Experimental analysis of passivity‐based control theory for permanent magnet synchronous motor drive fed by grid power
Abstract Controlling the Permanent Magnet Synchronous Motor (PMSM) can be challenging due to the nonlinearity of its dynamics, which makes it difficult to design control strategies that are both robust and effective. To address this challenge, this paper presents a novel control strategy rooted in t...
Ausführliche Beschreibung
Autor*in: |
Youcef Belkhier [verfasserIn] Achour Abdelyazid [verfasserIn] Adel Oubelaid [verfasserIn] Nima Khosravi [verfasserIn] Mohit Bajaj [verfasserIn] Pradeep Vishnuram [verfasserIn] Ievgen Zaitsev [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IET Control Theory & Applications - Wiley, 2021, 18(2024), 4, Seite 495-510 |
---|---|
Übergeordnetes Werk: |
volume:18 ; year:2024 ; number:4 ; pages:495-510 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1049/cth2.12574 |
---|
Katalog-ID: |
DOAJ097068152 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ097068152 | ||
003 | DE-627 | ||
005 | 20240413171602.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1049/cth2.12574 |2 doi | |
035 | |a (DE-627)DOAJ097068152 | ||
035 | |a (DE-599)DOAJabfce868150f449a82632fc9167fbc04 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TJ212-225 | |
100 | 0 | |a Youcef Belkhier |e verfasserin |4 aut | |
245 | 1 | 0 | |a Experimental analysis of passivity‐based control theory for permanent magnet synchronous motor drive fed by grid power |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Controlling the Permanent Magnet Synchronous Motor (PMSM) can be challenging due to the nonlinearity of its dynamics, which makes it difficult to design control strategies that are both robust and effective. To address this challenge, this paper presents a novel control strategy rooted in the concept of passivity that combines field‐oriented control (FOC). This strategy compels the PMSM to accurately follow velocity and electrical torque trajectories. The approach, known as passivity‐based control (PBC), entails reshaping the inherent system energy while introducing the necessary damping to attain the desired objectives. A crucial aspect involves identifying workless force terms within the process model. Despite their presence, these terms do not impact the energy balance and stability properties. As a result, eliminating these terms is unnecessary. This simplicity in control architecture not only preserves system stability but also bolsters overall robustness. The system's overall stability and the current tracking error's exponential convergence have both been demonstrated analytically. In order to maintain stability, the controller accounts for the nonlinearities of the plant and approximates the unstructured dynamics of the PMSM. The proposed control is designed using the dq model of the PMSM, which avoids the model's structure destruction due to singularities, since the dq model does not depend explicitly on the rotor angular position. Experimental results shown further, illustrate speed and position control with a desired pair calculated by a filter or a proportional‐integral (PI) controller for speed control and a proportional‐integral‐derivative (PID) controller for position control. Also the correlation between practical and theoretical results is given as well as the robustness test in relation to the uncertainties of the PMSM's inertia moment. The results demonstrates the effectiveness of the proposed strategy in controlling the PMSM under different operating conditions, highlighting its potential for industrial applications. | ||
650 | 4 | |a control nonlinearities | |
650 | 4 | |a nonlinear control systems | |
650 | 4 | |a nonlinear systems | |
650 | 4 | |a permanent magnet machines | |
653 | 0 | |a Control engineering systems. Automatic machinery (General) | |
700 | 0 | |a Achour Abdelyazid |e verfasserin |4 aut | |
700 | 0 | |a Adel Oubelaid |e verfasserin |4 aut | |
700 | 0 | |a Nima Khosravi |e verfasserin |4 aut | |
700 | 0 | |a Mohit Bajaj |e verfasserin |4 aut | |
700 | 0 | |a Pradeep Vishnuram |e verfasserin |4 aut | |
700 | 0 | |a Ievgen Zaitsev |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IET Control Theory & Applications |d Wiley, 2021 |g 18(2024), 4, Seite 495-510 |w (DE-627)52169163X |w (DE-600)2264241-9 |x 17518652 |7 nnns |
773 | 1 | 8 | |g volume:18 |g year:2024 |g number:4 |g pages:495-510 |
856 | 4 | 0 | |u https://doi.org/10.1049/cth2.12574 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/abfce868150f449a82632fc9167fbc04 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1049/cth2.12574 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1751-8644 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1751-8652 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 18 |j 2024 |e 4 |h 495-510 |
author_variant |
y b yb a a aa a o ao n k nk m b mb p v pv i z iz |
---|---|
matchkey_str |
article:17518652:2024----::xeietlnlssfasvtbsdototerfremnnmgesnho |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
TJ |
publishDate |
2024 |
allfields |
