Size effect during dynamic shear tests with hat-shaped specimens
The failure mechanism and size effect during the quasi-static and dynamic shear tests of hat-shaped specimens were investigated in this study. Three types of specimens with different shear ring thicknesses (800, 400, and 50 μm) were designed. Quasi-static tests were carried out using an electronic u...
Ausführliche Beschreibung
Autor*in: |
Lan Yan [verfasserIn] Anna Jiang [verfasserIn] Zhibin Wang [verfasserIn] Feng Jiang [verfasserIn] Fuzeng Wang [verfasserIn] Xian Wu [verfasserIn] Yong Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Materials Research and Technology - Elsevier, 2015, 27(2023), Seite 3231-3242 |
---|---|
Übergeordnetes Werk: |
volume:27 ; year:2023 ; pages:3231-3242 |
Links: |
---|
DOI / URN: |
10.1016/j.jmrt.2023.10.140 |
---|
Katalog-ID: |
DOAJ096823763 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ096823763 | ||
003 | DE-627 | ||
005 | 20240414092254.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jmrt.2023.10.140 |2 doi | |
035 | |a (DE-627)DOAJ096823763 | ||
035 | |a (DE-599)DOAJ8f13851e9e3248cfa1c71c6f2469aded | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TN1-997 | |
100 | 0 | |a Lan Yan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Size effect during dynamic shear tests with hat-shaped specimens |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The failure mechanism and size effect during the quasi-static and dynamic shear tests of hat-shaped specimens were investigated in this study. Three types of specimens with different shear ring thicknesses (800, 400, and 50 μm) were designed. Quasi-static tests were carried out using an electronic universal testing machine, while dynamic impact tests were carried out using split Hopkinson pressure bar (SHPB) tests. The adiabatic temperature rises with different strain rates, and the shear ring thickness was calculated. We found that the adiabatic temperature rises of the specimens with shear ring thicknesses of 800 and 400 μm were much larger than those of the specimens with shear ring thicknesses of 50 μm. The failure surfaces after the SHPB test were investigated via scanning electron microscopy, and the failure surfaces after the SHPB test could be divided into three zones: tensile, shear, and impact zones. The effect of the shear ring thickness and impact speed on the failure surface morphology was discussed. The typical shear stress–strain curves could be divided into three sections: elastic, plastic rise, and plastic plateau sections. Subsequently, a modified Johnson–Cook constitutive model was employed to fit the shear stress–strain results, and the fitted curves showed good agreement with the tested curves. | ||
650 | 4 | |a Hat-shaped specimen | |
650 | 4 | |a Size effect | |
650 | 4 | |a Failure mechanism | |
650 | 4 | |a Split Hopkinson pressure bar | |
650 | 4 | |a Modified Johnson–Cook constitutive model | |
653 | 0 | |a Mining engineering. Metallurgy | |
700 | 0 | |a Anna Jiang |e verfasserin |4 aut | |
700 | 0 | |a Zhibin Wang |e verfasserin |4 aut | |
700 | 0 | |a Feng Jiang |e verfasserin |4 aut | |
700 | 0 | |a Fuzeng Wang |e verfasserin |4 aut | |
700 | 0 | |a Xian Wu |e verfasserin |4 aut | |
700 | 0 | |a Yong Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Materials Research and Technology |d Elsevier, 2015 |g 27(2023), Seite 3231-3242 |w (DE-627)768093163 |w (DE-600)2732709-7 |x 22140697 |7 nnns |
773 | 1 | 8 | |g volume:27 |g year:2023 |g pages:3231-3242 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jmrt.2023.10.140 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8f13851e9e3248cfa1c71c6f2469aded |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2238785423025899 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2238-7854 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 27 |j 2023 |h 3231-3242 |
author_variant |
l y ly a j aj z w zw f j fj f w fw x w xw y z yz |
---|---|
matchkey_str |
article:22140697:2023----::iefetuigyaiseretwth |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TN |
publishDate |
2023 |
allfields |
10.1016/j.jmrt.2023.10.140 doi (DE-627)DOAJ096823763 (DE-599)DOAJ8f13851e9e3248cfa1c71c6f2469aded DE-627 ger DE-627 rakwb eng TN1-997 Lan Yan verfasserin aut Size effect during dynamic shear tests with hat-shaped specimens 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The failure mechanism and size effect during the quasi-static and dynamic shear tests of hat-shaped specimens were investigated in this study. Three types of specimens with different shear ring thicknesses (800, 400, and 50 μm) were designed. Quasi-static tests were carried out using an electronic universal testing machine, while dynamic impact tests were carried out using split Hopkinson pressure bar (SHPB) tests. The adiabatic temperature rises with different strain rates, and the shear ring thickness was calculated. We found that the adiabatic temperature rises of the specimens with shear ring thicknesses of 800 and 400 μm were much larger than those of the specimens with shear ring thicknesses of 50 μm. The failure surfaces after the SHPB test