Behavior of functionally graded carbon nanotube reinforced composite sandwich beams with pultruded GFRP core under bending effect
A novel generation of composite sandwich beams with laminated carbon fiber-reinforced polymer skins and pultruded glass fiber-reinforced polymer core materials was examined for their flexural behavior. The strength and failure mechanisms of the composite sandwich beams in flatwise and edgewise confi...
Ausführliche Beschreibung
Autor*in: |
Emrah Madenci [verfasserIn] Yasin Onuralp Özkılıç [verfasserIn] Alireza Bahrami [verfasserIn] Ibrahim Y. Hakeem [verfasserIn] Ceyhun Aksoylu [verfasserIn] Muhammad Rizal Muhammad Asyraf [verfasserIn] Alexey N. Beskopylny [verfasserIn] Sergey A. Stel’makh [verfasserIn] Evgenii M. Shcherban’ [verfasserIn] Sabry Fayed [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
glass fiber-reinforced polymer |
---|
Übergeordnetes Werk: |
In: Frontiers in Materials - Frontiers Media S.A., 2014, 10(2024) |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2024 |
Links: |
---|
DOI / URN: |
10.3389/fmats.2023.1236266 |
---|
Katalog-ID: |
DOAJ097139068 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ097139068 | ||
003 | DE-627 | ||
005 | 20240413173219.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fmats.2023.1236266 |2 doi | |
035 | |a (DE-627)DOAJ097139068 | ||
035 | |a (DE-599)DOAJf3735e4ed75f4cd4827b3aa485b40da5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Emrah Madenci |e verfasserin |4 aut | |
245 | 1 | 0 | |a Behavior of functionally graded carbon nanotube reinforced composite sandwich beams with pultruded GFRP core under bending effect |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A novel generation of composite sandwich beams with laminated carbon fiber-reinforced polymer skins and pultruded glass fiber-reinforced polymer core materials was examined for their flexural behavior. The strength and failure mechanisms of the composite sandwich beams in flatwise and edgewise configurations were investigated using three-point static bending tests. These sophisticated composite structures must be designed and used in a variety of sectors, and our research provides vital insights into their performance and failure patterns. In comparison to the reference specimens (FGM-1), the carbon nanotube-reinforced specimens’ bending capacity was affected and ranged from −2.5% to 7.75%. The amount of the carbon nanotube addition had a substantial impact on the beams’ application level and load-carrying capacity. Particularly, the application of 0.5 wt% additive in the outermost fiber region of the beams, such as in FGM-4, led to an increase in the bending capacity. However, the stiffness values at the maximum load were decreased by 0.3%–18.6% compared to FGM-1, with the minimum level of the decrease in FGM-4. The experimental results were compared with the theoretical calculations based on the high-order shear deformation theory, which yielded an approximation between 11.99% and 12.98% by applying the Navier’s solution. | ||
650 | 4 | |a composite sandwich beam | |
650 | 4 | |a carbon nanotube | |
650 | 4 | |a glass fiber-reinforced polymer | |
650 | 4 | |a carbon fiber-reinforced polymer | |
650 | 4 | |a flexural behavior | |
650 | 4 | |a strength | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Yasin Onuralp Özkılıç |e verfasserin |4 aut | |
700 | 0 | |a Yasin Onuralp Özkılıç |e verfasserin |4 aut | |
700 | 0 | |a Yasin Onuralp Özkılıç |e verfasserin |4 aut | |
700 | 0 | |a Alireza Bahrami |e verfasserin |4 aut | |
700 | 0 | |a Ibrahim Y. Hakeem |e verfasserin |4 aut | |
700 | 0 | |a Ceyhun Aksoylu |e verfasserin |4 aut | |
700 | 0 | |a Muhammad Rizal Muhammad Asyraf |e verfasserin |4 aut | |
700 | 0 | |a Alexey N. Beskopylny |e verfasserin |4 aut | |
700 | 0 | |a Sergey A. Stel’makh |e verfasserin |4 aut | |
700 | 0 | |a Evgenii M. Shcherban’ |e verfasserin |4 aut | |
700 | 0 | |a Sabry Fayed |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Materials |d Frontiers Media S.A., 2014 |g 10(2024) |w (DE-627)779920716 |w (DE-600)2759394-0 |x 22968016 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2024 |
856 | 4 | 0 | |u https://doi.org/10.3389/fmats.2023.1236266 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f3735e4ed75f4cd4827b3aa485b40da5 |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/fmats.2023.1236266/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2296-8016 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2024 |
author_variant |
e m em y o ö yoö y o ö yoö y o ö yoö a b ab i y h iyh c a ca m r m a mrma a n b anb s a s sas e m s ems s f sf |
---|---|
matchkey_str |