10.1049/cth2.12574 doi (DE-627)DOAJ097068152 (DE-599)DOAJabfce868150f449a82632fc9167fbc04 DE-627 ger DE-627 rakwb eng TJ212-225 Youcef Belkhier verfasserin aut Experimental analysis of passivity‐based control theory for permanent magnet synchronous motor drive fed by grid power 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Controlling the Permanent Magnet Synchronous Motor (PMSM) can be challenging due to the nonlinearity of its dynamics, which makes it difficult to design control strategies that are both robust and effective. To address this challenge, this paper presents a novel control strategy rooted in the concept of passivity that combines field‐oriented control (FOC). This strategy compels the PMSM to accurately follow velocity and electrical torque trajectories. The approach, known as passivity‐based control (PBC), entails reshaping the inherent system energy while introducing the necessary damping to attain the desired objectives. A crucial aspect involves identifying workless force terms within the process model. Despite their presence, these terms do not impact the energy balance and stability properties. As a result, eliminating these terms is unnecessary. This simplicity in control architecture not only preserves system stability but also bolsters overall robustness. The system's overall stability and the current tracking error's exponential convergence have both been demonstrated analytically. In order to maintain stability, the controller accounts for the nonlinearities of the plant and approximates the unstructured dynamics of the PMSM. The proposed control is designed using the dq model of the PMSM, which avoids the model's structure destruction due to singularities, since the dq model does not depend explicitly on the rotor angular position. Experimental results shown further, illustrate speed and position control with a desired pair calculated by a filter or a proportional‐integral (PI) controller for speed control and a proportional‐integral‐derivative (PID) controller for position control. Also the correlation between practical and theoretical results is given as well as the robustness test in relation to the uncertainties of the PMSM's inertia moment. The results demonstrates the effectiveness of the proposed strategy in controlling the PMSM under different operating conditions, highlighting its potential for industrial applications. control nonlinearities nonlinear control systems nonlinear systems permanent magnet machines Control engineering systems. Automatic machinery (General) Achour Abdelyazid verfasserin aut Adel Oubelaid verfasserin aut Nima Khosravi verfasserin aut Mohit Bajaj verfasserin aut Pradeep Vishnuram verfasserin aut Ievgen Zaitsev verfasserin aut In IET Control Theory & Applications Wiley, 2021 18(2024), 4, Seite 495-510 (DE-627)52169163X (DE-600)2264241-9 17518652 nnns volume:18 year:2024 number:4 pages:495-510 https://doi.org/10.1049/cth2.12574 kostenfrei https://doaj.org/article/abfce868150f449a82632fc9167fbc04 kostenfrei https://doi.org/10.1049/cth2.12574 kostenfrei https://doaj.org/toc/1751-8644 Journal toc kostenfrei https://doaj.org/toc/1751-8652 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 18 2024 4 495-510 |
spelling |
10.1049/cth2.12574 doi (DE-627)DOAJ097068152 (DE-599)DOAJabfce868150f449a82632fc9167fbc04 DE-627 ger DE-627 rakwb eng TJ212-225 Youcef Belkhier verfasserin aut Experimental analysis of passivity‐based control theory for permanent magnet synchronous motor drive fed by grid power 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Controlling the Permanent Magnet Synchronous Motor (PMSM) can be challenging due to the nonlinearity of its dynamics, which makes it difficult to design control strategies that are both robust and effective. To address this challenge, this paper presents a novel control strategy rooted in the concept of passivity that combines field‐oriented control (FOC). This strategy compels the PMSM to accurately follow velocity and electrical torque trajectories. The approach, known as passivity‐based control (PBC), entails reshaping the inherent system energy while introducing the necessary damping to attain the desired objectives. A crucial aspect involves identifying workless force terms within the process model. Despite their presence, these terms do not impact the energy balance and stability properties. As a result, eliminating these terms is unnecessary. This simplicity in control architecture not only preserves system stability but also bolsters overall robustness. The system's overall stability and the current tracking error's exponential convergence have both been demonstrated analytically. In order to maintain stability, the controller accounts for the nonlinearities of the plant and approximates the unstructured dynamics of the PMSM. The proposed control is designed using the dq model of the PMSM, which avoids the model's structure destruction due to singularities, since the dq model does not depend explicitly on the rotor angular position. Experimental results shown further, illustrate speed and position control with a desired