were investigated via scanning electron microscopy, and the failure surfaces after the SHPB test could be divided into three zones: tensile, shear, and impact zones. The effect of the shear ring thickness and impact speed on the failure surface morphology was discussed. The typical shear stress–strain curves could be divided into three sections: elastic, plastic rise, and plastic plateau sections. Subsequently, a modified Johnson–Cook constitutive model was employed to fit the shear stress–strain results, and the fitted curves showed good agreement with the tested curves. Hat-shaped specimen Size effect Failure mechanism Split Hopkinson pressure bar Modified Johnson–Cook constitutive model Mining engineering. Metallurgy Anna Jiang verfasserin aut Zhibin Wang verfasserin aut Feng Jiang verfasserin aut Fuzeng Wang verfasserin aut Xian Wu verfasserin aut Yong Zhang verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 27(2023), Seite 3231-3242 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:27 year:2023 pages:3231-3242 https://doi.org/10.1016/j.jmrt.2023.10.140 kostenfrei https://doaj.org/article/8f13851e9e3248cfa1c71c6f2469aded kostenfrei http://www.sciencedirect.com/science/article/pii/S2238785423025899 kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 27 2023 3231-3242 |
spelling |
10.1016/j.jmrt.2023.10.140 doi (DE-627)DOAJ096823763 (DE-599)DOAJ8f13851e9e3248cfa1c71c6f2469aded DE-627 ger DE-627 rakwb eng TN1-997 Lan Yan verfasserin aut Size effect during dynamic shear tests with hat-shaped specimens 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The failure mechanism and size effect during the quasi-static and dynamic shear tests of hat-shaped specimens were investigated in this study. Three types of specimens with different shear ring thicknesses (800, 400, and 50 μm) were designed. Quasi-static tests were carried out using an electronic universal testing machine, while dynamic impact tests were carried out using split Hopkinson pressure bar (SHPB) tests. The adiabatic temperature rises with different strain rates, and the shear ring thickness was calculated. We found that the adiabatic temperature rises of the specimens with shear ring thicknesses of 800 and 400 μm were much larger than those of the specimens with shear ring thicknesses of 50 μm. The failure surfaces after the SHPB test were investigated via scanning electron microscopy, and the failure surfaces after the SHPB test could be divided into three zones: tensile, shear, and impact zones. The effect of the shear ring thickness and impact speed on the failure surface morphology was discussed. The typical shear stress–strain curves could be divided into three sections: elastic, plastic rise, and plastic plateau sections. Subsequently, a modified Johnson–Cook constitutive model was employed to fit the shear stress–strain results, and the fitted curves showed good agreement with the tested curves. Hat-shaped specimen Size effect Failure mechanism Split Hopkinson pressure bar Modified Johnson–Cook constitutive model Mining engineering. Metallurgy Anna Jiang verfasserin aut Zhibin Wang verfasserin aut Feng Jiang verfasserin aut Fuzeng Wang verfasserin aut Xian Wu verfasserin aut Yong Zhang verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 27(2023), Seite 3231-3242 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:27 year:2023 pages:3231-3242 https://doi.org/10.1016/j.jmrt.2023.10.140 kostenfrei https://doaj.org/article/8f13851e9e3248cfa1c71c6f2469aded kostenfrei http://www.sciencedirect.com/science/article/pii/S2238785423025899 kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 27 2023 3231-3242 |
allfields_unstemmed |
10.1016/j.jmrt.2023.10.140 doi (DE-627)DOAJ096823763 (DE-599)DOAJ8f13851e9e3248cfa1c71c6f2469aded DE-627 ger DE-627 rakwb eng TN1-997 Lan Yan verfasserin aut Size effect during dynamic shear tests with hat-shaped specimens 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The failure mechanism and size effect during the quasi-static and dynamic shear tests of hat-shaped specimens were investigated in this study. Three types of specimens with different shear ring thicknesses (800, 400, and 50 μm) were designed. Quasi-static tests were carried out using an electronic universal testing machine, while dynamic impact tests were carried out using split Hopkinson pressure bar (SHPB) tests. The adiabatic temperature rises with different strain rates, and the shear ring thickness was calculated. We found that the adiabatic temperature rises of the specimens with shear ring thicknesses of 800 and 400 μm were much larger than those of the specimens with shear ring thicknesses of 50 μm. The failure surfaces after the SHPB test were investigated via scanning electron microscopy, and the failure surfaces after the SHPB test could be divided into three zones: tensile, shear, and impact zones. The effect of the shear ring thickness and impact speed on the failure surface morphology was discussed. The typical shear stress–strain curves could be divided into three sections: elastic, plastic rise, and plastic plateau sections. Subsequently, a modified