Protective effects of GuanXinNing tablet (GXNT) on diabetic encephalopathy in zucker diabetic obesity (ZDF) rats
Abstract Background Diabetic encephalopathy (DE) is a complication of diabetes that leads to cognitive and behavioral decline. Utilizing safe and effective complementary and alternative medications for its management is a wise choice. Previous studies have shown that GuanXinNing Tablet (GXNT), an or...
Ausführliche Beschreibung
Autor*in: |
Yajing Li [verfasserIn] Jiaojiao Chen [verfasserIn] Haiye Tu [verfasserIn] Quanxin Ma [verfasserIn] Mulan Wang [verfasserIn] Jie Chen [verfasserIn] Minli Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: BMC Complementary Medicine and Therapies - BMC, 2020, 23(2023), 1, Seite 16 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2023 ; number:1 ; pages:16 |
Links: |
---|
DOI / URN: |
10.1186/s12906-023-04195-2 |
---|
Katalog-ID: |
DOAJ096799951 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ096799951 | ||
003 | DE-627 | ||
005 | 20240413162105.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12906-023-04195-2 |2 doi | |
035 | |a (DE-627)DOAJ096799951 | ||
035 | |a (DE-599)DOAJ3fb2a078ec8c4fad92bd62d8ff72997d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RZ201-999 | |
100 | 0 | |a Yajing Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a Protective effects of GuanXinNing tablet (GXNT) on diabetic encephalopathy in zucker diabetic obesity (ZDF) rats |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Background Diabetic encephalopathy (DE) is a complication of diabetes that leads to cognitive and behavioral decline. Utilizing safe and effective complementary and alternative medications for its management is a wise choice. Previous studies have shown that GuanXinNing Tablet (GXNT), an oral preparation primarily derived from two Chinese herbs, Salvia miltiorrhiza Bge. and Ligusticum chuanxiong Hort., exerts a beneficial neuroprotective effect. In this study, we explored the protective effects of GXNT on DE in male Zucker diabetic fatty (ZDF) rats induced by a high-fat diet, aiming to ascertain its significance and potential mechanisms. Methods ZDF rats were induced to develop type 2 diabetes (T2DM) with DE by a high-fat diet and treated with GXNT for 8 weeks until they were 20 weeks old. Throughout the experiment, the animals’ vital parameters, such as body weight, were continuously monitored. Cognitive function was evaluated using the Y maze test. Biochemical kits were employed to analyze blood glucose, lipids, and vascular endothelial-related factors. Cerebrovascular lesions were assessed using magnetic resonance angiography (MRA) imaging. Brain lesions were evaluated using hematoxylin and eosin (H&E) staining and ultrastructure observation. IgG and albumin (ALB) leakage were detected using immunofluorescence. Results GXNT demonstrated an enhancement in the overall well-being of the animals. It notably improved cognitive and behavioral abilities, as demonstrated by extended retention time in the novel heterogeneous arm during the Y-maze test. GXNT effectively regulated glucose and lipid metabolism, reducing fasting and postprandial blood glucose, glycated hemoglobin (HbA1c), and total cholesterol (TC) levels. Additionally, it exhibited a protective effect on the vascular endothelium by reducing the serum TXB2/PGI2 ratio while elevating NO and PGI2 levels. Moreover, GXNT ameliorated stenosis and occlusion in cerebral vessel branches, increased the number of microvessels and neurons around the hippocampus, and improved microvascular occlusion in the cerebral cortex, along with addressing perivascular cell abnormalities. Immunofluorescence staining showed a decrease in the fluorescence intensity of IgG and ALB in the cerebral cortex. Conclusions GXNT demonstrated a highly satisfactory protective effect on DE in ZDF rats. Its mechanism of action could be based on the regulation of glucolipid metabolism and its protective effect on the vascular endothelium. | ||
650 | 4 | |a GuanXinNing Tablet (GXNT) | |
650 | 4 | |a Diabetic Encephalopathy (DE) | |
650 | 4 | |a Zucker Diabetic fatty (ZDF) rats | |
650 | 4 | |a Neuroprotection | |
650 | 4 | |a Endothelial protection | |
650 | 4 | |a Glycolipid Metabolism Regulation | |
653 | 0 | |a Other systems of medicine | |
700 | 0 | |a Jiaojiao Chen |e verfasserin |4 aut | |
700 | 0 | |a Haiye Tu |e verfasserin |4 aut | |
700 | 0 | |a Quanxin Ma |e verfasserin |4 aut | |
700 | 0 | |a Mulan Wang |e verfasserin |4 aut | |
700 | 0 | |a Jie Chen |e verfasserin |4 aut | |
700 | 0 | |a Minli Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t BMC Complementary Medicine and Therapies |d BMC, 2020 |g 23(2023), 1, Seite 16 |w (DE-627)1733118462 |x 26627671 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2023 |g number:1 |g pages:16 |
856 | 4 | 0 | |u https://doi.org/10.1186/s12906-023-04195-2 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3fb2a078ec8c4fad92bd62d8ff72997d |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1186/s12906-023-04195-2 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2662-7671 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 23 |j 2023 |e 1 |h 16 |
author_variant |
y l yl j c jc h t ht q m qm m w mw j c jc m c mc |
---|---|
matchkey_str |
article:26627671:2023----::rtciefetogaxnigaltxtnibtcnehlptynu |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
RZ |
publishDate |
2023 |
allfields |