pair calculated by a filter or a proportional‐integral (PI) controller for speed control and a proportional‐integral‐derivative (PID) controller for position control. Also the correlation between practical and theoretical results is given as well as the robustness test in relation to the uncertainties of the PMSM's inertia moment. The results demonstrates the effectiveness of the proposed strategy in controlling the PMSM under different operating conditions, highlighting its potential for industrial applications. control nonlinearities nonlinear control systems nonlinear systems permanent magnet machines Control engineering systems. Automatic machinery (General) Achour Abdelyazid verfasserin aut Adel Oubelaid verfasserin aut Nima Khosravi verfasserin aut Mohit Bajaj verfasserin aut Pradeep Vishnuram verfasserin aut Ievgen Zaitsev verfasserin aut In IET Control Theory & Applications Wiley, 2021 18(2024), 4, Seite 495-510 (DE-627)52169163X (DE-600)2264241-9 17518652 nnns volume:18 year:2024 number:4 pages:495-510 https://doi.org/10.1049/cth2.12574 kostenfrei https://doaj.org/article/abfce868150f449a82632fc9167fbc04 kostenfrei https://doi.org/10.1049/cth2.12574 kostenfrei https://doaj.org/toc/1751-8644 Journal toc kostenfrei https://doaj.org/toc/1751-8652 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 18 2024 4 495-510 |
allfields_unstemmed |
10.1049/cth2.12574 doi (DE-627)DOAJ097068152 (DE-599)DOAJabfce868150f449a82632fc9167fbc04 DE-627 ger DE-627 rakwb eng TJ212-225 Youcef Belkhier verfasserin aut Experimental analysis of passivity‐based control theory for permanent magnet synchronous motor drive fed by grid power 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Controlling the Permanent Magnet Synchronous Motor (PMSM) can be challenging due to the nonlinearity of its dynamics, which makes it difficult to design control strategies that are both robust and effective. To address this challenge, this paper presents a novel control strategy rooted in the concept of passivity that combines field‐oriented control (FOC). This strategy compels the PMSM to accurately follow velocity and electrical torque trajectories. The approach, known as passivity‐based control (PBC), entails reshaping the inherent system energy while introducing the necessary damping to attain the desired objectives. A crucial aspect involves identifying workless force terms within the process model. Despite their presence, these terms do not impact the energy balance and stability properties. As a result, eliminating these terms is unnecessary. This simplicity in control architecture not only preserves system stability but also bolsters overall robustness. The system's overall stability and the current tracking error's exponential convergence have both been demonstrated analytically. In order to maintain stability, the controller accounts for the nonlinearities of the plant and approximates the unstructured dynamics of the PMSM. The proposed control is designed using the dq model of the PMSM, which avoids the model's structure destruction due to singularities, since the dq model does not depend explicitly on the rotor angular position. Experimental results shown further, illustrate speed and position control with a desired pair calculated by a filter or a proportional‐integral (PI) controller for speed control and a proportional‐integral‐derivative (PID) controller for position control. Also the correlation between practical and theoretical results is given as well as the robustness test in relation to the uncertainties of the PMSM's inertia moment. The results demonstrates the effectiveness of the proposed strategy in controlling the PMSM under different operating conditions, highlighting its potential for industrial applications. control nonlinearities nonlinear control systems nonlinear systems permanent magnet machines Control engineering systems. Automatic machinery (General) Achour Abdelyazid verfasserin aut Adel Oubelaid verfasserin aut Nima Khosravi verfasserin aut Mohit Bajaj verfasserin aut Pradeep Vishnuram verfasserin aut Ievgen Zaitsev verfasserin aut In IET Control Theory & Applications Wiley, 2021 18(2024), 4, Seite 495-510 (DE-627)52169163X (DE-600)2264241-9 17518652 nnns volume:18 year:2024 number:4 pages:495-510 https://doi.org/10.1049/cth2.12574 kostenfrei https://doaj.org/article/abfce868150f449a82632fc9167fbc04 kostenfrei https://doi.org/10.1049/cth2.12574 kostenfrei https://doaj.org/toc/1751-8644 Journal toc kostenfrei https://doaj.org/toc/1751-8652 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 18 2024 4 495-510 |
allfieldsGer |
