explored the phase portrait, bifurcation analysis, sensitivity, and potential chaotic behaviors of the NFLETLM, which have not been addressed in previous works (Tala-Tcbuc et al. 2014; Nuruzzaman et al. 2021). This innovative contribution expands our understanding of the NFLETLM model and uncovers new dynamics and phenomena. Fraction order Nonlinear electrical transmission Jacobi elliptic function Exact solutions Bifurcation Chaos behaviors Physics Qinghua Cui verfasserin aut Le Zhang verfasserin aut Yiqun Sun verfasserin aut In Results in Physics Elsevier, 2015 53(2023), Seite 106961- (DE-627)670211257 (DE-600)2631798-9 22113797 nnns volume:53 year:2023 pages:106961- https://doi.org/10.1016/j.rinp.2023.106961 kostenfrei https://doaj.org/article/40a75243e15b4224b4d2de58316a925b kostenfrei http://www.sciencedirect.com/science/article/pii/S2211379723007544 kostenfrei https://doaj.org/toc/2211-3797 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 53 2023 106961- |
language |
English |
source |
In Results in Physics 53(2023), Seite 106961- volume:53 year:2023 pages:106961- |
sourceStr |
In Results in Physics 53(2023), Seite 106961- volume:53 year:2023 pages:106961- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fraction order Nonlinear electrical transmission Jacobi elliptic function Exact solutions Bifurcation Chaos behaviors Physics |
isfreeaccess_bool |
true |
container_title |
Results in Physics |
authorswithroles_txt_mv |
Jianming Qi @@aut@@ Qinghua Cui @@aut@@ Le Zhang @@aut@@ Yiqun Sun @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
670211257 |
id |
DOAJ096748729 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096748729</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413161022.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.rinp.2023.106961</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096748729</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ40a75243e15b4224b4d2de58316a925b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianming Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Further physical research about soliton structures and phase portraits in nonlinear fractional electrical transmission line model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents several novel contributions in the field of nonlinear fractional low-pass electrical transmission line model (NFLETLM). Firstly, using the modified (G′G2)-expansion method and the extended modified Jacobi elliptic expansion method, we discovered new and accurate solutions for NFLETLM, which have not been reported in the existing literature (Tala-Tcbuc et al. 2014; Nuruzzaman et al. 2021). These solutions, denoted as U3,U4,U7,U8,U9,U10,U13,U14 and UJ1,UJ2,UJ3,UJ4 represent novel contributions to the fields. Secondly, by utilizing computer simulations, we observed various intriguing phenomena in the wave solution graphs, such as anti-kink waves, periodic waves, intense singular periodic waves, bright singular wave solutions, multi-periodic waves, intense double periodic waves, and alternating patterns of light and shade waves. These findings shed light on previously unexplored aspects of the problem. Thirdly, through an extensive study on the newly discovered solutions, we provided a comprehensive understanding of the solitons inherent in the NFLETLM, including comparison with other derivative solutions. Our conformable fractional derivative solutions showed similarities to beta derivative solutions, distinguishing them from Riemann–Liouville derivative solutions. Lastly, we explored the phase portrait, bifurcation analysis, sensitivity, and potential chaotic behaviors of the NFLETLM, which have not been addressed in previous works (Tala-Tcbuc et al. 2014; Nuruzzaman et al. 2021). This innovative contribution expands our understanding of the NFLETLM model and uncovers new dynamics and phenomena.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fraction order</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear electrical transmission</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jacobi elliptic function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exact solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bifurcation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaos behaviors</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qinghua Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Le Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yiqun Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Results in Physics</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">53(2023), Seite 106961-</subfield><subfield code="w">(DE-627)670211257</subfield><subfield code="w">(DE-600)2631798-9</subfield><subfield code="x">22113797</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:106961-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.rinp.2023.106961</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/40a75243e15b4224b4d2de58316a925b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2211379723007544</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2211-3797</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2023</subfield><subfield code="h">106961-</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Jianming Qi |
spellingShingle |
Jianming Qi misc QC1-999 misc Fraction order misc Nonlinear electrical transmission misc Jacobi elliptic function misc Exact solutions misc Bifurcation misc Chaos behaviors misc Physics Further physical research about soliton structures and phase portraits in nonlinear fractional electrical transmission line model |
authorStr |
Jianming Qi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)670211257 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC1-999 |
