Prediction of Collapsing Strength of High-Strength Collapse-Resistant Casing Based on Machine Learning
With the increasing complexity of shale gas extraction conditions, a large number of high-strength collapse-resistant casing is applied to the extraction of unconventional oil and gas resources. There are errors in the traditional API collapse strength formula. A high-precision and low-computational...
Ausführliche Beschreibung
Autor*in: |
Peng Wang [verfasserIn] Chengxu Zhong [verfasserIn] Shuai Fan [verfasserIn] Dongfeng Li [verfasserIn] Shengyue Zhang [verfasserIn] Peihang Liu [verfasserIn] Yu Ji [verfasserIn] Heng Fan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
prediction of collapsing strength |
---|
Übergeordnetes Werk: |
In: Processes - MDPI AG, 2013, 11(2023), 3007, p 3007 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2023 ; number:3007, p 3007 |
Links: |
---|
DOI / URN: |
10.3390/pr11103007 |
---|
Katalog-ID: |
DOAJ096835958 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ096835958 | ||
003 | DE-627 | ||
005 | 20240413163315.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/pr11103007 |2 doi | |
035 | |a (DE-627)DOAJ096835958 | ||
035 | |a (DE-599)DOAJ2078ab1fbe8f460dadeb7961b957f9f3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Peng Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Prediction of Collapsing Strength of High-Strength Collapse-Resistant Casing Based on Machine Learning |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a With the increasing complexity of shale gas extraction conditions, a large number of high-strength collapse-resistant casing is applied to the extraction of unconventional oil and gas resources. There are errors in the traditional API collapse strength formula. A high-precision and low-computational-cost model is needed for predicting the strength of high-collapsible casing. The key influencing factors of casing anti-collapse strength were determined as outer diameter, wall thickness, yield strength, ovality, wall thickness unevenness, and residual stress by analyzing the casing collapse mechanism. In response to the key factors mentioned above, a dataset was formed by measuring the geometric parameters of the full-size casing and collecting data on the results of the anti-collapse strength experiment, which was divided into a training set (70%) and a testing set (30%). Three machine-learning algorithms, a neural network, random forest, and support vector machine, were trained to predict the anti-extrusion strength. The correlation coefficient R<sup<2</sup<, root mean square error RMSE, and average relative MRE were used to evaluate the indexes for model preference evaluation. The results show that machine-learning algorithms have unique advantages in casing anti-collapsing strength prediction. Within which, the neural network prediction model has the best prediction effect, and its characteristics of high precision, low cost and high efficiency are more suitable for the prediction of casing extrusion strength. Its testing set R<sup<2</sup< is 0.9733, RMSE is 0.0267 and MRE is 0.0782, and the prediction accuracy can reach 92.2% which is much higher than the API calculation result (63.3%). The network prediction model is suitable for casing anti-collapsing strength prediction and meets the actual prediction requirements. | ||
650 | 4 | |a prediction of collapsing strength | |
650 | 4 | |a high-strength collapse-resistant casing | |
650 | 4 | |a machine learning | |
653 | 0 | |a Chemical technology | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Chengxu Zhong |e verfasserin |4 aut | |
700 | 0 | |a Shuai Fan |e verfasserin |4 aut | |
700 | 0 | |a Dongfeng Li |e verfasserin |4 aut | |
700 | 0 | |a Shengyue Zhang |e verfasserin |4 aut | |
700 | 0 | |a Peihang Liu |e verfasserin |4 aut | |
700 | 0 | |a Yu Ji |e verfasserin |4 aut | |
700 | 0 | |a Heng Fan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Processes |d MDPI AG, 2013 |g 11(2023), 3007, p 3007 |w (DE-627)750371439 |w (DE-600)2720994-5 |x 22279717 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2023 |g number:3007, p 3007 |
856 | 4 | 0 | |u https://doi.org/10.3390/pr11103007 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/2078ab1fbe8f460dadeb7961b957f9f3 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2227-9717/11/10/3007 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2227-9717 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2023 |e 3007, p 3007 |
author_variant |
p w pw c z cz s f sf d l dl s z sz p l pl y j yj h f hf |
---|---|
matchkey_str |
article:22279717:2023----::rdcinfolpigteghfihtegholpeeitncsn |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TP |
publishDate |
2023 |
allfields |
