Comparison of Urban Air Quality Simulations During the KORUS‐AQ Campaign With Regionally Refined Versus Global Uniform Grids in the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) Version 0
Abstract Model intercomparison studies often report a large spread in simulation results, but quantifying the causes of these differences is hindered by the fact that several processes contribute to the model spread simultaneously. Here we use the Multi‐Scale Infrastructure for Chemistry and Aerosol...
Ausführliche Beschreibung
Autor*in: |
Duseong S. Jo [verfasserIn] Louisa K. Emmons [verfasserIn] Patrick Callaghan [verfasserIn] Simone Tilmes [verfasserIn] Jung‐Hun Woo [verfasserIn] Younha Kim [verfasserIn] Jinseok Kim [verfasserIn] Claire Granier [verfasserIn] Antonin Soulié [verfasserIn] Thierno Doumbia [verfasserIn] Sabine Darras [verfasserIn] Rebecca R. Buchholz [verfasserIn] Isobel J. Simpson [verfasserIn] Donald R. Blake [verfasserIn] Armin Wisthaler [verfasserIn] Jason R. Schroeder [verfasserIn] Alan Fried [verfasserIn] Yugo Kanaya [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Advances in Modeling Earth Systems - American Geophysical Union (AGU), 2014, 15(2023), 7, Seite n/a-n/a |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2023 ; number:7 ; pages:n/a-n/a |
Links: |
---|
DOI / URN: |
10.1029/2022MS003458 |
---|
Katalog-ID: |
DOAJ09681523X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ09681523X | ||
003 | DE-627 | ||
005 | 20240413162605.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1029/2022MS003458 |2 doi | |
035 | |a (DE-627)DOAJ09681523X | ||
035 | |a (DE-599)DOAJ7e628684d51c4802befec7d292523574 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a GB3-5030 | |
050 | 0 | |a GC1-1581 | |
100 | 0 | |a Duseong S. Jo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Comparison of Urban Air Quality Simulations During the KORUS‐AQ Campaign With Regionally Refined Versus Global Uniform Grids in the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) Version 0 |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Model intercomparison studies often report a large spread in simulation results, but quantifying the causes of these differences is hindered by the fact that several processes contribute to the model spread simultaneously. Here we use the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) version 0 to investigate the model resolution dependencies of simulated chemical species, with a focus on the differences between global uniform grid and regional refinement grid simulations with the same modeling framework. We construct two global (ne30 [∼112 km] and ne60 [∼56 km]) and two regional refinement grids over Korea (ne30x8 [∼14 km] and ne30x16 [∼7 km]). The grid resolution can change chemical concentrations by an order of magnitude in the boundary layer, and the importance increases as the species' reactivity increases (e.g., up to 50% and 1,000% changes for ethane and xylenes, respectively). The diurnal cycle of oxidants (OH, O3, and NO3) also varies with the grid resolution, which leads to different oxidation pathways of volatile organic compounds (e.g., the fraction of monoterpenes reacting with NO3 in Seoul around midnight is 90% for ne30, but 65% for ne30x16). The models with high‐resolution grids usually do a better job at reproducing aircraft observations during the KORUS‐AQ campaign, but not always, implying compensating errors in the coarse grid simulations. For example, ozone is better reproduced by the coarse grid due to the artificial mixing of NOx. When developing new chemical mechanisms and evaluating models over urban areas, the uncertainties associated with model resolution should be considered. | ||
650 | 4 | |a MUSICA | |
650 | 4 | |a atmospheric chemistry | |
650 | 4 | |a CESM | |
650 | 4 | |a regional refinement | |
650 | 4 | |a ozone | |
650 | 4 | |a VOC | |
653 | 0 | |a Physical geography | |
653 | 0 | |a Oceanography | |
700 | 0 | |a Louisa K. Emmons |e verfasserin |4 aut | |
700 | 0 | |a Patrick Callaghan |e verfasserin |4 aut | |
700 | 0 | |a Simone Tilmes |e verfasserin |4 aut | |
700 | 0 | |a Jung‐Hun Woo |e verfasserin |4 aut | |
700 | 0 | |a Younha Kim |e verfasserin |4 aut | |
700 | 0 | |a Jinseok Kim |e verfasserin |4 aut | |
700 | 0 | |a Claire Granier |e verfasserin |4 aut | |
700 | 0 | |a Antonin Soulié |e verfasserin |4 aut | |
700 | 0 | |a Thierno Doumbia |e verfasserin |4 aut | |
700 | 0 | |a Sabine Darras |e verfasserin |4 aut | |
700 | 0 | |a Rebecca R. Buchholz |e verfasserin |4 aut | |
700 | 0 | |a Isobel J. Simpson |e verfasserin |4 aut | |
700 | 0 | |a Donald R. Blake |e verfasserin |4 aut | |
700 | 0 | |a Armin Wisthaler |e verfasserin |4 aut | |
700 | 0 | |a Jason R. Schroeder |e verfasserin |4 aut | |
700 | 0 | |a Alan Fried |e verfasserin |4 aut | |
700 | 0 | |a Yugo Kanaya |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Advances in Modeling Earth Systems |d American Geophysical Union (AGU), 2014 |g 15(2023), 7, Seite n/a-n/a |w (DE-627)584406932 |w (DE-600)2462132-8 |x 19422466 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2023 |g number:7 |g pages:n/a-n/a |