illustrated |
Not Illustrated |
issn |
22113797 |
topic_title |
QC1-999 Further physical research about soliton structures and phase portraits in nonlinear fractional electrical transmission line model Fraction order Nonlinear electrical transmission Jacobi elliptic function Exact solutions Bifurcation Chaos behaviors |
topic |
misc QC1-999 misc Fraction order misc Nonlinear electrical transmission misc Jacobi elliptic function misc Exact solutions misc Bifurcation misc Chaos behaviors misc Physics |
topic_unstemmed |
misc QC1-999 misc Fraction order misc Nonlinear electrical transmission misc Jacobi elliptic function misc Exact solutions misc Bifurcation misc Chaos behaviors misc Physics |
topic_browse |
misc QC1-999 misc Fraction order misc Nonlinear electrical transmission misc Jacobi elliptic function misc Exact solutions misc Bifurcation misc Chaos behaviors misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Results in Physics |
hierarchy_parent_id |
670211257 |
hierarchy_top_title |
Results in Physics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)670211257 (DE-600)2631798-9 |
title |
Further physical research about soliton structures and phase portraits in nonlinear fractional electrical transmission line model |
ctrlnum |
(DE-627)DOAJ096748729 (DE-599)DOAJ40a75243e15b4224b4d2de58316a925b |
title_full |
Further physical research about soliton structures and phase portraits in nonlinear fractional electrical transmission line model |
author_sort |
Jianming Qi |
journal |
Results in Physics |
journalStr |
Results in Physics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
106961 |
author_browse |
Jianming Qi Qinghua Cui Le Zhang Yiqun Sun |
container_volume |
53 |
class |
QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Jianming Qi |
doi_str_mv |
10.1016/j.rinp.2023.106961 |
author2-role |
verfasserin |
title_sort |
further physical research about soliton structures and phase portraits in nonlinear fractional electrical transmission line model |
callnumber |
QC1-999 |
title_auth |
Further physical research about soliton structures and phase portraits in nonlinear fractional electrical transmission line model |
abstract |
This paper presents several novel contributions in the field of nonlinear fractional low-pass electrical transmission line model (NFLETLM). Firstly, using the modified (G′G2)-expansion method and the extended modified Jacobi elliptic expansion method, we discovered new and accurate solutions for NFLETLM, which have not been reported in the existing literature (Tala-Tcbuc et al. 2014; Nuruzzaman et al. 2021). These solutions, denoted as U3,U4,U7,U8,U9,U10,U13,U14 and UJ1,UJ2,UJ3,UJ4 represent novel contributions to the fields. Secondly, by utilizing computer simulations, we observed various intriguing phenomena in the wave solution graphs, such as anti-kink waves, periodic waves, intense singular periodic waves, bright singular wave solutions, multi-periodic waves, intense double periodic waves, and alternating patterns of light and shade waves. These findings shed light on previously unexplored aspects of the problem. Thirdly, through an extensive study on the newly discovered solutions, we provided a comprehensive understanding of the solitons inherent in the NFLETLM, including comparison with other derivative solutions. Our conformable fractional derivative solutions showed similarities to beta derivative solutions, distinguishing them from Riemann–Liouville derivative solutions. Lastly, we explored the phase portrait, bifurcation analysis, sensitivity, and potential chaotic behaviors of the NFLETLM, which have not been addressed in previous works (Tala-Tcbuc et al. 2014; Nuruzzaman et al. 2021). This innovative contribution expands our understanding of the NFLETLM model and uncovers new dynamics and phenomena. |
abstractGer |
This paper presents several novel contributions in the field of nonlinear fractional low-pass electrical transmission line model (NFLETLM). Firstly, using the modified (G′G2)-expansion method and the extended modified Jacobi elliptic expansion method, we discovered new and accurate solutions for NFLETLM, which have not been reported in the existing literature (Tala-Tcbuc et al. 2014; Nuruzzaman et al. 2021). These solutions, denoted as U3,U4,U7,U8,U9,U10,U13,U14 and UJ1,UJ2,UJ3,UJ4 represent novel contributions to the fields. Secondly, by utilizing computer simulations, we observed various intriguing phenomena in the wave solution graphs, such as anti-kink waves, periodic waves, intense singular periodic waves, bright singular wave solutions, multi-periodic waves, intense double periodic waves, and alternating patterns of light and shade waves. These findings shed light on previously unexplored aspects of the problem. Thirdly, through an extensive study on the newly discovered solutions, we provided a comprehensive understanding of the solitons inherent in the NFLETLM, including comparison with other derivative solutions. Our conformable fractional derivative solutions showed similarities to beta derivative solutions, distinguishing them from Riemann–Liouville derivative solutions. Lastly, we explored the phase portrait, bifurcation analysis, sensitivity, and potential chaotic behaviors of the NFLETLM, which have not been addressed in previous works (Tala-Tcbuc et al. 2014; Nuruzzaman et al. 2021). This innovative contribution expands our understanding of the NFLETLM model and uncovers new dynamics and phenomena. |
abstract_unstemmed |