10.1186/s12906-023-04195-2 doi (DE-627)DOAJ096799951 (DE-599)DOAJ3fb2a078ec8c4fad92bd62d8ff72997d DE-627 ger DE-627 rakwb eng RZ201-999 Yajing Li verfasserin aut Protective effects of GuanXinNing tablet (GXNT) on diabetic encephalopathy in zucker diabetic obesity (ZDF) rats 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Diabetic encephalopathy (DE) is a complication of diabetes that leads to cognitive and behavioral decline. Utilizing safe and effective complementary and alternative medications for its management is a wise choice. Previous studies have shown that GuanXinNing Tablet (GXNT), an oral preparation primarily derived from two Chinese herbs, Salvia miltiorrhiza Bge. and Ligusticum chuanxiong Hort., exerts a beneficial neuroprotective effect. In this study, we explored the protective effects of GXNT on DE in male Zucker diabetic fatty (ZDF) rats induced by a high-fat diet, aiming to ascertain its significance and potential mechanisms. Methods ZDF rats were induced to develop type 2 diabetes (T2DM) with DE by a high-fat diet and treated with GXNT for 8 weeks until they were 20 weeks old. Throughout the experiment, the animals’ vital parameters, such as body weight, were continuously monitored. Cognitive function was evaluated using the Y maze test. Biochemical kits were employed to analyze blood glucose, lipids, and vascular endothelial-related factors. Cerebrovascular lesions were assessed using magnetic resonance angiography (MRA) imaging. Brain lesions were evaluated using hematoxylin and eosin (H&E) staining and ultrastructure observation. IgG and albumin (ALB) leakage were detected using immunofluorescence. Results GXNT demonstrated an enhancement in the overall well-being of the animals. It notably improved cognitive and behavioral abilities, as demonstrated by extended retention time in the novel heterogeneous arm during the Y-maze test. GXNT effectively regulated glucose and lipid metabolism, reducing fasting and postprandial blood glucose, glycated hemoglobin (HbA1c), and total cholesterol (TC) levels. Additionally, it exhibited a protective effect on the vascular endothelium by reducing the serum TXB2/PGI2 ratio while elevating NO and PGI2 levels. Moreover, GXNT ameliorated stenosis and occlusion in cerebral vessel branches, increased the number of microvessels and neurons around the hippocampus, and improved microvascular occlusion in the cerebral cortex, along with addressing perivascular cell abnormalities. Immunofluorescence staining showed a decrease in the fluorescence intensity of IgG and ALB in the cerebral cortex. Conclusions GXNT demonstrated a highly satisfactory protective effect on DE in ZDF rats. Its mechanism of action could be based on the regulation of glucolipid metabolism and its protective effect on the vascular endothelium. GuanXinNing Tablet (GXNT) Diabetic Encephalopathy (DE) Zucker Diabetic fatty (ZDF) rats Neuroprotection Endothelial protection Glycolipid Metabolism Regulation Other systems of medicine Jiaojiao Chen verfasserin aut Haiye Tu verfasserin aut Quanxin Ma verfasserin aut Mulan Wang verfasserin aut Jie Chen verfasserin aut Minli Chen verfasserin aut In BMC Complementary Medicine and Therapies BMC, 2020 23(2023), 1, Seite 16 (DE-627)1733118462 26627671 nnns volume:23 year:2023 number:1 pages:16 https://doi.org/10.1186/s12906-023-04195-2 kostenfrei https://doaj.org/article/3fb2a078ec8c4fad92bd62d8ff72997d kostenfrei https://doi.org/10.1186/s12906-023-04195-2 kostenfrei https://doaj.org/toc/2662-7671 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 16 |
spelling |
10.1186/s12906-023-04195-2 doi (DE-627)DOAJ096799951 (DE-599)DOAJ3fb2a078ec8c4fad92bd62d8ff72997d DE-627 ger DE-627 rakwb eng RZ201-999 Yajing Li verfasserin aut Protective effects of GuanXinNing tablet (GXNT) on diabetic encephalopathy in zucker diabetic obesity (ZDF) rats 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Diabetic encephalopathy (DE) is a complication of diabetes that leads to cognitive and behavioral decline. Utilizing safe and effective complementary and alternative medications for its management is a wise choice. Previous studies have shown that GuanXinNing Tablet (GXNT), an oral preparation primarily derived from two Chinese herbs, Salvia miltiorrhiza Bge. and Ligusticum chuanxiong Hort., exerts a beneficial neuroprotective effect. In this study, we explored the protective effects of GXNT on DE in male Zucker diabetic fatty (ZDF) rats induced by a high-fat diet, aiming to ascertain its significance and potential mechanisms. Methods ZDF rats were induced to develop type 2 diabetes (T2DM) with DE by a high-fat diet and treated with GXNT for 8 weeks until they were 20 weeks old. Throughout the experiment, the animals’ vital parameters, such as body weight, were continuously monitored. Cognitive function was evaluated using the Y maze test. Biochemical kits were employed to analyze blood glucose, lipids, and vascular endothelial-related factors. Cerebrovascular lesions were assessed using magnetic resonance angiography (MRA) imaging. Brain lesions were evaluated using hematoxylin and eosin (H&E) staining and ultrastructure observation. IgG and albumin (ALB) leakage were detected using immunofluorescence. Results GXNT demonstrated an enhancement in the overall well-being of the animals. It notably improved cognitive and behavioral abilities, as demonstrated by extended retention time in the novel heterogeneous arm during the Y-maze test. GXNT effectively regulated glucose and lipid metabolism, reducing fasting and postprandial blood glucose, glycated hemoglobin (HbA1c), and total cholesterol (TC) levels. Additionally, it exhibited a protective effect on the vascular endothelium by reducing the serum TXB2/PGI2 ratio while elevating NO and PGI2 levels. Moreover, GXNT