10.3390/pr11103007 doi (DE-627)DOAJ096835958 (DE-599)DOAJ2078ab1fbe8f460dadeb7961b957f9f3 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Peng Wang verfasserin aut Prediction of Collapsing Strength of High-Strength Collapse-Resistant Casing Based on Machine Learning 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the increasing complexity of shale gas extraction conditions, a large number of high-strength collapse-resistant casing is applied to the extraction of unconventional oil and gas resources. There are errors in the traditional API collapse strength formula. A high-precision and low-computational-cost model is needed for predicting the strength of high-collapsible casing. The key influencing factors of casing anti-collapse strength were determined as outer diameter, wall thickness, yield strength, ovality, wall thickness unevenness, and residual stress by analyzing the casing collapse mechanism. In response to the key factors mentioned above, a dataset was formed by measuring the geometric parameters of the full-size casing and collecting data on the results of the anti-collapse strength experiment, which was divided into a training set (70%) and a testing set (30%). Three machine-learning algorithms, a neural network, random forest, and support vector machine, were trained to predict the anti-extrusion strength. The correlation coefficient R<sup<2</sup<, root mean square error RMSE, and average relative MRE were used to evaluate the indexes for model preference evaluation. The results show that machine-learning algorithms have unique advantages in casing anti-collapsing strength prediction. Within which, the neural network prediction model has the best prediction effect, and its characteristics of high precision, low cost and high efficiency are more suitable for the prediction of casing extrusion strength. Its testing set R<sup<2</sup< is 0.9733, RMSE is 0.0267 and MRE is 0.0782, and the prediction accuracy can reach 92.2% which is much higher than the API calculation result (63.3%). The network prediction model is suitable for casing anti-collapsing strength prediction and meets the actual prediction requirements. prediction of collapsing strength high-strength collapse-resistant casing machine learning Chemical technology Chemistry Chengxu Zhong verfasserin aut Shuai Fan verfasserin aut Dongfeng Li verfasserin aut Shengyue Zhang verfasserin aut Peihang Liu verfasserin aut Yu Ji verfasserin aut Heng Fan verfasserin aut In Processes MDPI AG, 2013 11(2023), 3007, p 3007 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:11 year:2023 number:3007, p 3007 https://doi.org/10.3390/pr11103007 kostenfrei https://doaj.org/article/2078ab1fbe8f460dadeb7961b957f9f3 kostenfrei https://www.mdpi.com/2227-9717/11/10/3007 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 3007, p 3007 |
spelling |
10.3390/pr11103007 doi (DE-627)DOAJ096835958 (DE-599)DOAJ2078ab1fbe8f460dadeb7961b957f9f3 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Peng Wang verfasserin aut Prediction of Collapsing Strength of High-Strength Collapse-Resistant Casing Based on Machine Learning 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the increasing complexity of shale gas extraction conditions, a large number of high-strength collapse-resistant casing is applied to the extraction of unconventional oil and gas resources. There are errors in the traditional API collapse strength formula. A high-precision and low-computational-cost model is needed for predicting the strength of high-collapsible casing. The key influencing factors of casing anti-collapse strength were determined as outer diameter, wall thickness, yield strength, ovality, wall thickness unevenness, and residual stress by analyzing the casing collapse mechanism. In response to the key factors mentioned above, a dataset was formed by measuring the geometric parameters of the full-size casing and collecting data on the results of the anti-collapse strength experiment, which was divided into a training set (70%) and a testing set (30%). Three machine-learning algorithms, a neural network, random forest, and support vector machine, were trained to predict the anti-extrusion strength. The correlation coefficient R<sup<2</sup<, root mean square error RMSE, and average relative MRE were used to evaluate the indexes for model preference evaluation. The results show that machine-learning algorithms have unique advantages in casing anti-collapsing strength prediction. Within which, the neural network prediction model has the best prediction effect, and its characteristics of high precision, low cost and high efficiency are more suitable for the prediction of casing extrusion strength. Its testing set R<sup<2</sup< is 0.9733, RMSE is 0.0267 and MRE is 0.0782, and the prediction accuracy can reach 92.2% which is much higher than the API calculation result (63.3%). The network prediction model is suitable for casing anti-collapsing strength prediction and meets the actual prediction requirements. prediction of collapsing strength high-strength collapse-resistant casing machine learning Chemical technology Chemistry Chengxu Zhong verfasserin aut Shuai Fan verfasserin aut Dongfeng Li verfasserin aut Shengyue Zhang verfasserin aut Peihang Liu verfasserin aut Yu Ji verfasserin aut Heng Fan verfasserin aut In Processes MDPI AG, 2013 11(2023), 3007, p 3007 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:11 year:2023 number:3007, p 3007 https://doi.org/10.3390/pr11103007 kostenfrei https://doaj.org/article/2078ab1fbe8f460dadeb7961b957f9f3 kostenfrei https://www.mdpi.com/2227-9717/11/10/3007 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 3007, p 3007 |