10.1049/cth2.12574 doi (DE-627)DOAJ097068152 (DE-599)DOAJabfce868150f449a82632fc9167fbc04 DE-627 ger DE-627 rakwb eng TJ212-225 Youcef Belkhier verfasserin aut Experimental analysis of passivity‐based control theory for permanent magnet synchronous motor drive fed by grid power 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Controlling the Permanent Magnet Synchronous Motor (PMSM) can be challenging due to the nonlinearity of its dynamics, which makes it difficult to design control strategies that are both robust and effective. To address this challenge, this paper presents a novel control strategy rooted in the concept of passivity that combines field‐oriented control (FOC). This strategy compels the PMSM to accurately follow velocity and electrical torque trajectories. The approach, known as passivity‐based control (PBC), entails reshaping the inherent system energy while introducing the necessary damping to attain the desired objectives. A crucial aspect involves identifying workless force terms within the process model. Despite their presence, these terms do not impact the energy balance and stability properties. As a result, eliminating these terms is unnecessary. This simplicity in control architecture not only preserves system stability but also bolsters overall robustness. The system's overall stability and the current tracking error's exponential convergence have both been demonstrated analytically. In order to maintain stability, the controller accounts for the nonlinearities of the plant and approximates the unstructured dynamics of the PMSM. The proposed control is designed using the dq model of the PMSM, which avoids the model's structure destruction due to singularities, since the dq model does not depend explicitly on the rotor angular position. Experimental results shown further, illustrate speed and position control with a desired pair calculated by a filter or a proportional‐integral (PI) controller for speed control and a proportional‐integral‐derivative (PID) controller for position control. Also the correlation between practical and theoretical results is given as well as the robustness test in relation to the uncertainties of the PMSM's inertia moment. The results demonstrates the effectiveness of the proposed strategy in controlling the PMSM under different operating conditions, highlighting its potential for industrial applications. control nonlinearities nonlinear control systems nonlinear systems permanent magnet machines Control engineering systems. Automatic machinery (General) Achour Abdelyazid verfasserin aut Adel Oubelaid verfasserin aut Nima Khosravi verfasserin aut Mohit Bajaj verfasserin aut Pradeep Vishnuram verfasserin aut Ievgen Zaitsev verfasserin aut In IET Control Theory & Applications Wiley, 2021 18(2024), 4, Seite 495-510 (DE-627)52169163X (DE-600)2264241-9 17518652 nnns volume:18 year:2024 number:4 pages:495-510 https://doi.org/10.1049/cth2.12574 kostenfrei https://doaj.org/article/abfce868150f449a82632fc9167fbc04 kostenfrei https://doi.org/10.1049/cth2.12574 kostenfrei https://doaj.org/toc/1751-8644 Journal toc kostenfrei https://doaj.org/toc/1751-8652 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 18 2024 4 495-510 |
allfieldsSound |
10.1049/cth2.12574 doi (DE-627)DOAJ097068152 (DE-599)DOAJabfce868150f449a82632fc9167fbc04 DE-627 ger DE-627 rakwb eng TJ212-225 Youcef Belkhier verfasserin aut Experimental analysis of passivity‐based control theory for permanent magnet synchronous motor drive fed by grid power 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Controlling the Permanent Magnet Synchronous Motor (PMSM) can be challenging due to the nonlinearity of its dynamics, which makes it difficult to design control strategies that are both robust and effective. To address this challenge, this paper presents a novel control strategy rooted in the concept of passivity that combines field‐oriented control (FOC). This strategy compels the PMSM to accurately follow velocity and electrical torque trajectories. The approach, known as passivity‐based control (PBC), entails reshaping the inherent system energy while introducing the necessary damping to attain the desired objectives. A crucial aspect involves identifying workless force terms within the process model. Despite their presence, these terms do not impact the energy balance and stability properties. As a result, eliminating these terms is unnecessary. This simplicity in control architecture not only preserves system stability but also bolsters overall robustness. The system's overall stability and the current tracking error's exponential convergence have both been demonstrated analytically. In order to maintain stability, the controller accounts for the nonlinearities of the plant and approximates the unstructured dynamics of the PMSM. The proposed control is designed using the dq model of the PMSM, which avoids the model's structure destruction due to singularities, since the dq model does not depend explicitly on the rotor angular position. Experimental results shown further, illustrate speed and position control with a desired pair calculated by a filter or a proportional‐integral (PI) controller for speed control and a proportional‐integral‐derivative (PID) controller for position control. Also the correlation between practical and theoretical results is given as well as the robustness test in relation to the uncertainties of the PMSM's inertia moment. The results demonstrates the effectiveness of the proposed strategy in controlling the PMSM under different operating conditions, highlighting its potential