Johnson–Cook constitutive model was employed to fit the shear stress–strain results, and the fitted curves showed good agreement with the tested curves. Hat-shaped specimen Size effect Failure mechanism Split Hopkinson pressure bar Modified Johnson–Cook constitutive model Mining engineering. Metallurgy Anna Jiang verfasserin aut Zhibin Wang verfasserin aut Feng Jiang verfasserin aut Fuzeng Wang verfasserin aut Xian Wu verfasserin aut Yong Zhang verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 27(2023), Seite 3231-3242 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:27 year:2023 pages:3231-3242 https://doi.org/10.1016/j.jmrt.2023.10.140 kostenfrei https://doaj.org/article/8f13851e9e3248cfa1c71c6f2469aded kostenfrei http://www.sciencedirect.com/science/article/pii/S2238785423025899 kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 27 2023 3231-3242 |
allfieldsGer |
10.1016/j.jmrt.2023.10.140 doi (DE-627)DOAJ096823763 (DE-599)DOAJ8f13851e9e3248cfa1c71c6f2469aded DE-627 ger DE-627 rakwb eng TN1-997 Lan Yan verfasserin aut Size effect during dynamic shear tests with hat-shaped specimens 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The failure mechanism and size effect during the quasi-static and dynamic shear tests of hat-shaped specimens were investigated in this study. Three types of specimens with different shear ring thicknesses (800, 400, and 50 μm) were designed. Quasi-static tests were carried out using an electronic universal testing machine, while dynamic impact tests were carried out using split Hopkinson pressure bar (SHPB) tests. The adiabatic temperature rises with different strain rates, and the shear ring thickness was calculated. We found that the adiabatic temperature rises of the specimens with shear ring thicknesses of 800 and 400 μm were much larger than those of the specimens with shear ring thicknesses of 50 μm. The failure surfaces after the SHPB test were investigated via scanning electron microscopy, and the failure surfaces after the SHPB test could be divided into three zones: tensile, shear, and impact zones. The effect of the shear ring thickness and impact speed on the failure surface morphology was discussed. The typical shear stress–strain curves could be divided into three sections: elastic, plastic rise, and plastic plateau sections. Subsequently, a modified Johnson–Cook constitutive model was employed to fit the shear stress–strain results, and the fitted curves showed good agreement with the tested curves. Hat-shaped specimen Size effect Failure mechanism Split Hopkinson pressure bar Modified Johnson–Cook constitutive model Mining engineering. Metallurgy Anna Jiang verfasserin aut Zhibin Wang verfasserin aut Feng Jiang verfasserin aut Fuzeng Wang verfasserin aut Xian Wu verfasserin aut Yong Zhang verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 27(2023), Seite 3231-3242 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:27 year:2023 pages:3231-3242 https://doi.org/10.1016/j.jmrt.2023.10.140 kostenfrei https://doaj.org/article/8f13851e9e3248cfa1c71c6f2469aded kostenfrei http://www.sciencedirect.com/science/article/pii/S2238785423025899 kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 27 2023 3231-3242 |
allfieldsSound |
10.1016/j.jmrt.2023.10.140 doi (DE-627)DOAJ096823763 (DE-599)DOAJ8f13851e9e3248cfa1c71c6f2469aded DE-627 ger DE-627 rakwb eng TN1-997 Lan Yan verfasserin aut Size effect during dynamic shear tests with hat-shaped specimens 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The failure mechanism and size effect during the quasi-static and dynamic shear tests of hat-shaped specimens were investigated in this study. Three types of specimens with different shear ring thicknesses (800, 400, and 50 μm) were designed. Quasi-static tests were carried out using an electronic universal testing machine, while dynamic impact tests were carried out using split Hopkinson pressure bar (SHPB) tests. The adiabatic temperature rises with different strain rates, and the shear ring thickness was calculated. We found that the adiabatic temperature rises of the specimens with shear ring thicknesses of 800 and 400 μm were much larger than those of the specimens with shear ring thicknesses of 50 μm. The failure surfaces after the SHPB test were investigated via scanning electron microscopy, and the failure surfaces after the SHPB test could be divided into three zones: tensile, shear, and impact zones. The effect of the shear ring thickness and impact speed on the failure surface morphology was discussed. The typical shear stress–strain curves could be divided into three sections: elastic, plastic rise, and plastic plateau sections. Subsequently, a modified Johnson–Cook constitutive model was employed to fit the shear stress–strain results, and the fitted curves showed good agreement with the tested curves. Hat-shaped specimen Size effect Failure mechanism Split Hopkinson pressure bar Modified Johnson–Cook constitutive model Mining engineering. Metallurgy Anna Jiang verfasserin aut Zhibin Wang verfasserin aut Feng Jiang verfasserin aut Fuzeng Wang verfasserin aut Xian Wu verfasserin aut Yong Zhang verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 27(2023), Seite 3231-3242 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:27 year:2023 pages:3231-3242 https://doi.org/10.1016/j.jmrt.2023.10.140 kostenfrei https://doaj.org/article/8f13851e9e3248cfa1c71c6f2469aded kostenfrei http://www.sciencedirect.com/science/article/pii/S2238785423025899 kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 27 2023 3231-3242 |