856 | 4 | 0 | |u https://doi.org/10.1029/2022MS003458 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7e628684d51c4802befec7d292523574 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1029/2022MS003458 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1942-2466 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2023 |e 7 |h n/a-n/a |
author_variant |
d s j dsj l k e lke p c pc s t st j w jw y k yk j k jk c g cg a s as t d td s d sd r r b rrb i j s ijs d r b drb a w aw j r s jrs a f af y k yk |
---|---|
matchkey_str |
article:19422466:2023----::oprsnfraarultsmltosuighkrsqapiniheinlyeievrugoauiomrditeutsaenrs |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
GB |
publishDate |
2023 |
allfields |
10.1029/2022MS003458 doi (DE-627)DOAJ09681523X (DE-599)DOAJ7e628684d51c4802befec7d292523574 DE-627 ger DE-627 rakwb eng GB3-5030 GC1-1581 Duseong S. Jo verfasserin aut Comparison of Urban Air Quality Simulations During the KORUS‐AQ Campaign With Regionally Refined Versus Global Uniform Grids in the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) Version 0 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Model intercomparison studies often report a large spread in simulation results, but quantifying the causes of these differences is hindered by the fact that several processes contribute to the model spread simultaneously. Here we use the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) version 0 to investigate the model resolution dependencies of simulated chemical species, with a focus on the differences between global uniform grid and regional refinement grid simulations with the same modeling framework. We construct two global (ne30 [∼112 km] and ne60 [∼56 km]) and two regional refinement grids over Korea (ne30x8 [∼14 km] and ne30x16 [∼7 km]). The grid resolution can change chemical concentrations by an order of magnitude in the boundary layer, and the importance increases as the species' reactivity increases (e.g., up to 50% and 1,000% changes for ethane and xylenes, respectively). The diurnal cycle of oxidants (OH, O3, and NO3) also varies with the grid resolution, which leads to different oxidation pathways of volatile organic compounds (e.g., the fraction of monoterpenes reacting with NO3 in Seoul around midnight is 90% for ne30, but 65% for ne30x16). The models with high‐resolution grids usually do a better job at reproducing aircraft observations during the KORUS‐AQ campaign, but not always, implying compensating errors in the coarse grid simulations. For example, ozone is better reproduced by the coarse grid due to the artificial mixing of NOx. When developing new chemical mechanisms and evaluating models over urban areas, the uncertainties associated with model resolution should be considered. MUSICA atmospheric chemistry CESM regional refinement ozone VOC Physical geography Oceanography Louisa K. Emmons verfasserin aut Patrick Callaghan verfasserin aut Simone Tilmes verfasserin aut Jung‐Hun Woo verfasserin aut Younha Kim verfasserin aut Jinseok Kim verfasserin aut Claire Granier verfasserin aut Antonin Soulié verfasserin aut Thierno Doumbia verfasserin aut Sabine Darras verfasserin aut Rebecca R. Buchholz verfasserin aut Isobel J. Simpson verfasserin aut Donald R. Blake verfasserin aut Armin Wisthaler verfasserin aut Jason R. Schroeder verfasserin aut Alan Fried verfasserin aut Yugo Kanaya verfasserin aut In Journal of Advances in Modeling Earth Systems American Geophysical Union (AGU), 2014 15(2023), 7, Seite n/a-n/a (DE-627)584406932 (DE-600)2462132-8 19422466 nnns volume:15 year:2023 number:7 pages:n/a-n/a https://doi.org/10.1029/2022MS003458 kostenfrei https://doaj.org/article/7e628684d51c4802befec7d292523574 kostenfrei https://doi.org/10.1029/2022MS003458 kostenfrei https://doaj.org/toc/1942-2466 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 7 n/a-n/a |
spelling |
10.1029/2022MS003458 doi (DE-627)DOAJ09681523X (DE-599)DOAJ7e628684d51c4802befec7d292523574 DE-627 ger DE-627 rakwb eng GB3-5030 GC1-1581 Duseong S. Jo verfasserin aut Comparison of Urban Air Quality Simulations During the KORUS‐AQ Campaign With Regionally Refined Versus Global Uniform Grids in the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) Version 0 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Model intercomparison studies often report a large spread in simulation results, but quantifying the causes of these differences is hindered by the fact that several processes contribute to the model spread simultaneously. Here we use the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) version 0 to investigate the model resolution dependencies of simulated chemical species, with a focus on the differences between global uniform grid and regional refinement grid simulations with the same modeling framework. We construct two global (ne30 [∼112 km] and ne60 [∼56 km]) and two regional refinement grids over Korea (ne30x8 [∼14 km] and ne30x16 [∼7 km]). The grid resolution can change chemical concentrations by an order of magnitude in the boundary layer, and the importance increases as the species' reactivity increases (e.g., up to 50% and 1,000% changes for ethane and xylenes, respectively). The diurnal cycle of oxidants (OH, O3, and NO3) also varies with the grid resolution, which leads to different oxidation pathways of volatile organic compounds (e.g., the fraction of monoterpenes reacting with NO3 in Seoul around