article:22968016:2024----::eairfucinlyrddabnaoueenocdopstsnwcbasihutu |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.3389/fmats.2023.1236266 doi (DE-627)DOAJ097139068 (DE-599)DOAJf3735e4ed75f4cd4827b3aa485b40da5 DE-627 ger DE-627 rakwb eng Emrah Madenci verfasserin aut Behavior of functionally graded carbon nanotube reinforced composite sandwich beams with pultruded GFRP core under bending effect 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A novel generation of composite sandwich beams with laminated carbon fiber-reinforced polymer skins and pultruded glass fiber-reinforced polymer core materials was examined for their flexural behavior. The strength and failure mechanisms of the composite sandwich beams in flatwise and edgewise configurations were investigated using three-point static bending tests. These sophisticated composite structures must be designed and used in a variety of sectors, and our research provides vital insights into their performance and failure patterns. In comparison to the reference specimens (FGM-1), the carbon nanotube-reinforced specimens’ bending capacity was affected and ranged from −2.5% to 7.75%. The amount of the carbon nanotube addition had a substantial impact on the beams’ application level and load-carrying capacity. Particularly, the application of 0.5 wt% additive in the outermost fiber region of the beams, such as in FGM-4, led to an increase in the bending capacity. However, the stiffness values at the maximum load were decreased by 0.3%–18.6% compared to FGM-1, with the minimum level of the decrease in FGM-4. The experimental results were compared with the theoretical calculations based on the high-order shear deformation theory, which yielded an approximation between 11.99% and 12.98% by applying the Navier’s solution. composite sandwich beam carbon nanotube glass fiber-reinforced polymer carbon fiber-reinforced polymer flexural behavior strength Technology T Yasin Onuralp Özkılıç verfasserin aut Yasin Onuralp Özkılıç verfasserin aut Yasin Onuralp Özkılıç verfasserin aut Alireza Bahrami verfasserin aut Ibrahim Y. Hakeem verfasserin aut Ceyhun Aksoylu verfasserin aut Muhammad Rizal Muhammad Asyraf verfasserin aut Alexey N. Beskopylny verfasserin aut Sergey A. Stel’makh verfasserin aut Evgenii M. Shcherban’ verfasserin aut Sabry Fayed verfasserin aut In Frontiers in Materials Frontiers Media S.A., 2014 10(2024) (DE-627)779920716 (DE-600)2759394-0 22968016 nnns volume:10 year:2024 https://doi.org/10.3389/fmats.2023.1236266 kostenfrei https://doaj.org/article/f3735e4ed75f4cd4827b3aa485b40da5 kostenfrei https://www.frontiersin.org/articles/10.3389/fmats.2023.1236266/full kostenfrei https://doaj.org/toc/2296-8016 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 |
spelling |
10.3389/fmats.2023.1236266 doi (DE-627)DOAJ097139068 (DE-599)DOAJf3735e4ed75f4cd4827b3aa485b40da5 DE-627 ger DE-627 rakwb eng Emrah Madenci verfasserin aut Behavior of functionally graded carbon nanotube reinforced composite sandwich beams with pultruded GFRP core under bending effect 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A novel generation of composite sandwich beams with laminated carbon fiber-reinforced polymer skins and pultruded glass fiber-reinforced polymer core materials was examined for their flexural behavior. The strength and failure mechanisms of the composite sandwich beams in flatwise and edgewise configurations were investigated using three-point static bending tests. These sophisticated composite structures must be designed and used in a variety of sectors, and our research provides vital insights into their performance and failure patterns. In comparison to the reference specimens (FGM-1), the carbon nanotube-reinforced specimens’ bending capacity was affected and ranged from −2.5% to 7.75%. The amount of the carbon nanotube addition had a substantial impact on the beams’ application level and load-carrying capacity. Particularly, the application of 0.5 wt% additive in the outermost fiber region of the beams, such as in FGM-4, led to an increase in the bending capacity. However, the stiffness values at the maximum load were decreased by 0.3%–18.6% compared to FGM-1, with the minimum level of the decrease in FGM-4. The experimental results were compared with the theoretical calculations based on the high-order shear deformation theory, which yielded an approximation between 11.99% and 12.98% by applying the Navier’s solution. composite sandwich beam carbon nanotube glass fiber-reinforced polymer carbon fiber-reinforced polymer flexural behavior strength Technology T Yasin Onuralp Özkılıç verfasserin aut Yasin Onuralp Özkılıç verfasserin aut Yasin Onuralp Özkılıç verfasserin aut Alireza Bahrami verfasserin aut Ibrahim Y. Hakeem verfasserin aut Ceyhun Aksoylu verfasserin aut Muhammad Rizal Muhammad Asyraf verfasserin aut Alexey N. Beskopylny verfasserin aut Sergey A. Stel’makh verfasserin aut Evgenii M. Shcherban’ verfasserin aut Sabry Fayed verfasserin aut In Frontiers in Materials Frontiers Media S.A., 2014 10(2024) (DE-627)779920716 (DE-600)2759394-0 22968016 nnns volume:10 year:2024 https://doi.org/10.3389/fmats.2023.1236266 kostenfrei https://doaj.org/article/f3735e4ed75f4cd4827b3aa485b40da5 kostenfrei https://www.frontiersin.org/articles/10.3389/fmats.2023.1236266/full kostenfrei https://doaj.org/toc/2296-8016 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 |