for industrial applications. control nonlinearities nonlinear control systems nonlinear systems permanent magnet machines Control engineering systems. Automatic machinery (General) Achour Abdelyazid verfasserin aut Adel Oubelaid verfasserin aut Nima Khosravi verfasserin aut Mohit Bajaj verfasserin aut Pradeep Vishnuram verfasserin aut Ievgen Zaitsev verfasserin aut In IET Control Theory & Applications Wiley, 2021 18(2024), 4, Seite 495-510 (DE-627)52169163X (DE-600)2264241-9 17518652 nnns volume:18 year:2024 number:4 pages:495-510 https://doi.org/10.1049/cth2.12574 kostenfrei https://doaj.org/article/abfce868150f449a82632fc9167fbc04 kostenfrei https://doi.org/10.1049/cth2.12574 kostenfrei https://doaj.org/toc/1751-8644 Journal toc kostenfrei https://doaj.org/toc/1751-8652 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 18 2024 4 495-510 |
language |
English |
source |
In IET Control Theory & Applications 18(2024), 4, Seite 495-510 volume:18 year:2024 number:4 pages:495-510 |
sourceStr |
In IET Control Theory & Applications 18(2024), 4, Seite 495-510 volume:18 year:2024 number:4 pages:495-510 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
control nonlinearities nonlinear control systems nonlinear systems permanent magnet machines Control engineering systems. Automatic machinery (General) |
isfreeaccess_bool |
true |
container_title |
IET Control Theory & Applications |
authorswithroles_txt_mv |
Youcef Belkhier @@aut@@ Achour Abdelyazid @@aut@@ Adel Oubelaid @@aut@@ Nima Khosravi @@aut@@ Mohit Bajaj @@aut@@ Pradeep Vishnuram @@aut@@ Ievgen Zaitsev @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
52169163X |
id |
DOAJ097068152 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097068152</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413171602.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1049/cth2.12574</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097068152</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJabfce868150f449a82632fc9167fbc04</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ212-225</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Youcef Belkhier</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental analysis of passivity‐based control theory for permanent magnet synchronous motor drive fed by grid power</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Controlling the Permanent Magnet Synchronous Motor (PMSM) can be challenging due to the nonlinearity of its dynamics, which makes it difficult to design control strategies that are both robust and effective. To address this challenge, this paper presents a novel control strategy rooted in the concept of passivity that combines field‐oriented control (FOC). This strategy compels the PMSM to accurately follow velocity and electrical torque trajectories. The approach, known as passivity‐based control (PBC), entails reshaping the inherent system energy while introducing the necessary damping to attain the desired objectives. A crucial aspect involves identifying workless force terms within the process model. Despite their presence, these terms do not impact the energy balance and stability properties. As a result, eliminating these terms is unnecessary. This simplicity in control architecture not only preserves system stability but also bolsters overall robustness. The system's overall stability and the current tracking error's exponential convergence have both been demonstrated analytically. In order to maintain stability, the controller accounts for the nonlinearities of the plant and approximates the unstructured dynamics of the PMSM. The proposed control is designed using the dq model of the PMSM, which avoids the model's structure destruction due to singularities, since the dq model does not depend explicitly on the rotor angular position. Experimental results shown further, illustrate speed and position control with a desired pair calculated by a filter or a proportional‐integral (PI) controller for speed control and a proportional‐integral‐derivative (PID) controller for position control. Also the correlation between practical and theoretical results is given as well as the robustness test in relation to the uncertainties of the PMSM's inertia moment. The results demonstrates the effectiveness of the proposed strategy in controlling the PMSM under different operating conditions, highlighting its potential for industrial applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">control nonlinearities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear control systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">permanent magnet machines</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Control engineering systems. Automatic machinery (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Achour Abdelyazid</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Adel Oubelaid</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nima Khosravi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohit Bajaj</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pradeep