midnight is 90% for ne30, but 65% for ne30x16). The models with high‐resolution grids usually do a better job at reproducing aircraft observations during the KORUS‐AQ campaign, but not always, implying compensating errors in the coarse grid simulations. For example, ozone is better reproduced by the coarse grid due to the artificial mixing of NOx. When developing new chemical mechanisms and evaluating models over urban areas, the uncertainties associated with model resolution should be considered. MUSICA atmospheric chemistry CESM regional refinement ozone VOC Physical geography Oceanography Louisa K. Emmons verfasserin aut Patrick Callaghan verfasserin aut Simone Tilmes verfasserin aut Jung‐Hun Woo verfasserin aut Younha Kim verfasserin aut Jinseok Kim verfasserin aut Claire Granier verfasserin aut Antonin Soulié verfasserin aut Thierno Doumbia verfasserin aut Sabine Darras verfasserin aut Rebecca R. Buchholz verfasserin aut Isobel J. Simpson verfasserin aut Donald R. Blake verfasserin aut Armin Wisthaler verfasserin aut Jason R. Schroeder verfasserin aut Alan Fried verfasserin aut Yugo Kanaya verfasserin aut In Journal of Advances in Modeling Earth Systems American Geophysical Union (AGU), 2014 15(2023), 7, Seite n/a-n/a (DE-627)584406932 (DE-600)2462132-8 19422466 nnns volume:15 year:2023 number:7 pages:n/a-n/a https://doi.org/10.1029/2022MS003458 kostenfrei https://doaj.org/article/7e628684d51c4802befec7d292523574 kostenfrei https://doi.org/10.1029/2022MS003458 kostenfrei https://doaj.org/toc/1942-2466 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 7 n/a-n/a |
allfields_unstemmed |
10.1029/2022MS003458 doi (DE-627)DOAJ09681523X (DE-599)DOAJ7e628684d51c4802befec7d292523574 DE-627 ger DE-627 rakwb eng GB3-5030 GC1-1581 Duseong S. Jo verfasserin aut Comparison of Urban Air Quality Simulations During the KORUS‐AQ Campaign With Regionally Refined Versus Global Uniform Grids in the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) Version 0 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Model intercomparison studies often report a large spread in simulation results, but quantifying the causes of these differences is hindered by the fact that several processes contribute to the model spread simultaneously. Here we use the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) version 0 to investigate the model resolution dependencies of simulated chemical species, with a focus on the differences between global uniform grid and regional refinement grid simulations with the same modeling framework. We construct two global (ne30 [∼112 km] and ne60 [∼56 km]) and two regional refinement grids over Korea (ne30x8 [∼14 km] and ne30x16 [∼7 km]). The grid resolution can change chemical concentrations by an order of magnitude in the boundary layer, and the importance increases as the species' reactivity increases (e.g., up to 50% and 1,000% changes for ethane and xylenes, respectively). The diurnal cycle of oxidants (OH, O3, and NO3) also varies with the grid resolution, which leads to different oxidation pathways of volatile organic compounds (e.g., the fraction of monoterpenes reacting with NO3 in Seoul around midnight is 90% for ne30, but 65% for ne30x16). The models with high‐resolution grids usually do a better job at reproducing aircraft observations during the KORUS‐AQ campaign, but not always, implying compensating errors in the coarse grid simulations. For example, ozone is better reproduced by the coarse grid due to the artificial mixing of NOx. When developing new chemical mechanisms and evaluating models over urban areas, the uncertainties associated with model resolution should be considered. MUSICA atmospheric chemistry CESM regional refinement ozone VOC Physical geography Oceanography Louisa K. Emmons verfasserin aut Patrick Callaghan verfasserin aut Simone Tilmes verfasserin aut Jung‐Hun Woo verfasserin aut Younha Kim verfasserin aut Jinseok Kim verfasserin aut Claire Granier verfasserin aut Antonin Soulié verfasserin aut Thierno Doumbia verfasserin aut Sabine Darras verfasserin aut Rebecca R. Buchholz verfasserin aut Isobel J. Simpson verfasserin aut Donald R. Blake verfasserin aut Armin Wisthaler verfasserin aut Jason R. Schroeder verfasserin aut Alan Fried verfasserin aut Yugo Kanaya verfasserin aut In Journal of Advances in Modeling Earth Systems American Geophysical Union (AGU), 2014 15(2023), 7, Seite n/a-n/a (DE-627)584406932 (DE-600)2462132-8 19422466 nnns volume:15 year:2023 number:7 pages:n/a-n/a https://doi.org/10.1029/2022MS003458 kostenfrei https://doaj.org/article/7e628684d51c4802befec7d292523574 kostenfrei https://doi.org/10.1029/2022MS003458 kostenfrei https://doaj.org/toc/1942-2466 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 7 n/a-n/a |
allfieldsGer |