allfields_unstemmed |
10.3389/fmats.2023.1236266 doi (DE-627)DOAJ097139068 (DE-599)DOAJf3735e4ed75f4cd4827b3aa485b40da5 DE-627 ger DE-627 rakwb eng Emrah Madenci verfasserin aut Behavior of functionally graded carbon nanotube reinforced composite sandwich beams with pultruded GFRP core under bending effect 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A novel generation of composite sandwich beams with laminated carbon fiber-reinforced polymer skins and pultruded glass fiber-reinforced polymer core materials was examined for their flexural behavior. The strength and failure mechanisms of the composite sandwich beams in flatwise and edgewise configurations were investigated using three-point static bending tests. These sophisticated composite structures must be designed and used in a variety of sectors, and our research provides vital insights into their performance and failure patterns. In comparison to the reference specimens (FGM-1), the carbon nanotube-reinforced specimens’ bending capacity was affected and ranged from −2.5% to 7.75%. The amount of the carbon nanotube addition had a substantial impact on the beams’ application level and load-carrying capacity. Particularly, the application of 0.5 wt% additive in the outermost fiber region of the beams, such as in FGM-4, led to an increase in the bending capacity. However, the stiffness values at the maximum load were decreased by 0.3%–18.6% compared to FGM-1, with the minimum level of the decrease in FGM-4. The experimental results were compared with the theoretical calculations based on the high-order shear deformation theory, which yielded an approximation between 11.99% and 12.98% by applying the Navier’s solution. composite sandwich beam carbon nanotube glass fiber-reinforced polymer carbon fiber-reinforced polymer flexural behavior strength Technology T Yasin Onuralp Özkılıç verfasserin aut Yasin Onuralp Özkılıç verfasserin aut Yasin Onuralp Özkılıç verfasserin aut Alireza Bahrami verfasserin aut Ibrahim Y. Hakeem verfasserin aut Ceyhun Aksoylu verfasserin aut Muhammad Rizal Muhammad Asyraf verfasserin aut Alexey N. Beskopylny verfasserin aut Sergey A. Stel’makh verfasserin aut Evgenii M. Shcherban’ verfasserin aut Sabry Fayed verfasserin aut In Frontiers in Materials Frontiers Media S.A., 2014 10(2024) (DE-627)779920716 (DE-600)2759394-0 22968016 nnns volume:10 year:2024 https://doi.org/10.3389/fmats.2023.1236266 kostenfrei https://doaj.org/article/f3735e4ed75f4cd4827b3aa485b40da5 kostenfrei https://www.frontiersin.org/articles/10.3389/fmats.2023.1236266/full kostenfrei https://doaj.org/toc/2296-8016 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 |
allfieldsGer |
10.3389/fmats.2023.1236266 doi (DE-627)DOAJ097139068 (DE-599)DOAJf3735e4ed75f4cd4827b3aa485b40da5 DE-627 ger DE-627 rakwb eng Emrah Madenci verfasserin aut Behavior of functionally graded carbon nanotube reinforced composite sandwich beams with pultruded GFRP core under bending effect 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A novel generation of composite sandwich beams with laminated carbon fiber-reinforced polymer skins and pultruded glass fiber-reinforced polymer core materials was examined for their flexural behavior. The strength and failure mechanisms of the composite sandwich beams in flatwise and edgewise configurations were investigated using three-point static bending tests. These sophisticated composite structures must be designed and used in a variety of sectors, and our research provides vital insights into their performance and failure patterns. In comparison to the reference specimens (FGM-1), the carbon nanotube-reinforced specimens’ bending capacity was affected and ranged from −2.5% to 7.75%. The amount of the carbon nanotube addition had a substantial impact on the beams’ application level and load-carrying capacity. Particularly, the application of 0.5 wt% additive in the outermost fiber region of the beams, such as in FGM-4, led to an increase in the bending capacity. However, the stiffness values at the maximum load were decreased by 0.3%–18.6% compared to FGM-1, with the minimum level of the decrease in FGM-4. The experimental results were compared with the theoretical calculations based on the high-order shear deformation theory, which yielded an approximation between 11.99% and 12.98% by applying the Navier’s solution. composite sandwich beam carbon nanotube glass fiber-reinforced polymer carbon fiber-reinforced polymer flexural behavior strength Technology T Yasin Onuralp Özkılıç verfasserin aut Yasin Onuralp Özkılıç verfasserin aut Yasin Onuralp Özkılıç verfasserin aut Alireza Bahrami verfasserin aut Ibrahim Y. Hakeem verfasserin aut Ceyhun Aksoylu verfasserin aut Muhammad Rizal Muhammad Asyraf verfasserin aut Alexey N. Beskopylny verfasserin aut Sergey A. Stel’makh verfasserin aut Evgenii M. Shcherban’ verfasserin aut Sabry Fayed verfasserin aut In Frontiers in Materials Frontiers Media S.A., 2014 10(2024) (DE-627)779920716 (DE-600)2759394-0 22968016 nnns volume:10 year:2024 https://doi.org/10.3389/fmats.2023.1236266 kostenfrei https://doaj.org/article/f3735e4ed75f4cd4827b3aa485b40da5 kostenfrei https://www.frontiersin.org/articles/10.3389/fmats.2023.1236266/full kostenfrei https://doaj.org/toc/2296-8016 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 |