allfields_unstemmed |
10.3390/pr11103007 doi (DE-627)DOAJ096835958 (DE-599)DOAJ2078ab1fbe8f460dadeb7961b957f9f3 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Peng Wang verfasserin aut Prediction of Collapsing Strength of High-Strength Collapse-Resistant Casing Based on Machine Learning 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the increasing complexity of shale gas extraction conditions, a large number of high-strength collapse-resistant casing is applied to the extraction of unconventional oil and gas resources. There are errors in the traditional API collapse strength formula. A high-precision and low-computational-cost model is needed for predicting the strength of high-collapsible casing. The key influencing factors of casing anti-collapse strength were determined as outer diameter, wall thickness, yield strength, ovality, wall thickness unevenness, and residual stress by analyzing the casing collapse mechanism. In response to the key factors mentioned above, a dataset was formed by measuring the geometric parameters of the full-size casing and collecting data on the results of the anti-collapse strength experiment, which was divided into a training set (70%) and a testing set (30%). Three machine-learning algorithms, a neural network, random forest, and support vector machine, were trained to predict the anti-extrusion strength. The correlation coefficient R<sup<2</sup<, root mean square error RMSE, and average relative MRE were used to evaluate the indexes for model preference evaluation. The results show that machine-learning algorithms have unique advantages in casing anti-collapsing strength prediction. Within which, the neural network prediction model has the best prediction effect, and its characteristics of high precision, low cost and high efficiency are more suitable for the prediction of casing extrusion strength. Its testing set R<sup<2</sup< is 0.9733, RMSE is 0.0267 and MRE is 0.0782, and the prediction accuracy can reach 92.2% which is much higher than the API calculation result (63.3%). The network prediction model is suitable for casing anti-collapsing strength prediction and meets the actual prediction requirements. prediction of collapsing strength high-strength collapse-resistant casing machine learning Chemical technology Chemistry Chengxu Zhong verfasserin aut Shuai Fan verfasserin aut Dongfeng Li verfasserin aut Shengyue Zhang verfasserin aut Peihang Liu verfasserin aut Yu Ji verfasserin aut Heng Fan verfasserin aut In Processes MDPI AG, 2013 11(2023), 3007, p 3007 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:11 year:2023 number:3007, p 3007 https://doi.org/10.3390/pr11103007 kostenfrei https://doaj.org/article/2078ab1fbe8f460dadeb7961b957f9f3 kostenfrei https://www.mdpi.com/2227-9717/11/10/3007 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 3007, p 3007 |
allfieldsGer |
10.3390/pr11103007 doi (DE-627)DOAJ096835958 (DE-599)DOAJ2078ab1fbe8f460dadeb7961b957f9f3 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Peng Wang verfasserin aut Prediction of Collapsing Strength of High-Strength Collapse-Resistant Casing Based on Machine Learning 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the increasing complexity of shale gas extraction conditions, a large number of high-strength collapse-resistant casing is applied to the extraction of unconventional oil and gas resources. There are errors in the traditional API collapse strength formula. A high-precision and low-computational-cost model is needed for predicting the strength of high-collapsible casing. The key influencing factors of casing anti-collapse strength were determined as outer diameter, wall thickness, yield strength, ovality, wall thickness unevenness, and residual stress by analyzing the casing collapse mechanism. In response to the key factors mentioned above, a dataset was formed by measuring the geometric parameters of the full-size casing and collecting data on the results of the anti-collapse strength experiment, which was divided into a training set (70%) and a testing set (30%). Three machine-learning algorithms, a neural network, random forest, and support vector machine, were trained to predict the anti-extrusion strength. The correlation coefficient R<sup<2</sup<, root mean square error RMSE, and average relative MRE were used to evaluate the indexes for model preference evaluation. The results show that machine-learning algorithms have unique advantages in casing anti-collapsing strength prediction. Within which, the neural network prediction model has the best prediction effect, and its characteristics of high precision, low cost and high efficiency are more suitable for the prediction of casing extrusion strength. Its testing set R<sup<2</sup< is 0.9733, RMSE is 0.0267 and MRE is 0.0782, and the prediction accuracy can reach 92.2% which is much higher than the API calculation result (63.3%). The network prediction model is suitable for casing anti-collapsing strength prediction and meets the actual prediction requirements. prediction of collapsing strength high-strength collapse-resistant casing machine learning Chemical technology Chemistry Chengxu Zhong verfasserin aut Shuai Fan verfasserin aut Dongfeng Li verfasserin aut Shengyue Zhang verfasserin aut Peihang Liu verfasserin aut Yu Ji verfasserin aut Heng Fan verfasserin aut In Processes MDPI AG, 2013 11(2023), 3007, p 3007 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:11 year:2023 number:3007, p 3007 https://doi.org/10.3390/pr11103007 kostenfrei https://doaj.org/article/2078ab1fbe8f460dadeb7961b957f9f3 kostenfrei https://www.mdpi.com/2227-9717/11/10/3007 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 3007, p 3007 |