ameliorated stenosis and occlusion in cerebral vessel branches, increased the number of microvessels and neurons around the hippocampus, and improved microvascular occlusion in the cerebral cortex, along with addressing perivascular cell abnormalities. Immunofluorescence staining showed a decrease in the fluorescence intensity of IgG and ALB in the cerebral cortex. Conclusions GXNT demonstrated a highly satisfactory protective effect on DE in ZDF rats. Its mechanism of action could be based on the regulation of glucolipid metabolism and its protective effect on the vascular endothelium. GuanXinNing Tablet (GXNT) Diabetic Encephalopathy (DE) Zucker Diabetic fatty (ZDF) rats Neuroprotection Endothelial protection Glycolipid Metabolism Regulation Other systems of medicine Jiaojiao Chen verfasserin aut Haiye Tu verfasserin aut Quanxin Ma verfasserin aut Mulan Wang verfasserin aut Jie Chen verfasserin aut Minli Chen verfasserin aut In BMC Complementary Medicine and Therapies BMC, 2020 23(2023), 1, Seite 16 (DE-627)1733118462 26627671 nnns volume:23 year:2023 number:1 pages:16 https://doi.org/10.1186/s12906-023-04195-2 kostenfrei https://doaj.org/article/3fb2a078ec8c4fad92bd62d8ff72997d kostenfrei https://doi.org/10.1186/s12906-023-04195-2 kostenfrei https://doaj.org/toc/2662-7671 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 16 |
allfields_unstemmed |
10.1186/s12906-023-04195-2 doi (DE-627)DOAJ096799951 (DE-599)DOAJ3fb2a078ec8c4fad92bd62d8ff72997d DE-627 ger DE-627 rakwb eng RZ201-999 Yajing Li verfasserin aut Protective effects of GuanXinNing tablet (GXNT) on diabetic encephalopathy in zucker diabetic obesity (ZDF) rats 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Diabetic encephalopathy (DE) is a complication of diabetes that leads to cognitive and behavioral decline. Utilizing safe and effective complementary and alternative medications for its management is a wise choice. Previous studies have shown that GuanXinNing Tablet (GXNT), an oral preparation primarily derived from two Chinese herbs, Salvia miltiorrhiza Bge. and Ligusticum chuanxiong Hort., exerts a beneficial neuroprotective effect. In this study, we explored the protective effects of GXNT on DE in male Zucker diabetic fatty (ZDF) rats induced by a high-fat diet, aiming to ascertain its significance and potential mechanisms. Methods ZDF rats were induced to develop type 2 diabetes (T2DM) with DE by a high-fat diet and treated with GXNT for 8 weeks until they were 20 weeks old. Throughout the experiment, the animals’ vital parameters, such as body weight, were continuously monitored. Cognitive function was evaluated using the Y maze test. Biochemical kits were employed to analyze blood glucose, lipids, and vascular endothelial-related factors. Cerebrovascular lesions were assessed using magnetic resonance angiography (MRA) imaging. Brain lesions were evaluated using hematoxylin and eosin (H&E) staining and ultrastructure observation. IgG and albumin (ALB) leakage were detected using immunofluorescence. Results GXNT demonstrated an enhancement in the overall well-being of the animals. It notably improved cognitive and behavioral abilities, as demonstrated by extended retention time in the novel heterogeneous arm during the Y-maze test. GXNT effectively regulated glucose and lipid metabolism, reducing fasting and postprandial blood glucose, glycated hemoglobin (HbA1c), and total cholesterol (TC) levels. Additionally, it exhibited a protective effect on the vascular endothelium by reducing the serum TXB2/PGI2 ratio while elevating NO and PGI2 levels. Moreover, GXNT ameliorated stenosis and occlusion in cerebral vessel branches, increased the number of microvessels and neurons around the hippocampus, and improved microvascular occlusion in the cerebral cortex, along with addressing perivascular cell abnormalities. Immunofluorescence staining showed a decrease in the fluorescence intensity of IgG and ALB in the cerebral cortex. Conclusions GXNT demonstrated a highly satisfactory protective effect on DE in ZDF rats. Its mechanism of action could be based on the regulation of glucolipid metabolism and its protective effect on the vascular endothelium. GuanXinNing Tablet (GXNT) Diabetic Encephalopathy (DE) Zucker Diabetic fatty (ZDF) rats Neuroprotection Endothelial protection Glycolipid Metabolism Regulation Other systems of medicine Jiaojiao Chen verfasserin aut Haiye Tu verfasserin aut Quanxin Ma verfasserin aut Mulan Wang verfasserin aut Jie Chen verfasserin aut Minli Chen verfasserin aut In BMC Complementary Medicine and Therapies BMC, 2020 23(2023), 1, Seite 16 (DE-627)1733118462 26627671 nnns volume:23 year:2023 number:1 pages:16 https://doi.org/10.1186/s12906-023-04195-2 kostenfrei https://doaj.org/article/3fb2a078ec8c4fad92bd62d8ff72997d kostenfrei https://doi.org/10.1186/s12906-023-04195-2 kostenfrei https://doaj.org/toc/2662-7671 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 16 |
allfieldsGer |