allfieldsSound |
10.3389/fmats.2023.1236266 doi (DE-627)DOAJ097139068 (DE-599)DOAJf3735e4ed75f4cd4827b3aa485b40da5 DE-627 ger DE-627 rakwb eng Emrah Madenci verfasserin aut Behavior of functionally graded carbon nanotube reinforced composite sandwich beams with pultruded GFRP core under bending effect 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A novel generation of composite sandwich beams with laminated carbon fiber-reinforced polymer skins and pultruded glass fiber-reinforced polymer core materials was examined for their flexural behavior. The strength and failure mechanisms of the composite sandwich beams in flatwise and edgewise configurations were investigated using three-point static bending tests. These sophisticated composite structures must be designed and used in a variety of sectors, and our research provides vital insights into their performance and failure patterns. In comparison to the reference specimens (FGM-1), the carbon nanotube-reinforced specimens’ bending capacity was affected and ranged from −2.5% to 7.75%. The amount of the carbon nanotube addition had a substantial impact on the beams’ application level and load-carrying capacity. Particularly, the application of 0.5 wt% additive in the outermost fiber region of the beams, such as in FGM-4, led to an increase in the bending capacity. However, the stiffness values at the maximum load were decreased by 0.3%–18.6% compared to FGM-1, with the minimum level of the decrease in FGM-4. The experimental results were compared with the theoretical calculations based on the high-order shear deformation theory, which yielded an approximation between 11.99% and 12.98% by applying the Navier’s solution. composite sandwich beam carbon nanotube glass fiber-reinforced polymer carbon fiber-reinforced polymer flexural behavior strength Technology T Yasin Onuralp Özkılıç verfasserin aut Yasin Onuralp Özkılıç verfasserin aut Yasin Onuralp Özkılıç verfasserin aut Alireza Bahrami verfasserin aut Ibrahim Y. Hakeem verfasserin aut Ceyhun Aksoylu verfasserin aut Muhammad Rizal Muhammad Asyraf verfasserin aut Alexey N. Beskopylny verfasserin aut Sergey A. Stel’makh verfasserin aut Evgenii M. Shcherban’ verfasserin aut Sabry Fayed verfasserin aut In Frontiers in Materials Frontiers Media S.A., 2014 10(2024) (DE-627)779920716 (DE-600)2759394-0 22968016 nnns volume:10 year:2024 https://doi.org/10.3389/fmats.2023.1236266 kostenfrei https://doaj.org/article/f3735e4ed75f4cd4827b3aa485b40da5 kostenfrei https://www.frontiersin.org/articles/10.3389/fmats.2023.1236266/full kostenfrei https://doaj.org/toc/2296-8016 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 |
language |
English |
source |
In Frontiers in Materials 10(2024) volume:10 year:2024 |
sourceStr |
In Frontiers in Materials 10(2024) volume:10 year:2024 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
composite sandwich beam carbon nanotube glass fiber-reinforced polymer carbon fiber-reinforced polymer flexural behavior strength Technology T |
isfreeaccess_bool |
true |
container_title |
Frontiers in Materials |
authorswithroles_txt_mv |
Emrah Madenci @@aut@@ Yasin Onuralp Özkılıç @@aut@@ Alireza Bahrami @@aut@@ Ibrahim Y. Hakeem @@aut@@ Ceyhun Aksoylu @@aut@@ Muhammad Rizal Muhammad Asyraf @@aut@@ Alexey N. Beskopylny @@aut@@ Sergey A. Stel’makh @@aut@@ Evgenii M. Shcherban’ @@aut@@ Sabry Fayed @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
779920716 |
id |
DOAJ097139068 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097139068</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413173219.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fmats.2023.1236266</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097139068</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf3735e4ed75f4cd4827b3aa485b40da5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Emrah Madenci</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Behavior of functionally graded carbon nanotube reinforced composite sandwich beams with pultruded GFRP core under bending effect</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A novel generation of composite sandwich beams with laminated carbon fiber-reinforced polymer skins and pultruded glass fiber-reinforced polymer core materials was examined for their flexural behavior. The strength and failure mechanisms of the composite sandwich