Vishnuram</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ievgen Zaitsev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IET Control Theory & Applications</subfield><subfield code="d">Wiley, 2021</subfield><subfield code="g">18(2024), 4, Seite 495-510</subfield><subfield code="w">(DE-627)52169163X</subfield><subfield code="w">(DE-600)2264241-9</subfield><subfield code="x">17518652</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:495-510</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1049/cth2.12574</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/abfce868150f449a82632fc9167fbc04</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1049/cth2.12574</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1751-8644</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1751-8652</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2024</subfield><subfield code="e">4</subfield><subfield code="h">495-510</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Youcef Belkhier |
spellingShingle |
Youcef Belkhier misc TJ212-225 misc control nonlinearities misc nonlinear control systems misc nonlinear systems misc permanent magnet machines misc Control engineering systems. Automatic machinery (General) Experimental analysis of passivity‐based control theory for permanent magnet synchronous motor drive fed by grid power |
authorStr |
Youcef Belkhier |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)52169163X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TJ212-225 |
illustrated |
Not Illustrated |
issn |
17518652 |
topic_title |
TJ212-225 Experimental analysis of passivity‐based control theory for permanent magnet synchronous motor drive fed by grid power control nonlinearities nonlinear control systems nonlinear systems permanent magnet machines |
topic |
misc TJ212-225 misc control nonlinearities misc nonlinear control systems misc nonlinear systems misc permanent magnet machines misc Control engineering systems. Automatic machinery (General) |
topic_unstemmed |
misc TJ212-225 misc control nonlinearities misc nonlinear control systems misc nonlinear systems misc permanent magnet machines misc Control engineering systems. Automatic machinery (General) |
topic_browse |
misc TJ212-225 misc control nonlinearities misc nonlinear control systems misc nonlinear systems misc permanent magnet machines misc Control engineering systems. Automatic machinery (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IET Control Theory & Applications |
hierarchy_parent_id |
52169163X |
hierarchy_top_title |
IET Control Theory & Applications |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)52169163X (DE-600)2264241-9 |
title |
Experimental analysis of passivity‐based control theory for permanent magnet synchronous motor drive fed by grid power |
ctrlnum |
(DE-627)DOAJ097068152 (DE-599)DOAJabfce868150f449a82632fc9167fbc04 |
title_full |
Experimental analysis of passivity‐based control theory for permanent magnet synchronous motor drive fed by grid power |
author_sort |
Youcef Belkhier |
journal |
IET Control Theory & Applications |
journalStr |
IET Control Theory & Applications |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
container_start_page |
495 |
author_browse |
Youcef Belkhier Achour Abdelyazid Adel Oubelaid Nima Khosravi Mohit Bajaj Pradeep Vishnuram Ievgen Zaitsev |
container_volume |
18 |
class |
TJ212-225 |
format_se |
Elektronische Aufsätze |
author-letter |
Youcef Belkhier |
doi_str_mv |
10.1049/cth2.12574 |
author2-role |
verfasserin |
title_sort |
experimental analysis of passivity‐based control theory for permanent magnet synchronous motor drive fed by grid power |
callnumber |
TJ212-225 |
title_auth |
Experimental analysis of passivity‐based control theory for permanent magnet synchronous motor drive fed by grid power |
abstract |
Abstract Controlling the Permanent Magnet Synchronous Motor (PMSM) can be challenging due to the nonlinearity of its dynamics, which makes it difficult to design control strategies that are both robust and effective. To address this challenge, this paper presents a novel control strategy rooted in the concept of passivity that combines field‐oriented control (FOC). This strategy compels the PMSM to accurately follow velocity and electrical torque trajectories. The approach, known as passivity‐based control (PBC), entails reshaping the inherent system energy while introducing the necessary damping to attain the desired objectives. A crucial aspect involves identifying workless force terms within the process model. Despite their presence, these terms do not impact the energy balance and stability properties. As a result, eliminating these terms is unnecessary. This simplicity in control architecture not only preserves system stability but also bolsters overall robustness. The system's overall stability and the current tracking error's exponential convergence have both been demonstrated analytically. In order to maintain stability, the controller accounts for the nonlinearities of the plant and approximates the unstructured dynamics of the PMSM. The proposed control is designed