10.1186/s12906-023-04195-2 doi (DE-627)DOAJ096799951 (DE-599)DOAJ3fb2a078ec8c4fad92bd62d8ff72997d DE-627 ger DE-627 rakwb eng RZ201-999 Yajing Li verfasserin aut Protective effects of GuanXinNing tablet (GXNT) on diabetic encephalopathy in zucker diabetic obesity (ZDF) rats 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Diabetic encephalopathy (DE) is a complication of diabetes that leads to cognitive and behavioral decline. Utilizing safe and effective complementary and alternative medications for its management is a wise choice. Previous studies have shown that GuanXinNing Tablet (GXNT), an oral preparation primarily derived from two Chinese herbs, Salvia miltiorrhiza Bge. and Ligusticum chuanxiong Hort., exerts a beneficial neuroprotective effect. In this study, we explored the protective effects of GXNT on DE in male Zucker diabetic fatty (ZDF) rats induced by a high-fat diet, aiming to ascertain its significance and potential mechanisms. Methods ZDF rats were induced to develop type 2 diabetes (T2DM) with DE by a high-fat diet and treated with GXNT for 8 weeks until they were 20 weeks old. Throughout the experiment, the animals’ vital parameters, such as body weight, were continuously monitored. Cognitive function was evaluated using the Y maze test. Biochemical kits were employed to analyze blood glucose, lipids, and vascular endothelial-related factors. Cerebrovascular lesions were assessed using magnetic resonance angiography (MRA) imaging. Brain lesions were evaluated using hematoxylin and eosin (H&E) staining and ultrastructure observation. IgG and albumin (ALB) leakage were detected using immunofluorescence. Results GXNT demonstrated an enhancement in the overall well-being of the animals. It notably improved cognitive and behavioral abilities, as demonstrated by extended retention time in the novel heterogeneous arm during the Y-maze test. GXNT effectively regulated glucose and lipid metabolism, reducing fasting and postprandial blood glucose, glycated hemoglobin (HbA1c), and total cholesterol (TC) levels. Additionally, it exhibited a protective effect on the vascular endothelium by reducing the serum TXB2/PGI2 ratio while elevating NO and PGI2 levels. Moreover, GXNT ameliorated stenosis and occlusion in cerebral vessel branches, increased the number of microvessels and neurons around the hippocampus, and improved microvascular occlusion in the cerebral cortex, along with addressing perivascular cell abnormalities. Immunofluorescence staining showed a decrease in the fluorescence intensity of IgG and ALB in the cerebral cortex. Conclusions GXNT demonstrated a highly satisfactory protective effect on DE in ZDF rats. Its mechanism of action could be based on the regulation of glucolipid metabolism and its protective effect on the vascular endothelium. GuanXinNing Tablet (GXNT) Diabetic Encephalopathy (DE) Zucker Diabetic fatty (ZDF) rats Neuroprotection Endothelial protection Glycolipid Metabolism Regulation Other systems of medicine Jiaojiao Chen verfasserin aut Haiye Tu verfasserin aut Quanxin Ma verfasserin aut Mulan Wang verfasserin aut Jie Chen verfasserin aut Minli Chen verfasserin aut In BMC Complementary Medicine and Therapies BMC, 2020 23(2023), 1, Seite 16 (DE-627)1733118462 26627671 nnns volume:23 year:2023 number:1 pages:16 https://doi.org/10.1186/s12906-023-04195-2 kostenfrei https://doaj.org/article/3fb2a078ec8c4fad92bd62d8ff72997d kostenfrei https://doi.org/10.1186/s12906-023-04195-2 kostenfrei https://doaj.org/toc/2662-7671 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 16 |
allfieldsSound |
10.1186/s12906-023-04195-2 doi (DE-627)DOAJ096799951 (DE-599)DOAJ3fb2a078ec8c4fad92bd62d8ff72997d DE-627 ger DE-627 rakwb eng RZ201-999 Yajing Li verfasserin aut Protective effects of GuanXinNing tablet (GXNT) on diabetic encephalopathy in zucker diabetic obesity (ZDF) rats 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Diabetic encephalopathy (DE) is a complication of diabetes that leads to cognitive and behavioral decline. Utilizing safe and effective complementary and alternative medications for its management is a wise choice. Previous studies have shown that GuanXinNing Tablet (GXNT), an oral preparation primarily derived from two Chinese herbs, Salvia miltiorrhiza Bge. and Ligusticum chuanxiong Hort., exerts a beneficial neuroprotective effect. In this study, we explored the protective effects of GXNT on DE in male Zucker diabetic fatty (ZDF) rats induced by a high-fat diet, aiming to ascertain its significance and potential mechanisms. Methods ZDF rats were induced to develop type 2 diabetes (T2DM) with DE by a high-fat diet and treated with GXNT for 8 weeks until they were 20 weeks old. Throughout the experiment, the animals’ vital parameters, such as body weight, were continuously monitored. Cognitive function was evaluated using the Y maze test. Biochemical kits were employed to analyze blood glucose, lipids, and vascular endothelial-related factors. Cerebrovascular lesions were assessed using magnetic resonance angiography (MRA) imaging. Brain lesions were evaluated using hematoxylin and eosin (H&E) staining and ultrastructure observation. IgG and albumin (ALB) leakage were detected using immunofluorescence. Results GXNT demonstrated an enhancement in the overall well-being of the animals. It notably improved cognitive and behavioral abilities, as demonstrated by extended retention time in the novel heterogeneous arm during the Y-maze test. GXNT effectively regulated glucose and lipid metabolism, reducing fasting and postprandial blood glucose, glycated hemoglobin (HbA1c), and total cholesterol (TC) levels. Additionally, it exhibited a protective effect on the vascular endothelium by reducing the serum TXB2/PGI2 ratio while elevating NO and PGI2 levels. Moreover, GXNT ameliorated stenosis and occlusion in cerebral vessel branches, increased the number of microvessels and neurons around the hippocampus, and improved microvascular occlusion in the cerebral cortex, along with addressing perivascular cell abnormalities. Immunofluorescence staining showed a decrease in the fluorescence intensity of IgG and ALB in the cerebral cortex. Conclusions GXNT demonstrated a highly satisfactory protective effect on DE in ZDF