beams in flatwise and edgewise configurations were investigated using three-point static bending tests. These sophisticated composite structures must be designed and used in a variety of sectors, and our research provides vital insights into their performance and failure patterns. In comparison to the reference specimens (FGM-1), the carbon nanotube-reinforced specimens’ bending capacity was affected and ranged from −2.5% to 7.75%. The amount of the carbon nanotube addition had a substantial impact on the beams’ application level and load-carrying capacity. Particularly, the application of 0.5 wt% additive in the outermost fiber region of the beams, such as in FGM-4, led to an increase in the bending capacity. However, the stiffness values at the maximum load were decreased by 0.3%–18.6% compared to FGM-1, with the minimum level of the decrease in FGM-4. The experimental results were compared with the theoretical calculations based on the high-order shear deformation theory, which yielded an approximation between 11.99% and 12.98% by applying the Navier’s solution.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">composite sandwich beam</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">carbon nanotube</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">glass fiber-reinforced polymer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">carbon fiber-reinforced polymer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flexural behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">strength</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yasin Onuralp Özkılıç</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yasin Onuralp Özkılıç</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yasin Onuralp Özkılıç</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alireza Bahrami</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ibrahim Y. Hakeem</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ceyhun Aksoylu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muhammad Rizal Muhammad Asyraf</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexey N. Beskopylny</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sergey A. Stel’makh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Evgenii M. Shcherban’</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sabry Fayed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Materials</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">10(2024)</subfield><subfield code="w">(DE-627)779920716</subfield><subfield code="w">(DE-600)2759394-0</subfield><subfield code="x">22968016</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2024</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fmats.2023.1236266</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f3735e4ed75f4cd4827b3aa485b40da5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fmats.2023.1236266/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-8016</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2024</subfield></datafield></record></collection>
|
author |
Emrah Madenci |
spellingShingle |
Emrah Madenci misc composite sandwich beam misc carbon nanotube misc glass fiber-reinforced polymer misc carbon fiber-reinforced polymer misc flexural behavior misc strength misc Technology misc T Behavior of functionally graded carbon nanotube reinforced composite sandwich beams with pultruded GFRP core under bending effect |
authorStr |
Emrah Madenci |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)779920716 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
22968016 |
topic_title |
Behavior of functionally graded carbon nanotube reinforced composite sandwich beams with pultruded GFRP core under bending effect composite sandwich beam carbon nanotube glass fiber-reinforced polymer carbon fiber-reinforced polymer flexural behavior strength |
topic |
misc composite sandwich beam misc carbon nanotube misc glass fiber-reinforced polymer misc carbon fiber-reinforced polymer misc flexural behavior misc strength misc Technology misc T |
topic_unstemmed |
misc composite sandwich beam misc carbon nanotube misc glass fiber-reinforced polymer misc carbon fiber-reinforced polymer misc flexural behavior misc strength misc Technology misc T |
topic_browse |
misc composite sandwich beam misc carbon nanotube misc glass fiber-reinforced polymer misc carbon fiber-reinforced polymer misc flexural behavior misc strength misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Materials |
hierarchy_parent_id |
779920716 |
hierarchy_top_title |
Frontiers in Materials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)779920716 (DE-600)2759394-0 |
title |
Behavior of functionally graded carbon nanotube reinforced composite sandwich beams with pultruded GFRP core under bending effect |
ctrlnum |
(DE-627)DOAJ097139068 (DE-599)DOAJf3735e4ed75f4cd4827b3aa485b40da5 |
title_full |