language |
English |
source |
In Journal of Materials Research and Technology 27(2023), Seite 3231-3242 volume:27 year:2023 pages:3231-3242 |
sourceStr |
In Journal of Materials Research and Technology 27(2023), Seite 3231-3242 volume:27 year:2023 pages:3231-3242 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Hat-shaped specimen Size effect Failure mechanism Split Hopkinson pressure bar Modified Johnson–Cook constitutive model Mining engineering. Metallurgy |
isfreeaccess_bool |
true |
container_title |
Journal of Materials Research and Technology |
authorswithroles_txt_mv |
Lan Yan @@aut@@ Anna Jiang @@aut@@ Zhibin Wang @@aut@@ Feng Jiang @@aut@@ Fuzeng Wang @@aut@@ Xian Wu @@aut@@ Yong Zhang @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
768093163 |
id |
DOAJ096823763 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ096823763</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414092254.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmrt.2023.10.140</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096823763</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8f13851e9e3248cfa1c71c6f2469aded</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lan Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Size effect during dynamic shear tests with hat-shaped specimens</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The failure mechanism and size effect during the quasi-static and dynamic shear tests of hat-shaped specimens were investigated in this study. Three types of specimens with different shear ring thicknesses (800, 400, and 50 μm) were designed. Quasi-static tests were carried out using an electronic universal testing machine, while dynamic impact tests were carried out using split Hopkinson pressure bar (SHPB) tests. The adiabatic temperature rises with different strain rates, and the shear ring thickness was calculated. We found that the adiabatic temperature rises of the specimens with shear ring thicknesses of 800 and 400 μm were much larger than those of the specimens with shear ring thicknesses of 50 μm. The failure surfaces after the SHPB test were investigated via scanning electron microscopy, and the failure surfaces after the SHPB test could be divided into three zones: tensile, shear, and impact zones. The effect of the shear ring thickness and impact speed on the failure surface morphology was discussed. The typical shear stress–strain curves could be divided into three sections: elastic, plastic rise, and plastic plateau sections. Subsequently, a modified Johnson–Cook constitutive model was employed to fit the shear stress–strain results, and the fitted curves showed good agreement with the tested curves.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hat-shaped specimen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Size effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Failure mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Split Hopkinson pressure bar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modified Johnson–Cook constitutive model</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anna Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhibin Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Feng Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fuzeng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xian Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yong Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Materials Research and Technology</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">27(2023), Seite 3231-3242</subfield><subfield code="w">(DE-627)768093163</subfield><subfield code="w">(DE-600)2732709-7</subfield><subfield code="x">22140697</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:3231-3242</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmrt.2023.10.140</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8f13851e9e3248cfa1c71c6f2469aded</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2238785423025899</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2238-7854</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">2023</subfield><subfield code="h">3231-3242</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Lan Yan |
spellingShingle |
Lan Yan misc TN1-997 misc Hat-shaped specimen misc Size effect misc Failure mechanism misc Split Hopkinson pressure bar misc Modified Johnson–Cook constitutive model misc Mining engineering. Metallurgy Size effect during dynamic shear tests with hat-shaped specimens |
authorStr |
Lan Yan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)768093163 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TN1-997 |
illustrated |