rats. Its mechanism of action could be based on the regulation of glucolipid metabolism and its protective effect on the vascular endothelium. GuanXinNing Tablet (GXNT) Diabetic Encephalopathy (DE) Zucker Diabetic fatty (ZDF) rats Neuroprotection Endothelial protection Glycolipid Metabolism Regulation Other systems of medicine Jiaojiao Chen verfasserin aut Haiye Tu verfasserin aut Quanxin Ma verfasserin aut Mulan Wang verfasserin aut Jie Chen verfasserin aut Minli Chen verfasserin aut In BMC Complementary Medicine and Therapies BMC, 2020 23(2023), 1, Seite 16 (DE-627)1733118462 26627671 nnns volume:23 year:2023 number:1 pages:16 https://doi.org/10.1186/s12906-023-04195-2 kostenfrei https://doaj.org/article/3fb2a078ec8c4fad92bd62d8ff72997d kostenfrei https://doi.org/10.1186/s12906-023-04195-2 kostenfrei https://doaj.org/toc/2662-7671 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 16 |
language |
English |
source |
In BMC Complementary Medicine and Therapies 23(2023), 1, Seite 16 volume:23 year:2023 number:1 pages:16 |
sourceStr |
In BMC Complementary Medicine and Therapies 23(2023), 1, Seite 16 volume:23 year:2023 number:1 pages:16 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
GuanXinNing Tablet (GXNT) Diabetic Encephalopathy (DE) Zucker Diabetic fatty (ZDF) rats Neuroprotection Endothelial protection Glycolipid Metabolism Regulation Other systems of medicine |
isfreeaccess_bool |
true |
container_title |
BMC Complementary Medicine and Therapies |
authorswithroles_txt_mv |
Yajing Li @@aut@@ Jiaojiao Chen @@aut@@ Haiye Tu @@aut@@ Quanxin Ma @@aut@@ Mulan Wang @@aut@@ Jie Chen @@aut@@ Minli Chen @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
1733118462 |
id |
DOAJ096799951 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096799951</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413162105.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12906-023-04195-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096799951</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3fb2a078ec8c4fad92bd62d8ff72997d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RZ201-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yajing Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Protective effects of GuanXinNing tablet (GXNT) on diabetic encephalopathy in zucker diabetic obesity (ZDF) rats</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Diabetic encephalopathy (DE) is a complication of diabetes that leads to cognitive and behavioral decline. Utilizing safe and effective complementary and alternative medications for its management is a wise choice. Previous studies have shown that GuanXinNing Tablet (GXNT), an oral preparation primarily derived from two Chinese herbs, Salvia miltiorrhiza Bge. and Ligusticum chuanxiong Hort., exerts a beneficial neuroprotective effect. In this study, we explored the protective effects of GXNT on DE in male Zucker diabetic fatty (ZDF) rats induced by a high-fat diet, aiming to ascertain its significance and potential mechanisms. Methods ZDF rats were induced to develop type 2 diabetes (T2DM) with DE by a high-fat diet and treated with GXNT for 8 weeks until they were 20 weeks old. Throughout the experiment, the animals’ vital parameters, such as body weight, were continuously monitored. Cognitive function was evaluated using the Y maze test. Biochemical kits were employed to analyze blood glucose, lipids, and vascular endothelial-related factors. Cerebrovascular lesions were assessed using magnetic resonance angiography (MRA) imaging. Brain lesions were evaluated using hematoxylin and eosin (H&E) staining and ultrastructure observation. IgG and albumin (ALB) leakage were detected using immunofluorescence. Results GXNT demonstrated an enhancement in the overall well-being of the animals. It notably improved cognitive and behavioral abilities, as demonstrated by extended retention time in the novel heterogeneous arm during the Y-maze test. GXNT effectively regulated glucose and lipid metabolism, reducing fasting and postprandial blood glucose, glycated hemoglobin (HbA1c), and total cholesterol (TC) levels. Additionally, it exhibited a protective effect on the vascular endothelium by reducing the serum TXB2/PGI2 ratio while elevating NO and PGI2 levels. Moreover, GXNT ameliorated stenosis and occlusion in cerebral vessel branches, increased the number of microvessels and neurons around the hippocampus, and improved microvascular occlusion in the cerebral cortex, along with addressing perivascular cell abnormalities. Immunofluorescence staining showed a decrease in the fluorescence intensity of IgG and ALB in the cerebral cortex. Conclusions GXNT demonstrated a highly satisfactory protective effect on DE in ZDF rats. Its mechanism of action could be based on the regulation of glucolipid metabolism and its protective effect on the vascular endothelium.