Behavior of functionally graded carbon nanotube reinforced composite sandwich beams with pultruded GFRP core under bending effect |
author_sort |
Emrah Madenci |
journal |
Frontiers in Materials |
journalStr |
Frontiers in Materials |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Emrah Madenci Yasin Onuralp Özkılıç Alireza Bahrami Ibrahim Y. Hakeem Ceyhun Aksoylu Muhammad Rizal Muhammad Asyraf Alexey N. Beskopylny Sergey A. Stel’makh Evgenii M. Shcherban’ Sabry Fayed |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Emrah Madenci |
doi_str_mv |
10.3389/fmats.2023.1236266 |
author2-role |
verfasserin |
title_sort |
behavior of functionally graded carbon nanotube reinforced composite sandwich beams with pultruded gfrp core under bending effect |
title_auth |
Behavior of functionally graded carbon nanotube reinforced composite sandwich beams with pultruded GFRP core under bending effect |
abstract |
A novel generation of composite sandwich beams with laminated carbon fiber-reinforced polymer skins and pultruded glass fiber-reinforced polymer core materials was examined for their flexural behavior. The strength and failure mechanisms of the composite sandwich beams in flatwise and edgewise configurations were investigated using three-point static bending tests. These sophisticated composite structures must be designed and used in a variety of sectors, and our research provides vital insights into their performance and failure patterns. In comparison to the reference specimens (FGM-1), the carbon nanotube-reinforced specimens’ bending capacity was affected and ranged from −2.5% to 7.75%. The amount of the carbon nanotube addition had a substantial impact on the beams’ application level and load-carrying capacity. Particularly, the application of 0.5 wt% additive in the outermost fiber region of the beams, such as in FGM-4, led to an increase in the bending capacity. However, the stiffness values at the maximum load were decreased by 0.3%–18.6% compared to FGM-1, with the minimum level of the decrease in FGM-4. The experimental results were compared with the theoretical calculations based on the high-order shear deformation theory, which yielded an approximation between 11.99% and 12.98% by applying the Navier’s solution. |
abstractGer |
A novel generation of composite sandwich beams with laminated carbon fiber-reinforced polymer skins and pultruded glass fiber-reinforced polymer core materials was examined for their flexural behavior. The strength and failure mechanisms of the composite sandwich beams in flatwise and edgewise configurations were investigated using three-point static bending tests. These sophisticated composite structures must be designed and used in a variety of sectors, and our research provides vital insights into their performance and failure patterns. In comparison to the reference specimens (FGM-1), the carbon nanotube-reinforced specimens’ bending capacity was affected and ranged from −2.5% to 7.75%. The amount of the carbon nanotube addition had a substantial impact on the beams’ application level and load-carrying capacity. Particularly, the application of 0.5 wt% additive in the outermost fiber region of the beams, such as in FGM-4, led to an increase in the bending capacity. However, the stiffness values at the maximum load were decreased by 0.3%–18.6% compared to FGM-1, with the minimum level of the decrease in FGM-4. The experimental results were compared with the theoretical calculations based on the high-order shear deformation theory, which yielded an approximation between 11.99% and 12.98% by applying the Navier’s solution. |
abstract_unstemmed |
A novel generation of composite sandwich beams with laminated carbon fiber-reinforced polymer skins and pultruded glass fiber-reinforced polymer core materials was examined for their flexural behavior. The strength and failure mechanisms of the composite sandwich beams in flatwise and edgewise configurations were investigated using three-point static bending tests. These sophisticated composite structures must be designed and used in a variety of sectors, and our research provides vital insights into their performance and failure patterns. In comparison to the reference specimens (FGM-1), the carbon nanotube-reinforced specimens’ bending capacity was affected and ranged from −2.5% to 7.75%. The amount of the carbon nanotube addition had a substantial impact on the beams’ application level and load-carrying capacity. Particularly, the application of 0.5 wt% additive in the outermost fiber region of the beams, such as in FGM-4, led to an increase in the bending capacity. However, the stiffness values at the maximum load were decreased by 0.3%–18.6% compared to FGM-1, with the minimum level of the decrease in FGM-4. The experimental results were compared with the theoretical calculations based on the high-order shear deformation theory, which yielded an approximation between 11.99% and 12.98% by applying the Navier’s solution. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Behavior of functionally graded carbon nanotube reinforced composite sandwich beams with pultruded GFRP core under bending effect |