allfieldsSound |
10.3390/pr11103007 doi (DE-627)DOAJ096835958 (DE-599)DOAJ2078ab1fbe8f460dadeb7961b957f9f3 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Peng Wang verfasserin aut Prediction of Collapsing Strength of High-Strength Collapse-Resistant Casing Based on Machine Learning 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the increasing complexity of shale gas extraction conditions, a large number of high-strength collapse-resistant casing is applied to the extraction of unconventional oil and gas resources. There are errors in the traditional API collapse strength formula. A high-precision and low-computational-cost model is needed for predicting the strength of high-collapsible casing. The key influencing factors of casing anti-collapse strength were determined as outer diameter, wall thickness, yield strength, ovality, wall thickness unevenness, and residual stress by analyzing the casing collapse mechanism. In response to the key factors mentioned above, a dataset was formed by measuring the geometric parameters of the full-size casing and collecting data on the results of the anti-collapse strength experiment, which was divided into a training set (70%) and a testing set (30%). Three machine-learning algorithms, a neural network, random forest, and support vector machine, were trained to predict the anti-extrusion strength. The correlation coefficient R<sup<2</sup<, root mean square error RMSE, and average relative MRE were used to evaluate the indexes for model preference evaluation. The results show that machine-learning algorithms have unique advantages in casing anti-collapsing strength prediction. Within which, the neural network prediction model has the best prediction effect, and its characteristics of high precision, low cost and high efficiency are more suitable for the prediction of casing extrusion strength. Its testing set R<sup<2</sup< is 0.9733, RMSE is 0.0267 and MRE is 0.0782, and the prediction accuracy can reach 92.2% which is much higher than the API calculation result (63.3%). The network prediction model is suitable for casing anti-collapsing strength prediction and meets the actual prediction requirements. prediction of collapsing strength high-strength collapse-resistant casing machine learning Chemical technology Chemistry Chengxu Zhong verfasserin aut Shuai Fan verfasserin aut Dongfeng Li verfasserin aut Shengyue Zhang verfasserin aut Peihang Liu verfasserin aut Yu Ji verfasserin aut Heng Fan verfasserin aut In Processes MDPI AG, 2013 11(2023), 3007, p 3007 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:11 year:2023 number:3007, p 3007 https://doi.org/10.3390/pr11103007 kostenfrei https://doaj.org/article/2078ab1fbe8f460dadeb7961b957f9f3 kostenfrei https://www.mdpi.com/2227-9717/11/10/3007 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 3007, p 3007 |
language |
English |
source |
In Processes 11(2023), 3007, p 3007 volume:11 year:2023 number:3007, p 3007 |
sourceStr |
In Processes 11(2023), 3007, p 3007 volume:11 year:2023 number:3007, p 3007 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
prediction of collapsing strength high-strength collapse-resistant casing machine learning Chemical technology Chemistry |
isfreeaccess_bool |
true |
container_title |
Processes |
authorswithroles_txt_mv |
Peng Wang @@aut@@ Chengxu Zhong @@aut@@ Shuai Fan @@aut@@ Dongfeng Li @@aut@@ Shengyue Zhang @@aut@@ Peihang Liu @@aut@@ Yu Ji @@aut@@ Heng Fan @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
750371439 |
id |
DOAJ096835958 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096835958</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413163315.