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GuanXinNing Tablet (GXNT)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diabetic Encephalopathy (DE)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zucker Diabetic fatty (ZDF) rats</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neuroprotection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Endothelial protection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glycolipid Metabolism Regulation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Other systems of medicine</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiaojiao Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haiye Tu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Quanxin Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mulan Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jie Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Minli Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Complementary Medicine and Therapies</subfield><subfield code="d">BMC, 2020</subfield><subfield code="g">23(2023), 1, Seite 16</subfield><subfield code="w">(DE-627)1733118462</subfield><subfield code="x">26627671</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12906-023-04195-2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3fb2a078ec8c4fad92bd62d8ff72997d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12906-023-04195-2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2662-7671</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">16</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Yajing Li |
spellingShingle |
Yajing Li misc RZ201-999 misc GuanXinNing Tablet (GXNT) misc Diabetic Encephalopathy (DE) misc Zucker Diabetic fatty (ZDF) rats misc Neuroprotection misc Endothelial protection misc Glycolipid Metabolism Regulation misc Other systems of medicine Protective effects of GuanXinNing tablet (GXNT) on diabetic encephalopathy in zucker diabetic obesity (ZDF) rats |
authorStr |
Yajing Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1733118462 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RZ201-999 |
illustrated |
Not Illustrated |
issn |
26627671 |
topic_title |
RZ201-999 Protective effects of GuanXinNing tablet (GXNT) on diabetic encephalopathy in zucker diabetic obesity (ZDF) rats GuanXinNing Tablet (GXNT) Diabetic Encephalopathy (DE) Zucker Diabetic fatty (ZDF) rats Neuroprotection Endothelial protection Glycolipid Metabolism Regulation |
topic |
misc RZ201-999 misc GuanXinNing Tablet (GXNT) misc Diabetic Encephalopathy (DE) misc Zucker Diabetic fatty (ZDF) rats misc Neuroprotection misc Endothelial protection misc Glycolipid Metabolism Regulation misc Other systems of medicine |
topic_unstemmed |
misc RZ201-999 misc GuanXinNing Tablet (GXNT) misc Diabetic Encephalopathy (DE) misc Zucker Diabetic fatty (ZDF) rats misc Neuroprotection misc Endothelial protection misc Glycolipid Metabolism Regulation misc Other systems of medicine |
topic_browse |
misc RZ201-999 misc GuanXinNing Tablet (GXNT) misc Diabetic Encephalopathy (DE) misc Zucker Diabetic fatty (ZDF) rats misc Neuroprotection misc Endothelial protection misc Glycolipid Metabolism Regulation misc Other systems of medicine |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC Complementary Medicine and Therapies |
hierarchy_parent_id |
1733118462 |
hierarchy_top_title |
BMC Complementary Medicine and Therapies |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1733118462 |
title |
Protective effects of GuanXinNing tablet (GXNT) on diabetic encephalopathy in zucker diabetic obesity (ZDF) rats |
ctrlnum |
(DE-627)DOAJ096799951 (DE-599)DOAJ3fb2a078ec8c4fad92bd62d8ff72997d |
title_full |
Protective effects of GuanXinNing tablet (GXNT) on diabetic encephalopathy in zucker diabetic obesity (ZDF) rats |
author_sort |
Yajing Li |
journal |
BMC Complementary Medicine and Therapies |
journalStr |
BMC Complementary Medicine and Therapies |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
16 |
author_browse |
Yajing Li Jiaojiao Chen Haiye Tu Quanxin Ma Mulan Wang Jie Chen Minli Chen |
container_volume |
23 |
class |
RZ201-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Yajing Li |
doi_str_mv |
10.1186/s12906-023-04195-2 |
author2-role |
verfasserin |
title_sort |
protective effects of guanxinning tablet (gxnt) on diabetic encephalopathy in zucker diabetic obesity (zdf) rats |
callnumber |
RZ201-999 |
title_auth |
Protective effects of GuanXinNing tablet (GXNT) on diabetic encephalopathy in zucker diabetic obesity (ZDF) rats |
abstract |
Abstract Background Diabetic encephalopathy (DE) is a complication of diabetes that leads to cognitive and behavioral decline. Utilizing safe and effective complementary and alternative medications for its management is a wise choice. Previous studies have shown that GuanXinNing Tablet (GXNT), an oral preparation primarily derived from two Chinese herbs, Salvia miltiorrhiza Bge. and Ligusticum chuanxiong Hort., exerts a beneficial neuroprotective effect. In this study, we explored the protective effects of GXNT on DE in male Zucker diabetic fatty (ZDF) rats induced by a high-fat diet, aiming to ascertain its significance and potential mechanisms. Methods ZDF rats were induced to develop type 2 diabetes (T2DM) with DE by a high-fat diet and treated with GXNT for 8 weeks until they were 20 weeks old. Throughout the experiment, the animals’ vital parameters, such as body weight, were continuously monitored. Cognitive function was evaluated using the Y maze test. Biochemical kits were employed to analyze blood glucose, lipids, and vascular endothelial-related factors. Cerebrovascular lesions were assessed using magnetic resonance angiography (MRA) imaging. Brain lesions were evaluated using hematoxylin and eosin (H&E) staining and ultrastructure observation. IgG and albumin (ALB) leakage were detected using immunofluorescence. Results GXNT demonstrated an enhancement in the overall well-being of the animals. It notably improved cognitive and behavioral abilities, as demonstrated by extended retention time in the novel heterogeneous arm during the Y-maze test. GXNT effectively regulated glucose and lipid metabolism, reducing fasting and postprandial blood glucose, glycated hemoglobin (HbA1c), and total cholesterol (TC) levels. Additionally, it exhibited a protective effect on the vascular endothelium by reducing the serum TXB2/PGI2 ratio while elevating NO and PGI2 levels. Moreover, GXNT ameliorated stenosis and occlusion in cerebral vessel branches, increased the number of microvessels and neurons around the hippocampus, and improved microvascular occlusion in the cerebral cortex, along with addressing perivascular cell abnormalities. Immunofluorescence staining showed a decrease in the fluorescence intensity of IgG and ALB in the cerebral cortex. Conclusions GXNT demonstrated a highly satisfactory protective effect on DE in ZDF rats. Its mechanism of action could be based on the regulation of glucolipid metabolism and its protective effect on the vascular endothelium. |
