Linear time equivalence of Littlewood―Richardson coefficient symmetry maps

Benkart, Sottile, and Stroomer have completely characterized by Knuth and dual Knuth equivalence a bijective proof of the Littlewood―Richardson coefficient conjugation symmetry, i.e. $c_{\mu, \nu}^{\lambda} =c_{\mu^t,\nu^t}^{\lambda ^t}$. Tableau―switching provides an algorithm to produce such a bij...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Olga Azenhas [verfasserIn]

Alessandro Conflitti [verfasserIn]

Ricardo Mamede [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2009

Schlagwörter:

symmetry maps of littlewood―richardson coefficients

conjugation symmetry map

linearly time reduction of young tableaux bijections

tableau―switching

schützenberger involution

[math.math-co] mathematics [math]/combinatorics [math.co]

[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]

Übergeordnetes Werk:

In: Discrete Mathematics & Theoretical Computer Science - Discrete Mathematics & Theoretical Computer Science, 2004, (2009), Proceedings

Übergeordnetes Werk:

year:2009 ; number:Proceedings

Links:

Link aufrufen
Link aufrufen
Link aufrufen
Journal toc

DOI / URN:

10.46298/dmtcs.2725

Katalog-ID:

DOAJ097152439

Nicht das Richtige dabei?

Schreiben Sie uns!