Not Illustrated |
issn |
22140697 |
topic_title |
TN1-997 Size effect during dynamic shear tests with hat-shaped specimens Hat-shaped specimen Size effect Failure mechanism Split Hopkinson pressure bar Modified Johnson–Cook constitutive model |
topic |
misc TN1-997 misc Hat-shaped specimen misc Size effect misc Failure mechanism misc Split Hopkinson pressure bar misc Modified Johnson–Cook constitutive model misc Mining engineering. Metallurgy |
topic_unstemmed |
misc TN1-997 misc Hat-shaped specimen misc Size effect misc Failure mechanism misc Split Hopkinson pressure bar misc Modified Johnson–Cook constitutive model misc Mining engineering. Metallurgy |
topic_browse |
misc TN1-997 misc Hat-shaped specimen misc Size effect misc Failure mechanism misc Split Hopkinson pressure bar misc Modified Johnson–Cook constitutive model misc Mining engineering. Metallurgy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Materials Research and Technology |
hierarchy_parent_id |
768093163 |
hierarchy_top_title |
Journal of Materials Research and Technology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)768093163 (DE-600)2732709-7 |
title |
Size effect during dynamic shear tests with hat-shaped specimens |
ctrlnum |
(DE-627)DOAJ096823763 (DE-599)DOAJ8f13851e9e3248cfa1c71c6f2469aded |
title_full |
Size effect during dynamic shear tests with hat-shaped specimens |
author_sort |
Lan Yan |
journal |
Journal of Materials Research and Technology |
journalStr |
Journal of Materials Research and Technology |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
3231 |
author_browse |
Lan Yan Anna Jiang Zhibin Wang Feng Jiang Fuzeng Wang Xian Wu Yong Zhang |
container_volume |
27 |
class |
TN1-997 |
format_se |
Elektronische Aufsätze |
author-letter |
Lan Yan |
doi_str_mv |
10.1016/j.jmrt.2023.10.140 |
author2-role |
verfasserin |
title_sort |
size effect during dynamic shear tests with hat-shaped specimens |
callnumber |
TN1-997 |
title_auth |
Size effect during dynamic shear tests with hat-shaped specimens |
abstract |
The failure mechanism and size effect during the quasi-static and dynamic shear tests of hat-shaped specimens were investigated in this study. Three types of specimens with different shear ring thicknesses (800, 400, and 50 μm) were designed. Quasi-static tests were carried out using an electronic universal testing machine, while dynamic impact tests were carried out using split Hopkinson pressure bar (SHPB) tests. The adiabatic temperature rises with different strain rates, and the shear ring thickness was calculated. We found that the adiabatic temperature rises of the specimens with shear ring thicknesses of 800 and 400 μm were much larger than those of the specimens with shear ring thicknesses of 50 μm. The failure surfaces after the SHPB test were investigated via scanning electron microscopy, and the failure surfaces after the SHPB test could be divided into three zones: tensile, shear, and impact zones. The effect of the shear ring thickness and impact speed on the failure surface morphology was discussed. The typical shear stress–strain curves could be divided into three sections: elastic, plastic rise, and plastic plateau sections. Subsequently, a modified Johnson–Cook constitutive model was employed to fit the shear stress–strain results, and the fitted curves showed good agreement with the tested curves. |
abstractGer |
The failure mechanism and size effect during the quasi-static and dynamic shear tests of hat-shaped specimens were investigated in this study. Three types of specimens with different shear ring thicknesses (800, 400, and 50 μm) were designed. Quasi-static tests were carried out using an electronic universal testing machine, while dynamic impact tests were carried out using split Hopkinson pressure bar (SHPB) tests. The adiabatic temperature rises with different strain rates, and the shear ring thickness was calculated. We found that the adiabatic temperature rises of the specimens with shear ring thicknesses of 800 and 400 μm were much larger than those of the specimens with shear ring thicknesses of 50 μm. The failure surfaces after the SHPB test were investigated via scanning electron microscopy, and the failure surfaces after the SHPB test could be divided into three zones: tensile, shear, and impact zones. The effect of the shear ring thickness and impact speed on the failure surface morphology was discussed. The typical shear stress–strain curves could be divided into three sections: elastic, plastic rise, and plastic plateau sections. Subsequently, a modified Johnson–Cook constitutive model was employed to fit the shear stress–strain results, and the fitted curves showed good agreement with the tested curves. |
abstract_unstemmed |