url |
https://doi.org/10.3389/fmats.2023.1236266 https://doaj.org/article/f3735e4ed75f4cd4827b3aa485b40da5 https://www.frontiersin.org/articles/10.3389/fmats.2023.1236266/full https://doaj.org/toc/2296-8016 |
remote_bool |
true |
author2 |
Yasin Onuralp Özkılıç Alireza Bahrami Ibrahim Y. Hakeem Ceyhun Aksoylu Muhammad Rizal Muhammad Asyraf Alexey N. Beskopylny Sergey A. Stel’makh Evgenii M. Shcherban’ Sabry Fayed |
author2Str |
Yasin Onuralp Özkılıç Alireza Bahrami Ibrahim Y. Hakeem Ceyhun Aksoylu Muhammad Rizal Muhammad Asyraf Alexey N. Beskopylny Sergey A. Stel’makh Evgenii M. Shcherban’ Sabry Fayed |
ppnlink |
779920716 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fmats.2023.1236266 |
up_date |
2024-07-03T23:57:17.964Z |
_version_ |
1803604237220839424 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097139068</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413173219.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fmats.2023.1236266</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097139068</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf3735e4ed75f4cd4827b3aa485b40da5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Emrah Madenci</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Behavior of functionally graded carbon nanotube reinforced composite sandwich beams with pultruded GFRP core under bending effect</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A novel generation of composite sandwich beams with laminated carbon fiber-reinforced polymer skins and pultruded glass fiber-reinforced polymer core materials was examined for their flexural behavior. The strength and failure mechanisms of the composite sandwich beams in flatwise and edgewise configurations were investigated using three-point static bending tests. These sophisticated composite structures must be designed and used in a variety of sectors, and our research provides vital insights into their performance and failure patterns. In comparison to the reference specimens (FGM-1), the carbon nanotube-reinforced specimens’ bending capacity was affected and ranged from −2.5% to 7.75%. The amount of the carbon nanotube addition had a substantial impact on the beams’ application level and load-carrying capacity. Particularly, the application of 0.5 wt% additive in the outermost fiber region of the beams, such as in FGM-4, led to an increase in the bending capacity. However, the stiffness values at the maximum load were decreased by 0.3%–18.6% compared to FGM-1, with the minimum level of the decrease in FGM-4. The experimental results were compared with the theoretical calculations based on the high-order shear deformation theory, which yielded an approximation between 11.99% and 12.98% by applying the Navier’s solution.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">composite sandwich beam</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">carbon nanotube</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">glass fiber-reinforced polymer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">carbon fiber-reinforced polymer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flexural behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">strength</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yasin Onuralp Özkılıç</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yasin Onuralp Özkılıç</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yasin Onuralp Özkılıç</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alireza Bahrami</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ibrahim Y. Hakeem</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ceyhun Aksoylu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muhammad Rizal Muhammad Asyraf</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexey N. Beskopylny</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sergey A. Stel’makh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Evgenii M. Shcherban’</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sabry Fayed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Materials</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">10(2024)</subfield><subfield code="w">(DE-627)779920716</subfield><subfield code="w">(DE-600)2759394-0</subfield><subfield code="x">22968016</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2024</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fmats.2023.1236266</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f3735e4ed75f4cd4827b3aa485b40da5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fmats.2023.1236266/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-8016</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2024</subfield></datafield></record></collection>
|
score |
7.4012547 |