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/pr11103007</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096835958</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2078ab1fbe8f460dadeb7961b957f9f3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Peng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Prediction of Collapsing Strength of High-Strength Collapse-Resistant Casing Based on Machine Learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the increasing complexity of shale gas extraction conditions, a large number of high-strength collapse-resistant casing is applied to the extraction of unconventional oil and gas resources. There are errors in the traditional API collapse strength formula. A high-precision and low-computational-cost model is needed for predicting the strength of high-collapsible casing. The key influencing factors of casing anti-collapse strength were determined as outer diameter, wall thickness, yield strength, ovality, wall thickness unevenness, and residual stress by analyzing the casing collapse mechanism. In response to the key factors mentioned above, a dataset was formed by measuring the geometric parameters of the full-size casing and collecting data on the results of the anti-collapse strength experiment, which was divided into a training set (70%) and a testing set (30%). Three machine-learning algorithms, a neural network, random forest, and support vector machine, were trained to predict the anti-extrusion strength. The correlation coefficient R<sup<2</sup<, root mean square error RMSE, and average relative MRE were used to evaluate the indexes for model preference evaluation. The results show that machine-learning algorithms have unique advantages in casing anti-collapsing strength prediction. Within which, the neural network prediction model has the best prediction effect, and its characteristics of high precision, low cost and high efficiency are more suitable for the prediction of casing extrusion strength. Its testing set R<sup<2</sup< is 0.9733, RMSE is 0.0267 and MRE is 0.0782, and the prediction accuracy can reach 92.2% which is much higher than the API calculation result (63.3%). The network prediction model is suitable for casing anti-collapsing strength prediction and meets the actual prediction requirements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prediction of collapsing strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high-strength collapse-resistant casing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengxu Zhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuai Fan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dongfeng Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shengyue Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peihang Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yu Ji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Heng Fan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Processes</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2023), 3007, p 3007</subfield><subfield code="w">(DE-627)750371439</subfield><subfield code="w">(DE-600)2720994-5</subfield><subfield code="x">22279717</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3007, p 3007</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/pr11103007</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2078ab1fbe8f460dadeb7961b957f9f3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9717/11/10/3007</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9717</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="e">3007, p 3007</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Peng Wang |
spellingShingle |
Peng Wang misc TP1-1185 misc QD1-999 misc prediction of collapsing strength misc high-strength collapse-resistant casing misc machine learning misc Chemical technology misc Chemistry Prediction of Collapsing Strength of High-Strength Collapse-Resistant Casing Based on Machine Learning |
authorStr |
Peng Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)750371439 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
22279717 |
topic_title |
TP1-1185 QD1-999 Prediction of Collapsing Strength of High-Strength Collapse-Resistant Casing Based on Machine Learning prediction of collapsing strength high-strength collapse-resistant casing machine learning |
topic |
misc TP1-1185 misc QD1-999 misc prediction of collapsing strength misc high-strength collapse-resistant casing misc machine learning misc Chemical technology misc Chemistry |
topic_unstemmed |
misc TP1-1185 misc QD1-999 misc prediction of collapsing strength misc high-strength collapse-resistant casing misc machine learning misc Chemical technology misc Chemistry |
topic_browse |
misc TP1-1185 misc QD1-999 misc prediction of collapsing strength misc high-strength collapse-resistant casing misc machine learning misc Chemical technology misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Processes |
hierarchy_parent_id |
750371439 |
hierarchy_top_title |
Processes |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)750371439 (DE-600)2720994-5 |
title |
Prediction of Collapsing Strength of High-Strength Collapse-Resistant Casing Based on Machine Learning |
ctrlnum |
(DE-627)DOAJ096835958 (DE-599)DOAJ2078ab1fbe8f460dadeb7961b957f9f3 |
title_full |
Prediction of Collapsing Strength of High-Strength Collapse-Resistant Casing Based on Machine Learning |
author_sort |
Peng Wang |
journal |
Processes |
journalStr |
Processes |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Peng Wang Chengxu Zhong Shuai Fan Dongfeng Li Shengyue Zhang Peihang Liu Yu Ji Heng Fan |
container_volume |
11 |
class |
TP1-1185 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Peng Wang |
doi_str_mv |
10.3390/pr11103007 |
author2-role |
verfasserin |
title_sort |
prediction of collapsing strength of high-strength collapse-resistant casing based on machine learning |