This paper presents several novel contributions in the field of nonlinear fractional low-pass electrical transmission line model (NFLETLM). Firstly, using the modified (G′G2)-expansion method and the extended modified Jacobi elliptic expansion method, we discovered new and accurate solutions for NFLETLM, which have not been reported in the existing literature (Tala-Tcbuc et al. 2014; Nuruzzaman et al. 2021). These solutions, denoted as U3,U4,U7,U8,U9,U10,U13,U14 and UJ1,UJ2,UJ3,UJ4 represent novel contributions to the fields. Secondly, by utilizing computer simulations, we observed various intriguing phenomena in the wave solution graphs, such as anti-kink waves, periodic waves, intense singular periodic waves, bright singular wave solutions, multi-periodic waves, intense double periodic waves, and alternating patterns of light and shade waves. These findings shed light on previously unexplored aspects of the problem. Thirdly, through an extensive study on the newly discovered solutions, we provided a comprehensive understanding of the solitons inherent in the NFLETLM, including comparison with other derivative solutions. Our conformable fractional derivative solutions showed similarities to beta derivative solutions, distinguishing them from Riemann–Liouville derivative solutions. Lastly, we explored the phase portrait, bifurcation analysis, sensitivity, and potential chaotic behaviors of the NFLETLM, which have not been addressed in previous works (Tala-Tcbuc et al. 2014; Nuruzzaman et al. 2021). This innovative contribution expands our understanding of the NFLETLM model and uncovers new dynamics and phenomena. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Further physical research about soliton structures and phase portraits in nonlinear fractional electrical transmission line model |
url |
https://doi.org/10.1016/j.rinp.2023.106961 https://doaj.org/article/40a75243e15b4224b4d2de58316a925b http://www.sciencedirect.com/science/article/pii/S2211379723007544 https://doaj.org/toc/2211-3797 |
remote_bool |
true |
author2 |
Qinghua Cui Le Zhang Yiqun Sun |
author2Str |
Qinghua Cui Le Zhang Yiqun Sun |
ppnlink |
670211257 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.rinp.2023.106961 |
callnumber-a |
QC1-999 |
up_date |
2024-07-03T21:54:15.121Z |
_version_ |
1803596495717400576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096748729</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413161022.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.rinp.2023.106961</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096748729</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ40a75243e15b4224b4d2de58316a925b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianming Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Further physical research about soliton structures and phase portraits in nonlinear fractional electrical transmission line model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents several novel contributions in the field of nonlinear fractional low-pass electrical transmission line model (NFLETLM). Firstly, using the modified (G′G2)-expansion method and the extended modified Jacobi elliptic expansion method, we discovered new and accurate solutions for NFLETLM, which have not been reported in the existing literature (Tala-Tcbuc et al. 2014; Nuruzzaman et al. 2021). These solutions, denoted as U3,U4,U7,U8,U9,U10,U13,U14 and UJ1,UJ2,UJ3,UJ4 represent novel contributions to the fields. Secondly, by utilizing computer simulations, we observed various intriguing phenomena in the wave solution graphs, such as anti-kink waves, periodic waves, intense singular periodic waves, bright singular wave solutions, multi-periodic waves, intense double periodic waves, and alternating patterns of light and shade waves. These findings shed light on previously unexplored aspects of the problem. Thirdly, through an extensive study on the newly discovered solutions, we provided a comprehensive understanding of the solitons inherent in the NFLETLM, including comparison with other derivative solutions. Our conformable fractional derivative solutions showed similarities to beta derivative solutions, distinguishing them from Riemann–Liouville derivative solutions. Lastly, we explored the phase portrait, bifurcation analysis, sensitivity, and potential chaotic behaviors of the NFLETLM, which have not been addressed in previous works (Tala-Tcbuc et al. 2014; Nuruzzaman et al. 2021). This innovative contribution expands our understanding of the NFLETLM model and uncovers new dynamics and phenomena.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fraction order</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear electrical transmission</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jacobi elliptic function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exact solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bifurcation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaos behaviors</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qinghua Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Le Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yiqun Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Results in Physics</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">53(2023), Seite 106961-</subfield><subfield code="w">(DE-627)670211257</subfield><subfield code="w">(DE-600)2631798-9</subfield><subfield code="x">22113797</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:106961-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.rinp.2023.106961</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/40a75243e15b4224b4d2de58316a925b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2211379723007544</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2211-3797</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2023</subfield><subfield code="h">106961-</subfield></datafield></record></collection>
|
score |
7.402647 |