Phthalate exposure and blood pressure in U.S. children aged 8–17 years (NHANES 2013–2018)
Abstract Background Current evidence from epidemiologic studies suggested that phthalate metabolites might be associated with blood pressure (BP) changes. However, the special relationship between phthalate metabolites and BP changes in children has not been clearly elucidated in existing researches...
Ausführliche Beschreibung
Autor*in: |
Tan Cheng [verfasserIn] Chengcheng Lou [verfasserIn] Xiaoping Jing [verfasserIn] Sirui Ding [verfasserIn] Haifa Hong [verfasserIn] Guodong Ding [verfasserIn] Li Shen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: European Journal of Medical Research - BMC, 2012, 29(2024), 1, Seite 10 |
---|---|
Übergeordnetes Werk: |
volume:29 ; year:2024 ; number:1 ; pages:10 |
Links: |
---|
DOI / URN: |
10.1186/s40001-024-01785-9 |
---|
Katalog-ID: |
DOAJ097276529 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ097276529 | ||
003 | DE-627 | ||
005 | 20240413180526.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40001-024-01785-9 |2 doi | |
035 | |a (DE-627)DOAJ097276529 | ||
035 | |a (DE-599)DOAJfd234ddd52b74941822dafb890d0d781 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Tan Cheng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Phthalate exposure and blood pressure in U.S. children aged 8–17 years (NHANES 2013–2018) |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Background Current evidence from epidemiologic studies suggested that phthalate metabolites might be associated with blood pressure (BP) changes. However, the special relationship between phthalate metabolites and BP changes in children has not been clearly elucidated in existing researches. Objectives We investigated the links between phthalate metabolites and various BP parameters, including systolic/diastolic BP, mean arterial pressure (MAP), and the presence of hypertension. Methods The population sample consisted of 1036 children aged 8 to 17 years from the 2013–2018 NHANES in the United States. High performance liquid chromatography-electrospray ionization-tandem mass spectrometry was used to measure urinary concentrations of 19 phthalate metabolites. Systolic/diastolic BP were derived from the average of three valid measurements, and MAP was calculated as (systolic BP + 2 × diastolic BP)/3. Hypertension was defined as mean systolic BP and/or diastolic BP that was ≥ 95th percentile for gender, age, and height reference. Linear regression, logistic regression, and weighted quantile sum (WQS) regression models were employed to assess the associations between phthalate exposure and systolic/diastolic BP, MAP, and hypertension. Results Ten of 19 phthalate metabolites including MCNP, MCOP, MECPP, MBP, MCPP, MEP, MEHHP, MiBP, MEOHP, and MBzP had detection frequencies < 85% with samples more than 1000. MCNP, MCOP, MECPP, MBP, MCPP, MEHHP, MiBP, MEOHP, and MBzP were generally negatively associated with systolic/diastolic BP and MAP, but not protective factors for hypertension. These associations were not modified by age (8–12 and 13–17 years) or sex (boys and girls). The above-mentioned associations were further confirmed by the application of the WQS analysis, and MCOP was identified as the chemical with the highest weight. Conclusion Phthalate metabolites were associated with modest reductions in systolic/diastolic BP, and MAP in children, while appeared not protective factors for hypertension. Given the inconsistent results among existing studies, our findings should be confirmed by other cohort studies. | ||
650 | 4 | |a Phthalate metabolites | |
650 | 4 | |a Blood pressure | |
650 | 4 | |a Children | |
650 | 4 | |a Hypertension | |
650 | 4 | |a NHANES | |
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
700 | 0 | |a Chengcheng Lou |e verfasserin |4 aut | |
700 | 0 | |a Xiaoping Jing |e verfasserin |4 aut | |
700 | 0 | |a Sirui Ding |e verfasserin |4 aut | |
700 | 0 | |a Haifa Hong |e verfasserin |4 aut | |
700 | 0 | |a Guodong Ding |e verfasserin |4 aut | |
700 | 0 | |a Li Shen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t European Journal of Medical Research |d BMC, 2012 |g 29(2024), 1, Seite 10 |w (DE-627)375977775 |w (DE-600)2129989-4 |x 2047783X |7 nnns |
773 | 1 | 8 | |g volume:29 |g year:2024 |g number:1 |g pages:10 |