callnumber |
TP1-1185 |
title_auth |
Prediction of Collapsing Strength of High-Strength Collapse-Resistant Casing Based on Machine Learning |
abstract |
With the increasing complexity of shale gas extraction conditions, a large number of high-strength collapse-resistant casing is applied to the extraction of unconventional oil and gas resources. There are errors in the traditional API collapse strength formula. A high-precision and low-computational-cost model is needed for predicting the strength of high-collapsible casing. The key influencing factors of casing anti-collapse strength were determined as outer diameter, wall thickness, yield strength, ovality, wall thickness unevenness, and residual stress by analyzing the casing collapse mechanism. In response to the key factors mentioned above, a dataset was formed by measuring the geometric parameters of the full-size casing and collecting data on the results of the anti-collapse strength experiment, which was divided into a training set (70%) and a testing set (30%). Three machine-learning algorithms, a neural network, random forest, and support vector machine, were trained to predict the anti-extrusion strength. The correlation coefficient R<sup<2</sup<, root mean square error RMSE, and average relative MRE were used to evaluate the indexes for model preference evaluation. The results show that machine-learning algorithms have unique advantages in casing anti-collapsing strength prediction. Within which, the neural network prediction model has the best prediction effect, and its characteristics of high precision, low cost and high efficiency are more suitable for the prediction of casing extrusion strength. Its testing set R<sup<2</sup< is 0.9733, RMSE is 0.0267 and MRE is 0.0782, and the prediction accuracy can reach 92.2% which is much higher than the API calculation result (63.3%). The network prediction model is suitable for casing anti-collapsing strength prediction and meets the actual prediction requirements. |
abstractGer |
With the increasing complexity of shale gas extraction conditions, a large number of high-strength collapse-resistant casing is applied to the extraction of unconventional oil and gas resources. There are errors in the traditional API collapse strength formula. A high-precision and low-computational-cost model is needed for predicting the strength of high-collapsible casing. The key influencing factors of casing anti-collapse strength were determined as outer diameter, wall thickness, yield strength, ovality, wall thickness unevenness, and residual stress by analyzing the casing collapse mechanism. In response to the key factors mentioned above, a dataset was formed by measuring the geometric parameters of the full-size casing and collecting data on the results of the anti-collapse strength experiment, which was divided into a training set (70%) and a testing set (30%). Three machine-learning algorithms, a neural network, random forest, and support vector machine, were trained to predict the anti-extrusion strength. The correlation coefficient R<sup<2</sup<, root mean square error RMSE, and average relative MRE were used to evaluate the indexes for model preference evaluation. The results show that machine-learning algorithms have unique advantages in casing anti-collapsing strength prediction. Within which, the neural network prediction model has the best prediction effect, and its characteristics of high precision, low cost and high efficiency are more suitable for the prediction of casing extrusion strength. Its testing set R<sup<2</sup< is 0.9733, RMSE is 0.0267 and MRE is 0.0782, and the prediction accuracy can reach 92.2% which is much higher than the API calculation result (63.3%). The network prediction model is suitable for casing anti-collapsing strength prediction and meets the actual prediction requirements. |
abstract_unstemmed |
With the increasing complexity of shale gas extraction conditions, a large number of high-strength collapse-resistant casing is applied to the extraction of unconventional oil and gas resources. There are errors in the traditional API collapse strength formula. A high-precision and low-computational-cost model is needed for predicting the strength of high-collapsible casing. The key influencing factors of casing anti-collapse strength were determined as outer diameter, wall thickness, yield strength, ovality, wall thickness unevenness, and residual stress by analyzing the casing collapse mechanism. In response to the key factors mentioned above, a dataset was formed by measuring the geometric parameters of the full-size casing and collecting data on the results of the anti-collapse strength experiment, which was divided into a training set (70%) and a testing set (30%). Three machine-learning algorithms, a neural network, random forest, and support vector machine, were trained to predict the anti-extrusion strength. The correlation coefficient R<sup<2</sup<, root mean square error RMSE, and average relative MRE were used to evaluate the indexes for model preference evaluation. The results show that machine-learning algorithms have unique advantages in casing anti-collapsing strength prediction. Within which, the neural network prediction model has the best prediction effect, and its characteristics of high precision, low cost and high efficiency are more suitable for the prediction of casing extrusion strength. Its testing set R<sup<2</sup< is 0.9733, RMSE is 0.0267 and MRE is 0.0782, and the prediction accuracy can reach 92.2% which is much higher than the API calculation result (63.3%). The network prediction model is suitable for casing anti-collapsing strength prediction and meets the actual prediction requirements. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3007, p 3007 |