using the dq model of the PMSM, which avoids the model's structure destruction due to singularities, since the dq model does not depend explicitly on the rotor angular position. Experimental results shown further, illustrate speed and position control with a desired pair calculated by a filter or a proportional‐integral (PI) controller for speed control and a proportional‐integral‐derivative (PID) controller for position control. Also the correlation between practical and theoretical results is given as well as the robustness test in relation to the uncertainties of the PMSM's inertia moment. The results demonstrates the effectiveness of the proposed strategy in controlling the PMSM under different operating conditions, highlighting its potential for industrial applications. |
abstractGer |
Abstract Controlling the Permanent Magnet Synchronous Motor (PMSM) can be challenging due to the nonlinearity of its dynamics, which makes it difficult to design control strategies that are both robust and effective. To address this challenge, this paper presents a novel control strategy rooted in the concept of passivity that combines field‐oriented control (FOC). This strategy compels the PMSM to accurately follow velocity and electrical torque trajectories. The approach, known as passivity‐based control (PBC), entails reshaping the inherent system energy while introducing the necessary damping to attain the desired objectives. A crucial aspect involves identifying workless force terms within the process model. Despite their presence, these terms do not impact the energy balance and stability properties. As a result, eliminating these terms is unnecessary. This simplicity in control architecture not only preserves system stability but also bolsters overall robustness. The system's overall stability and the current tracking error's exponential convergence have both been demonstrated analytically. In order to maintain stability, the controller accounts for the nonlinearities of the plant and approximates the unstructured dynamics of the PMSM. The proposed control is designed using the dq model of the PMSM, which avoids the model's structure destruction due to singularities, since the dq model does not depend explicitly on the rotor angular position. Experimental results shown further, illustrate speed and position control with a desired pair calculated by a filter or a proportional‐integral (PI) controller for speed control and a proportional‐integral‐derivative (PID) controller for position control. Also the correlation between practical and theoretical results is given as well as the robustness test in relation to the uncertainties of the PMSM's inertia moment. The results demonstrates the effectiveness of the proposed strategy in controlling the PMSM under different operating conditions, highlighting its potential for industrial applications. |
abstract_unstemmed |
Abstract Controlling the Permanent Magnet Synchronous Motor (PMSM) can be challenging due to the nonlinearity of its dynamics, which makes it difficult to design control strategies that are both robust and effective. To address this challenge, this paper presents a novel control strategy rooted in the concept of passivity that combines field‐oriented control (FOC). This strategy compels the PMSM to accurately follow velocity and electrical torque trajectories. The approach, known as passivity‐based control (PBC), entails reshaping the inherent system energy while introducing the necessary damping to attain the desired objectives. A crucial aspect involves identifying workless force terms within the process model. Despite their presence, these terms do not impact the energy balance and stability properties. As a result, eliminating these terms is unnecessary. This simplicity in control architecture not only preserves system stability but also bolsters overall robustness. The system's overall stability and the current tracking error's exponential convergence have both been demonstrated analytically. In order to maintain stability, the controller accounts for the nonlinearities of the plant and approximates the unstructured dynamics of the PMSM. The proposed control is designed using the dq model of the PMSM, which avoids the model's structure destruction due to singularities, since the dq model does not depend explicitly on the rotor angular position. Experimental results shown further, illustrate speed and position control with a desired pair calculated by a filter or a proportional‐integral (PI) controller for speed control and a proportional‐integral‐derivative (PID) controller for position control. Also the correlation between practical and theoretical results is given as well as the robustness test in relation to the uncertainties of the PMSM's inertia moment. The results demonstrates the effectiveness of the proposed strategy in controlling the PMSM under different operating conditions, highlighting its potential for industrial applications. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Experimental analysis of passivity‐based control theory for permanent magnet synchronous motor drive fed by grid power |