10.1029/2022MS003458 doi (DE-627)DOAJ09681523X (DE-599)DOAJ7e628684d51c4802befec7d292523574 DE-627 ger DE-627 rakwb eng GB3-5030 GC1-1581 Duseong S. Jo verfasserin aut Comparison of Urban Air Quality Simulations During the KORUS‐AQ Campaign With Regionally Refined Versus Global Uniform Grids in the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) Version 0 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Model intercomparison studies often report a large spread in simulation results, but quantifying the causes of these differences is hindered by the fact that several processes contribute to the model spread simultaneously. Here we use the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) version 0 to investigate the model resolution dependencies of simulated chemical species, with a focus on the differences between global uniform grid and regional refinement grid simulations with the same modeling framework. We construct two global (ne30 [∼112 km] and ne60 [∼56 km]) and two regional refinement grids over Korea (ne30x8 [∼14 km] and ne30x16 [∼7 km]). The grid resolution can change chemical concentrations by an order of magnitude in the boundary layer, and the importance increases as the species' reactivity increases (e.g., up to 50% and 1,000% changes for ethane and xylenes, respectively). The diurnal cycle of oxidants (OH, O3, and NO3) also varies with the grid resolution, which leads to different oxidation pathways of volatile organic compounds (e.g., the fraction of monoterpenes reacting with NO3 in Seoul around midnight is 90% for ne30, but 65% for ne30x16). The models with high‐resolution grids usually do a better job at reproducing aircraft observations during the KORUS‐AQ campaign, but not always, implying compensating errors in the coarse grid simulations. For example, ozone is better reproduced by the coarse grid due to the artificial mixing of NOx. When developing new chemical mechanisms and evaluating models over urban areas, the uncertainties associated with model resolution should be considered. MUSICA atmospheric chemistry CESM regional refinement ozone VOC Physical geography Oceanography Louisa K. Emmons verfasserin aut Patrick Callaghan verfasserin aut Simone Tilmes verfasserin aut Jung‐Hun Woo verfasserin aut Younha Kim verfasserin aut Jinseok Kim verfasserin aut Claire Granier verfasserin aut Antonin Soulié verfasserin aut Thierno Doumbia verfasserin aut Sabine Darras verfasserin aut Rebecca R. Buchholz verfasserin aut Isobel J. Simpson verfasserin aut Donald R. Blake verfasserin aut Armin Wisthaler verfasserin aut Jason R. Schroeder verfasserin aut Alan Fried verfasserin aut Yugo Kanaya verfasserin aut In Journal of Advances in Modeling Earth Systems American Geophysical Union (AGU), 2014 15(2023), 7, Seite n/a-n/a (DE-627)584406932 (DE-600)2462132-8 19422466 nnns volume:15 year:2023 number:7 pages:n/a-n/a https://doi.org/10.1029/2022MS003458 kostenfrei https://doaj.org/article/7e628684d51c4802befec7d292523574 kostenfrei https://doi.org/10.1029/2022MS003458 kostenfrei https://doaj.org/toc/1942-2466 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 7 n/a-n/a |
allfieldsSound |
10.1029/2022MS003458 doi (DE-627)DOAJ09681523X (DE-599)DOAJ7e628684d51c4802befec7d292523574 DE-627 ger DE-627 rakwb eng GB3-5030 GC1-1581 Duseong S. Jo verfasserin aut Comparison of Urban Air Quality Simulations During the KORUS‐AQ Campaign With Regionally Refined Versus Global Uniform Grids in the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) Version 0 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Model intercomparison studies often report a large spread in simulation results, but quantifying the causes of these differences is hindered by the fact that several processes contribute to the model spread simultaneously. Here we use the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) version 0 to investigate the model resolution dependencies of simulated chemical species, with a focus on the differences between global uniform grid and regional refinement grid simulations with the same modeling framework. We construct two global (ne30 [∼112 km] and ne60 [∼56 km]) and two regional refinement grids over Korea (ne30x8 [∼14 km] and ne30x16 [∼7 km]). The grid resolution can change chemical concentrations by an order of magnitude in the boundary layer, and the importance increases as the species' reactivity increases (e.g., up to 50% and 1,000% changes for ethane and xylenes, respectively). The diurnal cycle of oxidants (OH, O3, and NO3) also varies with the grid resolution, which leads to different oxidation pathways of volatile organic compounds (e.g., the fraction of monoterpenes reacting with NO3 in Seoul around midnight is 90% for ne30, but 65% for ne30x16). The models with high‐resolution grids usually do a better job at reproducing aircraft observations during the KORUS‐AQ campaign, but not always, implying compensating errors in the coarse grid simulations. For example, ozone is better reproduced by the coarse grid due to the artificial mixing of NOx. When developing new chemical mechanisms and evaluating models over urban areas, the uncertainties associated with model resolution should be considered. MUSICA atmospheric chemistry CESM regional refinement ozone VOC Physical geography Oceanography Louisa K. Emmons verfasserin aut Patrick Callaghan verfasserin aut Simone Tilmes verfasserin aut Jung‐Hun Woo verfasserin aut Younha Kim verfasserin aut Jinseok Kim verfasserin aut Claire Granier verfasserin aut Antonin Soulié verfasserin aut Thierno Doumbia verfasserin aut Sabine Darras verfasserin aut Rebecca R. Buchholz verfasserin aut Isobel J. Simpson verfasserin aut Donald R. Blake verfasserin aut Armin Wisthaler verfasserin aut Jason R. Schroeder verfasserin aut Alan Fried verfasserin aut Yugo Kanaya verfasserin aut In Journal of Advances in Modeling Earth Systems American Geophysical Union (AGU), 2014 15(2023), 7, Seite n/a-n/a (DE-627)584406932 (DE-600)2462132-8 19422466 nnns volume:15 year:2023 number:7 pages:n/a-n/a https://doi.org/10.1029/2022MS003458 kostenfrei https://doaj.org/article/7e628684d51c4802befec7d292523574 kostenfrei https://doi.org/10.1029/2022MS003458 kostenfrei https://doaj.org/toc/1942-2466 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 7 n/a-n/a |