abstractGer |
Abstract Background Diabetic encephalopathy (DE) is a complication of diabetes that leads to cognitive and behavioral decline. Utilizing safe and effective complementary and alternative medications for its management is a wise choice. Previous studies have shown that GuanXinNing Tablet (GXNT), an oral preparation primarily derived from two Chinese herbs, Salvia miltiorrhiza Bge. and Ligusticum chuanxiong Hort., exerts a beneficial neuroprotective effect. In this study, we explored the protective effects of GXNT on DE in male Zucker diabetic fatty (ZDF) rats induced by a high-fat diet, aiming to ascertain its significance and potential mechanisms. Methods ZDF rats were induced to develop type 2 diabetes (T2DM) with DE by a high-fat diet and treated with GXNT for 8 weeks until they were 20 weeks old. Throughout the experiment, the animals’ vital parameters, such as body weight, were continuously monitored. Cognitive function was evaluated using the Y maze test. Biochemical kits were employed to analyze blood glucose, lipids, and vascular endothelial-related factors. Cerebrovascular lesions were assessed using magnetic resonance angiography (MRA) imaging. Brain lesions were evaluated using hematoxylin and eosin (H&E) staining and ultrastructure observation. IgG and albumin (ALB) leakage were detected using immunofluorescence. Results GXNT demonstrated an enhancement in the overall well-being of the animals. It notably improved cognitive and behavioral abilities, as demonstrated by extended retention time in the novel heterogeneous arm during the Y-maze test. GXNT effectively regulated glucose and lipid metabolism, reducing fasting and postprandial blood glucose, glycated hemoglobin (HbA1c), and total cholesterol (TC) levels. Additionally, it exhibited a protective effect on the vascular endothelium by reducing the serum TXB2/PGI2 ratio while elevating NO and PGI2 levels. Moreover, GXNT ameliorated stenosis and occlusion in cerebral vessel branches, increased the number of microvessels and neurons around the hippocampus, and improved microvascular occlusion in the cerebral cortex, along with addressing perivascular cell abnormalities. Immunofluorescence staining showed a decrease in the fluorescence intensity of IgG and ALB in the cerebral cortex. Conclusions GXNT demonstrated a highly satisfactory protective effect on DE in ZDF rats. Its mechanism of action could be based on the regulation of glucolipid metabolism and its protective effect on the vascular endothelium. |
abstract_unstemmed |
Abstract Background Diabetic encephalopathy (DE) is a complication of diabetes that leads to cognitive and behavioral decline. Utilizing safe and effective complementary and alternative medications for its management is a wise choice. Previous studies have shown that GuanXinNing Tablet (GXNT), an oral preparation primarily derived from two Chinese herbs, Salvia miltiorrhiza Bge. and Ligusticum chuanxiong Hort., exerts a beneficial neuroprotective effect. In this study, we explored the protective effects of GXNT on DE in male Zucker diabetic fatty (ZDF) rats induced by a high-fat diet, aiming to ascertain its significance and potential mechanisms. Methods ZDF rats were induced to develop type 2 diabetes (T2DM) with DE by a high-fat diet and treated with GXNT for 8 weeks until they were 20 weeks old. Throughout the experiment, the animals’ vital parameters, such as body weight, were continuously monitored. Cognitive function was evaluated using the Y maze test. Biochemical kits were employed to analyze blood glucose, lipids, and vascular endothelial-related factors. Cerebrovascular lesions were assessed using magnetic resonance angiography (MRA) imaging. Brain lesions were evaluated using hematoxylin and eosin (H&E) staining and ultrastructure observation. IgG and albumin (ALB) leakage were detected using immunofluorescence. Results GXNT demonstrated an enhancement in the overall well-being of the animals. It notably improved cognitive and behavioral abilities, as demonstrated by extended retention time in the novel heterogeneous arm during the Y-maze test. GXNT effectively regulated glucose and lipid metabolism, reducing fasting and postprandial blood glucose, glycated hemoglobin (HbA1c), and total cholesterol (TC) levels. Additionally, it exhibited a protective effect on the vascular endothelium by reducing the serum TXB2/PGI2 ratio while elevating NO and PGI2 levels. Moreover, GXNT ameliorated stenosis and occlusion in cerebral vessel branches, increased the number of microvessels and neurons around the hippocampus, and improved microvascular occlusion in the cerebral cortex, along with addressing perivascular cell abnormalities. Immunofluorescence staining showed a decrease in the fluorescence intensity of IgG and ALB in the cerebral cortex. Conclusions GXNT demonstrated a highly satisfactory protective effect on DE in ZDF rats. Its mechanism of action could be based on the regulation of glucolipid metabolism and its protective effect on the vascular endothelium. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Protective effects of GuanXinNing tablet (GXNT) on diabetic encephalopathy in zucker diabetic obesity (ZDF) rats |