856 | 4 | 0 | |u https://doi.org/10.1186/s40001-024-01785-9 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/fd234ddd52b74941822dafb890d0d781 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1186/s40001-024-01785-9 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2047-783X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 29 |j 2024 |e 1 |h 10 |
author_variant |
t c tc c l cl x j xj s d sd h h hh g d gd l s ls |
---|---|
matchkey_str |
article:2047783X:2024----::hhltepsradlopesriucideae8 |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1186/s40001-024-01785-9 doi (DE-627)DOAJ097276529 (DE-599)DOAJfd234ddd52b74941822dafb890d0d781 DE-627 ger DE-627 rakwb eng Tan Cheng verfasserin aut Phthalate exposure and blood pressure in U.S. children aged 8–17 years (NHANES 2013–2018) 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Current evidence from epidemiologic studies suggested that phthalate metabolites might be associated with blood pressure (BP) changes. However, the special relationship between phthalate metabolites and BP changes in children has not been clearly elucidated in existing researches. Objectives We investigated the links between phthalate metabolites and various BP parameters, including systolic/diastolic BP, mean arterial pressure (MAP), and the presence of hypertension. Methods The population sample consisted of 1036 children aged 8 to 17 years from the 2013–2018 NHANES in the United States. High performance liquid chromatography-electrospray ionization-tandem mass spectrometry was used to measure urinary concentrations of 19 phthalate metabolites. Systolic/diastolic BP were derived from the average of three valid measurements, and MAP was calculated as (systolic BP + 2 × diastolic BP)/3. Hypertension was defined as mean systolic BP and/or diastolic BP that was ≥ 95th percentile for gender, age, and height reference. Linear regression, logistic regression, and weighted quantile sum (WQS) regression models were employed to assess the associations between phthalate exposure and systolic/diastolic BP, MAP, and hypertension. Results Ten of 19 phthalate metabolites including MCNP, MCOP, MECPP, MBP, MCPP, MEP, MEHHP, MiBP, MEOHP, and MBzP had detection frequencies < 85% with samples more than 1000. MCNP, MCOP, MECPP, MBP, MCPP, MEHHP, MiBP, MEOHP, and MBzP were generally negatively associated with systolic/diastolic BP and MAP, but not protective factors for hypertension. These associations were not modified by age (8–12 and 13–17 years) or sex (boys and girls). The above-mentioned associations were further confirmed by the application of the WQS analysis, and MCOP was identified as the chemical with the highest weight. Conclusion Phthalate metabolites were associated with modest reductions in systolic/diastolic BP, and MAP in children, while appeared not protective factors for hypertension. Given the inconsistent results among existing studies, our findings should be confirmed by other cohort studies. Phthalate metabolites Blood pressure Children Hypertension NHANES Medicine R Chengcheng Lou verfasserin aut Xiaoping Jing verfasserin aut Sirui Ding verfasserin aut Haifa Hong verfasserin aut Guodong Ding verfasserin aut Li Shen verfasserin aut In European Journal of Medical Research BMC, 2012 29(2024), 1, Seite 10 (DE-627)375977775 (DE-600)2129989-4 2047783X nnns volume:29 year:2024 number:1 pages:10 https://doi.org/10.1186/s40001-024-01785-9 kostenfrei https://doaj.org/article/fd234ddd52b74941822dafb890d0d781 kostenfrei https://doi.org/10.1186/s40001-024-01785-9 kostenfrei https://doaj.org/toc/2047-783X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 29 2024 1 10 |
spelling |
10.1186/s40001-024-01785-9 doi (DE-627)DOAJ097276529 (DE-599)DOAJfd234ddd52b74941822dafb890d0d781 DE-627 ger DE-627 rakwb eng Tan Cheng verfasserin aut Phthalate exposure and blood pressure in U.S. children aged 8–17 years (NHANES 2013–2018) 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Current evidence from epidemiologic studies suggested that phthalate metabolites might be associated with blood pressure (BP) changes. However, the special relationship between phthalate metabolites and BP changes in children has not been clearly elucidated in existing researches. Objectives We investigated the links between phthalate metabolites and various BP parameters, including systolic/diastolic BP, mean arterial pressure (MAP), and the presence of hypertension. Methods The population sample consisted of 1036 children aged 8 to 17 years