The failure mechanism and size effect during the quasi-static and dynamic shear tests of hat-shaped specimens were investigated in this study. Three types of specimens with different shear ring thicknesses (800, 400, and 50 μm) were designed. Quasi-static tests were carried out using an electronic universal testing machine, while dynamic impact tests were carried out using split Hopkinson pressure bar (SHPB) tests. The adiabatic temperature rises with different strain rates, and the shear ring thickness was calculated. We found that the adiabatic temperature rises of the specimens with shear ring thicknesses of 800 and 400 μm were much larger than those of the specimens with shear ring thicknesses of 50 μm. The failure surfaces after the SHPB test were investigated via scanning electron microscopy, and the failure surfaces after the SHPB test could be divided into three zones: tensile, shear, and impact zones. The effect of the shear ring thickness and impact speed on the failure surface morphology was discussed. The typical shear stress–strain curves could be divided into three sections: elastic, plastic rise, and plastic plateau sections. Subsequently, a modified Johnson–Cook constitutive model was employed to fit the shear stress–strain results, and the fitted curves showed good agreement with the tested curves. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Size effect during dynamic shear tests with hat-shaped specimens |
url |
https://doi.org/10.1016/j.jmrt.2023.10.140 https://doaj.org/article/8f13851e9e3248cfa1c71c6f2469aded http://www.sciencedirect.com/science/article/pii/S2238785423025899 https://doaj.org/toc/2238-7854 |
remote_bool |
true |
author2 |
Anna Jiang Zhibin Wang Feng Jiang Fuzeng Wang Xian Wu Yong Zhang |
author2Str |
Anna Jiang Zhibin Wang Feng Jiang Fuzeng Wang Xian Wu Yong Zhang |
ppnlink |
768093163 |
callnumber-subject |
TN - Mining Engineering and Metallurgy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jmrt.2023.10.140 |
callnumber-a |
TN1-997 |
up_date |
2024-07-03T22:30:07.663Z |
_version_ |
1803598752818135040 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ096823763</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414092254.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmrt.2023.10.140</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096823763</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8f13851e9e3248cfa1c71c6f2469aded</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lan Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Size effect during dynamic shear tests with hat-shaped specimens</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The failure mechanism and size effect during the quasi-static and dynamic shear tests of hat-shaped specimens were investigated in this study. Three types of specimens with different shear ring thicknesses (800, 400, and 50 μm) were designed. Quasi-static tests were carried out using an electronic universal testing machine, while dynamic impact tests were carried out using split Hopkinson pressure bar (SHPB) tests. The adiabatic temperature rises with different strain rates, and the shear ring thickness was calculated. We found that the adiabatic temperature rises of the specimens with shear ring thicknesses of 800 and 400 μm were much larger than those of the specimens with shear ring thicknesses of 50 μm. The failure surfaces after the SHPB test were investigated via scanning electron microscopy, and the failure surfaces after the SHPB test could be divided into three zones: tensile, shear, and impact zones. The effect of the shear ring thickness and impact speed on the failure surface morphology was discussed. The typical shear stress–strain curves could be divided into three sections: elastic, plastic rise, and plastic plateau sections. Subsequently, a modified Johnson–Cook constitutive model was employed to fit the shear stress–strain results, and the fitted curves showed good agreement with the tested curves.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hat-shaped specimen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Size effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Failure mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Split Hopkinson pressure bar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modified Johnson–Cook constitutive model</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anna Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhibin Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Feng Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fuzeng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xian Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yong Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Materials Research and Technology</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">27(2023), Seite 3231-3242</subfield><subfield code="w">(DE-627)768093163</subfield><subfield code="w">(DE-600)2732709-7</subfield><subfield code="x">22140697</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:3231-3242</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmrt.2023.10.140</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8f13851e9e3248cfa1c71c6f2469aded</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2238785423025899</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2238-7854</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">2023</subfield><subfield code="h">3231-3242</subfield></datafield></record></collection>
|
score |
7.399131 |