url |
https://doi.org/10.1186/s12906-023-04195-2 https://doaj.org/article/3fb2a078ec8c4fad92bd62d8ff72997d https://doaj.org/toc/2662-7671 |
remote_bool |
true |
author2 |
Jiaojiao Chen Haiye Tu Quanxin Ma Mulan Wang Jie Chen Minli Chen |
author2Str |
Jiaojiao Chen Haiye Tu Quanxin Ma Mulan Wang Jie Chen Minli Chen |
ppnlink |
1733118462 |
callnumber-subject |
RZ - Other Systems of Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12906-023-04195-2 |
callnumber-a |
RZ201-999 |
up_date |
2024-07-03T22:10:09.842Z |
_version_ |
1803597496810733568 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096799951</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413162105.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12906-023-04195-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096799951</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3fb2a078ec8c4fad92bd62d8ff72997d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RZ201-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yajing Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Protective effects of GuanXinNing tablet (GXNT) on diabetic encephalopathy in zucker diabetic obesity (ZDF) rats</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Diabetic encephalopathy (DE) is a complication of diabetes that leads to cognitive and behavioral decline. Utilizing safe and effective complementary and alternative medications for its management is a wise choice. Previous studies have shown that GuanXinNing Tablet (GXNT), an oral preparation primarily derived from two Chinese herbs, Salvia miltiorrhiza Bge. and Ligusticum chuanxiong Hort., exerts a beneficial neuroprotective effect. In this study, we explored the protective effects of GXNT on DE in male Zucker diabetic fatty (ZDF) rats induced by a high-fat diet, aiming to ascertain its significance and potential mechanisms. Methods ZDF rats were induced to develop type 2 diabetes (T2DM) with DE by a high-fat diet and treated with GXNT for 8 weeks until they were 20 weeks old. Throughout the experiment, the animals’ vital parameters, such as body weight, were continuously monitored. Cognitive function was evaluated using the Y maze test. Biochemical kits were employed to analyze blood glucose, lipids, and vascular endothelial-related factors. Cerebrovascular lesions were assessed using magnetic resonance angiography (MRA) imaging. Brain lesions were evaluated using hematoxylin and eosin (H&E) staining and ultrastructure observation. IgG and albumin (ALB) leakage were detected using immunofluorescence. Results GXNT demonstrated an enhancement in the overall well-being of the animals. It notably improved cognitive and behavioral abilities, as demonstrated by extended retention time in the novel heterogeneous arm during the Y-maze test. GXNT effectively regulated glucose and lipid metabolism, reducing fasting and postprandial blood glucose, glycated hemoglobin (HbA1c), and total cholesterol (TC) levels. Additionally, it exhibited a protective effect on the vascular endothelium by reducing the serum TXB2/PGI2 ratio while elevating NO and PGI2 levels. Moreover, GXNT ameliorated stenosis and occlusion in cerebral vessel branches, increased the number of microvessels and neurons around the hippocampus, and improved microvascular occlusion in the cerebral cortex, along with addressing perivascular cell abnormalities. Immunofluorescence staining showed a decrease in the fluorescence intensity of IgG and ALB in the cerebral cortex. Conclusions GXNT demonstrated a highly satisfactory protective effect on DE in ZDF rats. Its mechanism of action could be based on the regulation of glucolipid metabolism and its protective effect on the vascular endothelium.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GuanXinNing Tablet (GXNT)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diabetic Encephalopathy (DE)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zucker Diabetic fatty (ZDF) rats</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neuroprotection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Endothelial protection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glycolipid Metabolism Regulation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Other systems of medicine</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiaojiao Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haiye Tu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Quanxin Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mulan Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jie Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Minli Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Complementary Medicine and Therapies</subfield><subfield code="d">BMC, 2020</subfield><subfield code="g">23(2023), 1, Seite 16</subfield><subfield code="w">(DE-627)1733118462</subfield><subfield code="x">26627671</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12906-023-04195-2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3fb2a078ec8c4fad92bd62d8ff72997d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12906-023-04195-2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2662-7671</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">16</subfield></datafield></record></collection>
|
score |
7.4007006 |