language |
English |
source |
In Journal of Advances in Modeling Earth Systems 15(2023), 7, Seite n/a-n/a volume:15 year:2023 number:7 pages:n/a-n/a |
sourceStr |
In Journal of Advances in Modeling Earth Systems 15(2023), 7, Seite n/a-n/a volume:15 year:2023 number:7 pages:n/a-n/a |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
MUSICA atmospheric chemistry CESM regional refinement ozone VOC Physical geography Oceanography |
isfreeaccess_bool |
true |
container_title |
Journal of Advances in Modeling Earth Systems |
authorswithroles_txt_mv |
Duseong S. Jo @@aut@@ Louisa K. Emmons @@aut@@ Patrick Callaghan @@aut@@ Simone Tilmes @@aut@@ Jung‐Hun Woo @@aut@@ Younha Kim @@aut@@ Jinseok Kim @@aut@@ Claire Granier @@aut@@ Antonin Soulié @@aut@@ Thierno Doumbia @@aut@@ Sabine Darras @@aut@@ Rebecca R. Buchholz @@aut@@ Isobel J. Simpson @@aut@@ Donald R. Blake @@aut@@ Armin Wisthaler @@aut@@ Jason R. Schroeder @@aut@@ Alan Fried @@aut@@ Yugo Kanaya @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
584406932 |
id |
DOAJ09681523X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ09681523X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413162605.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1029/2022MS003458</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09681523X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7e628684d51c4802befec7d292523574</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GB3-5030</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GC1-1581</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Duseong S. Jo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparison of Urban Air Quality Simulations During the KORUS‐AQ Campaign With Regionally Refined Versus Global Uniform Grids in the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) Version 0</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Model intercomparison studies often report a large spread in simulation results, but quantifying the causes of these differences is hindered by the fact that several processes contribute to the model spread simultaneously. Here we use the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) version 0 to investigate the model resolution dependencies of simulated chemical species, with a focus on the differences between global uniform grid and regional refinement grid simulations with the same modeling framework. We construct two global (ne30 [∼112 km] and ne60 [∼56 km]) and two regional refinement grids over Korea (ne30x8 [∼14 km] and ne30x16 [∼7 km]). The grid resolution can change chemical concentrations by an order of magnitude in the boundary layer, and the importance increases as the species' reactivity increases (e.g., up to 50% and 1,000% changes for ethane and xylenes, respectively). The diurnal cycle of oxidants (OH, O3, and NO3) also varies with the grid resolution, which leads to different oxidation pathways of volatile organic compounds (e.g., the fraction of monoterpenes reacting with NO3 in Seoul around midnight is 90% for ne30, but 65% for ne30x16). The models with high‐resolution grids usually do a better job at reproducing aircraft observations during the KORUS‐AQ campaign, but not always, implying compensating errors in the coarse grid simulations. For example, ozone is better reproduced by the coarse grid due to the artificial mixing of NOx. When developing new chemical mechanisms and evaluating models over urban areas, the uncertainties associated with model resolution should be considered.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MUSICA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atmospheric chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CESM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">regional refinement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ozone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">VOC</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physical geography</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Oceanography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Louisa K. Emmons</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Patrick Callaghan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simone Tilmes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jung‐Hun Woo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Younha Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinseok Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claire Granier</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Antonin Soulié</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thierno Doumbia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sabine Darras</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rebecca