url |
https://doi.org/10.1049/cth2.12574 https://doaj.org/article/abfce868150f449a82632fc9167fbc04 https://doaj.org/toc/1751-8644 https://doaj.org/toc/1751-8652 |
remote_bool |
true |
author2 |
Achour Abdelyazid Adel Oubelaid Nima Khosravi Mohit Bajaj Pradeep Vishnuram Ievgen Zaitsev |
author2Str |
Achour Abdelyazid Adel Oubelaid Nima Khosravi Mohit Bajaj Pradeep Vishnuram Ievgen Zaitsev |
ppnlink |
52169163X |
callnumber-subject |
TJ - Mechanical Engineering and Machinery |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1049/cth2.12574 |
callnumber-a |
TJ212-225 |
up_date |
2024-07-03T23:37:26.287Z |
_version_ |
1803602987621285888 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097068152</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413171602.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1049/cth2.12574</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097068152</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJabfce868150f449a82632fc9167fbc04</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ212-225</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Youcef Belkhier</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental analysis of passivity‐based control theory for permanent magnet synchronous motor drive fed by grid power</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Controlling the Permanent Magnet Synchronous Motor (PMSM) can be challenging due to the nonlinearity of its dynamics, which makes it difficult to design control strategies that are both robust and effective. To address this challenge, this paper presents a novel control strategy rooted in the concept of passivity that combines field‐oriented control (FOC). This strategy compels the PMSM to accurately follow velocity and electrical torque trajectories. The approach, known as passivity‐based control (PBC), entails reshaping the inherent system energy while introducing the necessary damping to attain the desired objectives. A crucial aspect involves identifying workless force terms within the process model. Despite their presence, these terms do not impact the energy balance and stability properties. As a result, eliminating these terms is unnecessary. This simplicity in control architecture not only preserves system stability but also bolsters overall robustness. The system's overall stability and the current tracking error's exponential convergence have both been demonstrated analytically. In order to maintain stability, the controller accounts for the nonlinearities of the plant and approximates the unstructured dynamics of the PMSM. The proposed control is designed using the dq model of the PMSM, which avoids the model's structure destruction due to singularities, since the dq model does not depend explicitly on the rotor angular position. Experimental results shown further, illustrate speed and position control with a desired pair calculated by a filter or a proportional‐integral (PI) controller for speed control and a proportional‐integral‐derivative (PID) controller for position control. Also the correlation between practical and theoretical results is given as well as the robustness test in relation to the uncertainties of the PMSM's inertia moment. The results demonstrates the effectiveness of the proposed strategy in controlling the PMSM under different operating conditions, highlighting its potential for industrial applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">control nonlinearities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear control systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">permanent magnet machines</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Control engineering systems. Automatic machinery (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Achour Abdelyazid</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Adel Oubelaid</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nima Khosravi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohit Bajaj</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pradeep Vishnuram</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ievgen Zaitsev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IET Control Theory & Applications</subfield><subfield code="d">Wiley, 2021</subfield><subfield code="g">18(2024), 4, Seite 495-510</subfield><subfield code="w">(DE-627)52169163X</subfield><subfield code="w">(DE-600)2264241-9</subfield><subfield code="x">17518652</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:495-510</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1049/cth2.12574</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/abfce868150f449a82632fc9167fbc04</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1049/cth2.12574</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1751-8644</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1751-8652</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2024</subfield><subfield code="e">4</subfield><subfield code="h">495-510</subfield></datafield></record></collection>
|
score |
7.4012613 |