title_short |
Prediction of Collapsing Strength of High-Strength Collapse-Resistant Casing Based on Machine Learning |
url |
https://doi.org/10.3390/pr11103007 https://doaj.org/article/2078ab1fbe8f460dadeb7961b957f9f3 https://www.mdpi.com/2227-9717/11/10/3007 https://doaj.org/toc/2227-9717 |
remote_bool |
true |
author2 |
Chengxu Zhong Shuai Fan Dongfeng Li Shengyue Zhang Peihang Liu Yu Ji Heng Fan |
author2Str |
Chengxu Zhong Shuai Fan Dongfeng Li Shengyue Zhang Peihang Liu Yu Ji Heng Fan |
ppnlink |
750371439 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/pr11103007 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T22:33:59.743Z |
_version_ |
1803598996173750272 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ096835958</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413163315.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/pr11103007</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ096835958</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2078ab1fbe8f460dadeb7961b957f9f3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Peng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Prediction of Collapsing Strength of High-Strength Collapse-Resistant Casing Based on Machine Learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the increasing complexity of shale gas extraction conditions, a large number of high-strength collapse-resistant casing is applied to the extraction of unconventional oil and gas resources. There are errors in the traditional API collapse strength formula. A high-precision and low-computational-cost model is needed for predicting the strength of high-collapsible casing. The key influencing factors of casing anti-collapse strength were determined as outer diameter, wall thickness, yield strength, ovality, wall thickness unevenness, and residual stress by analyzing the casing collapse mechanism. In response to the key factors mentioned above, a dataset was formed by measuring the geometric parameters of the full-size casing and collecting data on the results of the anti-collapse strength experiment, which was divided into a training set (70%) and a testing set (30%). Three machine-learning algorithms, a neural network, random forest, and support vector machine, were trained to predict the anti-extrusion strength. The correlation coefficient R<sup<2</sup<, root mean square error RMSE, and average relative MRE were used to evaluate the indexes for model preference evaluation. The results show that machine-learning algorithms have unique advantages in casing anti-collapsing strength prediction. Within which, the neural network prediction model has the best prediction effect, and its characteristics of high precision, low cost and high efficiency are more suitable for the prediction of casing extrusion strength. Its testing set R<sup<2</sup< is 0.9733, RMSE is 0.0267 and MRE is 0.0782, and the prediction accuracy can reach 92.2% which is much higher than the API calculation result (63.3%). The network prediction model is suitable for casing anti-collapsing strength prediction and meets the actual prediction requirements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prediction of collapsing strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high-strength collapse-resistant casing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengxu Zhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuai Fan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dongfeng Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shengyue Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peihang Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yu Ji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Heng Fan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Processes</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2023), 3007, p 3007</subfield><subfield code="w">(DE-627)750371439</subfield><subfield code="w">(DE-600)2720994-5</subfield><subfield code="x">22279717</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3007, p 3007</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/pr11103007</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2078ab1fbe8f460dadeb7961b957f9f3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9717/11/10/3007</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9717</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="e">3007, p 3007</subfield></datafield></record></collection>
|
score |
7.401634 |