R. Buchholz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Isobel J. Simpson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Donald R. Blake</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Armin Wisthaler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jason R. Schroeder</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alan Fried</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yugo Kanaya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Advances in Modeling Earth Systems</subfield><subfield code="d">American Geophysical Union (AGU), 2014</subfield><subfield code="g">15(2023), 7, Seite n/a-n/a</subfield><subfield code="w">(DE-627)584406932</subfield><subfield code="w">(DE-600)2462132-8</subfield><subfield code="x">19422466</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:n/a-n/a</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1029/2022MS003458</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7e628684d51c4802befec7d292523574</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1029/2022MS003458</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1942-2466</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">7</subfield><subfield code="h">n/a-n/a</subfield></datafield></record></collection>
|
callnumber-first |
G - Geography, Anthropology, Recreation |
author |
Duseong S. Jo |
spellingShingle |
Duseong S. Jo misc GB3-5030 misc GC1-1581 misc MUSICA misc atmospheric chemistry misc CESM misc regional refinement misc ozone misc VOC misc Physical geography misc Oceanography Comparison of Urban Air Quality Simulations During the KORUS‐AQ Campaign With Regionally Refined Versus Global Uniform Grids in the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) Version 0 |
authorStr |
Duseong S. Jo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)584406932 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
GB3-5030 |
illustrated |
Not Illustrated |
issn |
19422466 |
topic_title |
GB3-5030 GC1-1581 Comparison of Urban Air Quality Simulations During the KORUS‐AQ Campaign With Regionally Refined Versus Global Uniform Grids in the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) Version 0 MUSICA atmospheric chemistry CESM regional refinement ozone VOC |
topic |
misc GB3-5030 misc GC1-1581 misc MUSICA misc atmospheric chemistry misc CESM misc regional refinement misc ozone misc VOC misc Physical geography misc Oceanography |
topic_unstemmed |
misc GB3-5030 misc GC1-1581 misc MUSICA misc atmospheric chemistry misc CESM misc regional refinement misc ozone misc VOC misc Physical geography misc Oceanography |
topic_browse |
misc GB3-5030 misc GC1-1581 misc MUSICA misc atmospheric chemistry misc CESM misc regional refinement misc ozone misc VOC misc Physical geography misc Oceanography |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Advances in Modeling Earth Systems |
hierarchy_parent_id |
584406932 |
hierarchy_top_title |
Journal of Advances in Modeling Earth Systems |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)584406932 (DE-600)2462132-8 |
title |
Comparison of Urban Air Quality Simulations During the KORUS‐AQ Campaign With Regionally Refined Versus Global Uniform Grids in the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) Version 0 |
ctrlnum |
(DE-627)DOAJ09681523X (DE-599)DOAJ7e628684d51c4802befec7d292523574 |
title_full |
Comparison of Urban Air Quality Simulations During the KORUS‐AQ Campaign With Regionally Refined Versus Global Uniform Grids in the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) Version 0 |
author_sort |
Duseong S. Jo |
journal |
Journal of Advances in Modeling Earth Systems |
journalStr |
Journal of Advances in Modeling Earth Systems |
callnumber-first-code |
G |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Duseong S. Jo Louisa K. Emmons Patrick Callaghan Simone Tilmes Jung‐Hun Woo Younha Kim Jinseok Kim Claire Granier Antonin Soulié Thierno Doumbia Sabine Darras Rebecca R. Buchholz Isobel J. Simpson Donald R. Blake Armin Wisthaler Jason R. Schroeder Alan Fried Yugo Kanaya |
container_volume |
15 |
class |
GB3-5030 GC1-1581 |
format_se |
Elektronische Aufsätze |
author-letter |
Duseong S. Jo |
doi_str_mv |
10.1029/2022MS003458 |
author2-role |
verfasserin |
title_sort |
comparison of urban air quality simulations during the korus‐aq campaign with regionally refined versus global uniform grids in the multi‐scale infrastructure for chemistry and aerosols (musica) version 0 |
callnumber |
GB3-5030 |
title_auth |
Comparison of Urban Air Quality Simulations During the KORUS‐AQ Campaign With Regionally Refined Versus Global Uniform Grids in the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) Version 0 |
abstract |