from the 2013–2018 NHANES in the United States. High performance liquid chromatography-electrospray ionization-tandem mass spectrometry was used to measure urinary concentrations of 19 phthalate metabolites. Systolic/diastolic BP were derived from the average of three valid measurements, and MAP was calculated as (systolic BP + 2 × diastolic BP)/3. Hypertension was defined as mean systolic BP and/or diastolic BP that was ≥ 95th percentile for gender, age, and height reference. Linear regression, logistic regression, and weighted quantile sum (WQS) regression models were employed to assess the associations between phthalate exposure and systolic/diastolic BP, MAP, and hypertension. Results Ten of 19 phthalate metabolites including MCNP, MCOP, MECPP, MBP, MCPP, MEP, MEHHP, MiBP, MEOHP, and MBzP had detection frequencies < 85% with samples more than 1000. MCNP, MCOP, MECPP, MBP, MCPP, MEHHP, MiBP, MEOHP, and MBzP were generally negatively associated with systolic/diastolic BP and MAP, but not protective factors for hypertension. These associations were not modified by age (8–12 and 13–17 years) or sex (boys and girls). The above-mentioned associations were further confirmed by the application of the WQS analysis, and MCOP was identified as the chemical with the highest weight. Conclusion Phthalate metabolites were associated with modest reductions in systolic/diastolic BP, and MAP in children, while appeared not protective factors for hypertension. Given the inconsistent results among existing studies, our findings should be confirmed by other cohort studies. Phthalate metabolites Blood pressure Children Hypertension NHANES Medicine R Chengcheng Lou verfasserin aut Xiaoping Jing verfasserin aut Sirui Ding verfasserin aut Haifa Hong verfasserin aut Guodong Ding verfasserin aut Li Shen verfasserin aut In European Journal of Medical Research BMC, 2012 29(2024), 1, Seite 10 (DE-627)375977775 (DE-600)2129989-4 2047783X nnns volume:29 year:2024 number:1 pages:10 https://doi.org/10.1186/s40001-024-01785-9 kostenfrei https://doaj.org/article/fd234ddd52b74941822dafb890d0d781 kostenfrei https://doi.org/10.1186/s40001-024-01785-9 kostenfrei https://doaj.org/toc/2047-783X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 29 2024 1 10 |
allfields_unstemmed |
10.1186/s40001-024-01785-9 doi (DE-627)DOAJ097276529 (DE-599)DOAJfd234ddd52b74941822dafb890d0d781 DE-627 ger DE-627 rakwb eng Tan Cheng verfasserin aut Phthalate exposure and blood pressure in U.S. children aged 8–17 years (NHANES 2013–2018) 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Current evidence from epidemiologic studies suggested that phthalate metabolites might be associated with blood pressure (BP) changes. However, the special relationship between phthalate metabolites and BP changes in children has not been clearly elucidated in existing researches. Objectives We investigated the links between phthalate metabolites and various BP parameters, including systolic/diastolic BP, mean arterial pressure (MAP), and the presence of hypertension. Methods The population sample consisted of 1036 children aged 8 to 17 years from the 2013–2018 NHANES in the United States. High performance liquid chromatography-electrospray ionization-tandem mass spectrometry was used to measure urinary concentrations of 19 phthalate metabolites. Systolic/diastolic BP were derived from the average of three valid measurements, and MAP was calculated as (systolic BP + 2 × diastolic BP)/3. Hypertension was defined as mean systolic BP and/or diastolic BP that was ≥ 95th percentile for gender, age, and height reference. Linear regression, logistic regression, and weighted quantile sum (WQS) regression models were employed to assess the associations between phthalate exposure and systolic/diastolic BP, MAP, and hypertension. Results Ten of 19 phthalate metabolites including MCNP, MCOP, MECPP, MBP, MCPP, MEP, MEHHP, MiBP, MEOHP, and MBzP had detection frequencies < 85% with samples more than 1000. MCNP, MCOP, MECPP, MBP, MCPP, MEHHP, MiBP, MEOHP, and MBzP were generally negatively associated with systolic/diastolic BP and MAP, but not protective factors for hypertension. These associations were not modified by age (8–12 and 13–17 years) or sex (boys and girls). The above-mentioned associations were further confirmed by the application of the WQS analysis, and MCOP was identified as the chemical with the highest