Artificial intelligence based prediction model of in-hospital mortality among females with acute coronary syndrome: for the Jerusalem Platelets Thrombosis and Intervention in Cardiology (JUPITER-12) Study Group

IntroductionDespite ongoing efforts to minimize sex bias in diagnosis and treatment of acute coronary syndrome (ACS), data still shows outcomes differences between sexes including higher risk of all-cause mortality rate among females. Hence, the aim of the current study was to examine sex difference...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Ranel Loutati [verfasserIn]

Nimrod Perel [verfasserIn]

David Marmor [verfasserIn]

Tommer Maller [verfasserIn]

Louay Taha [verfasserIn]

Itshak Amsalem [verfasserIn]

Rafael Hitter [verfasserIn]

Manassra Mohammed [verfasserIn]

Nir Levi [verfasserIn]

Maayan Shrem [verfasserIn]

Motaz Amro [verfasserIn]

Mony Shuvy [verfasserIn]

Michael Glikson [verfasserIn]

Elad Asher [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2024

Schlagwörter:

artificial intelligence

machine learning

ACS

sex disparities

in-hospital mortality

Übergeordnetes Werk:

In: Frontiers in Cardiovascular Medicine - Frontiers Media S.A., 2015, 11(2024)

Übergeordnetes Werk:

volume:11 ; year:2024

Links:

Link aufrufen
Link aufrufen
Link aufrufen
Journal toc

DOI / URN:

10.3389/fcvm.2024.1333252

Katalog-ID:

DOAJ097067016

Nicht das Richtige dabei?

Schreiben Sie uns!