Abstract Model intercomparison studies often report a large spread in simulation results, but quantifying the causes of these differences is hindered by the fact that several processes contribute to the model spread simultaneously. Here we use the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) version 0 to investigate the model resolution dependencies of simulated chemical species, with a focus on the differences between global uniform grid and regional refinement grid simulations with the same modeling framework. We construct two global (ne30 [∼112 km] and ne60 [∼56 km]) and two regional refinement grids over Korea (ne30x8 [∼14 km] and ne30x16 [∼7 km]). The grid resolution can change chemical concentrations by an order of magnitude in the boundary layer, and the importance increases as the species' reactivity increases (e.g., up to 50% and 1,000% changes for ethane and xylenes, respectively). The diurnal cycle of oxidants (OH, O3, and NO3) also varies with the grid resolution, which leads to different oxidation pathways of volatile organic compounds (e.g., the fraction of monoterpenes reacting with NO3 in Seoul around midnight is 90% for ne30, but 65% for ne30x16). The models with high‐resolution grids usually do a better job at reproducing aircraft observations during the KORUS‐AQ campaign, but not always, implying compensating errors in the coarse grid simulations. For example, ozone is better reproduced by the coarse grid due to the artificial mixing of NOx. When developing new chemical mechanisms and evaluating models over urban areas, the uncertainties associated with model resolution should be considered. |
abstractGer |
Abstract Model intercomparison studies often report a large spread in simulation results, but quantifying the causes of these differences is hindered by the fact that several processes contribute to the model spread simultaneously. Here we use the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) version 0 to investigate the model resolution dependencies of simulated chemical species, with a focus on the differences between global uniform grid and regional refinement grid simulations with the same modeling framework. We construct two global (ne30 [∼112 km] and ne60 [∼56 km]) and two regional refinement grids over Korea (ne30x8 [∼14 km] and ne30x16 [∼7 km]). The grid resolution can change chemical concentrations by an order of magnitude in the boundary layer, and the importance increases as the species' reactivity increases (e.g., up to 50% and 1,000% changes for ethane and xylenes, respectively). The diurnal cycle of oxidants (OH, O3, and NO3) also varies with the grid resolution, which leads to different oxidation pathways of volatile organic compounds (e.g., the fraction of monoterpenes reacting with NO3 in Seoul around midnight is 90% for ne30, but 65% for ne30x16). The models with high‐resolution grids usually do a better job at reproducing aircraft observations during the KORUS‐AQ campaign, but not always, implying compensating errors in the coarse grid simulations. For example, ozone is better reproduced by the coarse grid due to the artificial mixing of NOx. When developing new chemical mechanisms and evaluating models over urban areas, the uncertainties associated with model resolution should be considered. |
abstract_unstemmed |
Abstract Model intercomparison studies often report a large spread in simulation results, but quantifying the causes of these differences is hindered by the fact that several processes contribute to the model spread simultaneously. Here we use the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) version 0 to investigate the model resolution dependencies of simulated chemical species, with a focus on the differences between global uniform grid and regional refinement grid simulations with the same modeling framework. We construct two global (ne30 [∼112 km] and ne60 [∼56 km]) and two regional refinement grids over Korea (ne30x8 [∼14 km] and ne30x16 [∼7 km]). The grid resolution can change chemical concentrations by an order of magnitude in the boundary layer, and the importance increases as the species' reactivity increases (e.g., up to 50% and 1,000% changes for ethane and xylenes, respectively). The diurnal cycle of oxidants (OH, O3, and NO3) also varies with the grid resolution, which leads to different oxidation pathways of volatile organic compounds (e.g., the fraction of monoterpenes reacting with NO3 in Seoul around midnight is 90% for ne30, but 65% for ne30x16). The models with high‐resolution grids usually do a better job at reproducing aircraft observations during the KORUS‐AQ campaign, but not always, implying compensating errors in the coarse grid simulations. For example, ozone is better reproduced by the coarse grid due to the artificial mixing of NOx. When developing new chemical mechanisms and evaluating models over urban areas, the uncertainties associated with model resolution should be considered. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
7 |
title_short |
Comparison of Urban Air Quality Simulations During the KORUS‐AQ Campaign With Regionally Refined Versus Global Uniform Grids in the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) Version 0 |
url |
https://doi.org/10.1029/2022MS003458 https://doaj.org/article/7e628684d51c4802befec7d292523574 https://doaj.org/toc/1942-2466 |
remote_bool |
true |
author2 |
Louisa K. Emmons Patrick Callaghan Simone Tilmes Jung‐Hun Woo Younha Kim Jinseok Kim Claire Granier Antonin Soulié Thierno Doumbia Sabine Darras Rebecca R. Buchholz Isobel J. Simpson Donald R. Blake Armin Wisthaler Jason R. Schroeder Alan Fried Yugo Kanaya |
author2Str |
Louisa K. Emmons Patrick Callaghan Simone Tilmes Jung‐Hun Woo Younha Kim Jinseok Kim Claire Granier Antonin Soulié Thierno Doumbia Sabine Darras Rebecca R. Buchholz Isobel J. Simpson Donald R. Blake Armin Wisthaler Jason R. Schroeder Alan Fried Yugo Kanaya |
ppnlink |
584406932 |
callnumber-subject |
GB - Physical Geography |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1029/2022MS003458 |
callnumber-a |
GB3-5030 |
up_date |
2024-07-03T22:26:58.327Z |
_version_ |
1803598554290192384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ09681523X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413162605.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1029/2022MS003458</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09681523X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7e628684d51c4802befec7d292523574</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GB3-5030</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GC1-1581</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Duseong S. Jo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparison of Urban Air Quality Simulations During the KORUS‐AQ Campaign With Regionally Refined Versus Global Uniform Grids in the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) Version 0</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Model intercomparison studies often report a large spread in simulation results, but quantifying the causes of these differences is hindered by the fact that several processes contribute to the model spread simultaneously. Here we use the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) version 0 to investigate the model resolution dependencies of simulated chemical species, with a focus on the differences between global uniform grid and regional refinement grid simulations with the same modeling framework. We construct two global (ne30 [∼112 km] and ne60 [∼56 km]) and two regional refinement grids over Korea (ne30x8 [∼14 km] and ne30x16 [∼7 km]). The grid resolution can change chemical concentrations by an order of magnitude in the boundary layer, and the importance increases as the species' reactivity increases (e.g., up to 50% and 1,000% changes for ethane and xylenes, respectively). The diurnal cycle of oxidants (OH, O3, and NO3) also varies with the grid resolution, which leads to different oxidation pathways of volatile organic compounds (e.g., the fraction of monoterpenes reacting with NO3 in Seoul around midnight is 90% for ne30, but 65% for ne30x16). The models with high‐resolution grids usually do a better job at reproducing aircraft observations during the KORUS‐AQ campaign, but not always, implying compensating errors in the coarse grid simulations. For example, ozone is better reproduced by the coarse grid due to the artificial mixing of NOx. When developing new chemical mechanisms and evaluating models over urban areas, the uncertainties associated with model resolution should be considered.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MUSICA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atmospheric chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CESM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">regional refinement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ozone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">VOC</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physical geography</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Oceanography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Louisa K. Emmons</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Patrick Callaghan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simone Tilmes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jung‐Hun Woo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Younha Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinseok Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claire Granier</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Antonin Soulié</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thierno Doumbia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sabine Darras</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rebecca R. Buchholz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Isobel J. Simpson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Donald R. Blake</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Armin Wisthaler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jason R. Schroeder</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alan Fried</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yugo Kanaya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Advances in Modeling Earth Systems</subfield><subfield code="d">American Geophysical Union (AGU), 2014</subfield><subfield code="g">15(2023), 7, Seite n/a-n/a</subfield><subfield code="w">(DE-627)584406932</subfield><subfield code="w">(DE-600)2462132-8</subfield><subfield code="x">19422466</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:n/a-n/a</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1029/2022MS003458</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7e628684d51c4802befec7d292523574</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1029/2022MS003458</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1942-2466</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">7</subfield><subfield code="h">n/a-n/a</subfield></datafield></record></collection>
|
score |
7.402815 |