weight. Conclusion Phthalate metabolites were associated with modest reductions in systolic/diastolic BP, and MAP in children, while appeared not protective factors for hypertension. Given the inconsistent results among existing studies, our findings should be confirmed by other cohort studies. Phthalate metabolites Blood pressure Children Hypertension NHANES Medicine R Chengcheng Lou verfasserin aut Xiaoping Jing verfasserin aut Sirui Ding verfasserin aut Haifa Hong verfasserin aut Guodong Ding verfasserin aut Li Shen verfasserin aut In European Journal of Medical Research BMC, 2012 29(2024), 1, Seite 10 (DE-627)375977775 (DE-600)2129989-4 2047783X nnns volume:29 year:2024 number:1 pages:10 https://doi.org/10.1186/s40001-024-01785-9 kostenfrei https://doaj.org/article/fd234ddd52b74941822dafb890d0d781 kostenfrei https://doi.org/10.1186/s40001-024-01785-9 kostenfrei https://doaj.org/toc/2047-783X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 29 2024 1 10 |
allfieldsGer |
10.1186/s40001-024-01785-9 doi (DE-627)DOAJ097276529 (DE-599)DOAJfd234ddd52b74941822dafb890d0d781 DE-627 ger DE-627 rakwb eng Tan Cheng verfasserin aut Phthalate exposure and blood pressure in U.S. children aged 8–17 years (NHANES 2013–2018) 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Current evidence from epidemiologic studies suggested that phthalate metabolites might be associated with blood pressure (BP) changes. However, the special relationship between phthalate metabolites and BP changes in children has not been clearly elucidated in existing researches. Objectives We investigated the links between phthalate metabolites and various BP parameters, including systolic/diastolic BP, mean arterial pressure (MAP), and the presence of hypertension. Methods The population sample consisted of 1036 children aged 8 to 17 years from the 2013–2018 NHANES in the United States. High performance liquid chromatography-electrospray ionization-tandem mass spectrometry was used to measure urinary concentrations of 19 phthalate metabolites. Systolic/diastolic BP were derived from the average of three valid measurements, and MAP was calculated as (systolic BP + 2 × diastolic BP)/3. Hypertension was defined as mean systolic BP and/or diastolic BP that was ≥ 95th percentile for gender, age, and height reference. Linear regression, logistic regression, and weighted quantile sum (WQS) regression models were employed to assess the associations between phthalate exposure and systolic/diastolic BP, MAP, and hypertension. Results Ten of 19 phthalate metabolites including MCNP, MCOP, MECPP, MBP, MCPP, MEP, MEHHP, MiBP, MEOHP, and MBzP had detection frequencies < 85% with samples more than 1000. MCNP, MCOP, MECPP, MBP, MCPP, MEHHP, MiBP, MEOHP, and MBzP were generally negatively associated with systolic/diastolic BP and MAP, but not protective factors for hypertension. These associations were not modified by age (8–12 and 13–17 years) or sex (boys and girls). The above-mentioned associations were further confirmed by the application of the WQS analysis, and MCOP was identified as the chemical with the highest weight. Conclusion Phthalate metabolites were associated with modest reductions in systolic/diastolic BP, and MAP in children, while appeared not protective factors for hypertension. Given the inconsistent results among existing studies, our findings should be confirmed by other cohort studies. Phthalate metabolites Blood pressure Children Hypertension NHANES Medicine R Chengcheng Lou verfasserin aut Xiaoping Jing verfasserin aut Sirui Ding verfasserin aut Haifa Hong verfasserin aut Guodong Ding verfasserin aut Li Shen verfasserin aut In European Journal of Medical Research BMC, 2012 29(2024), 1, Seite 10 (DE-627)375977775 (DE-600)2129989-4 2047783X nnns volume:29 year:2024 number:1 pages:10 https://doi.org/10.1186/s40001-024-01785-9 kostenfrei https://doaj.org/article/fd234ddd52b74941822dafb890d0d781 kostenfrei https://doi.org/10.1186/s40001-024-01785-9 kostenfrei https://doaj.org/toc/2047-783X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 29 2024 1 10 |
allfieldsSound |
10.1186/s40001-024-01785-9 doi (DE-627)DOAJ097276529 (DE-599)DOAJfd234ddd52b74941822dafb890d0d781 DE-627 ger DE-627 rakwb eng Tan Cheng verfasserin aut Phthalate exposure and blood pressure in U.S. children aged 8–17 years (NHANES 2013–2018) 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Current evidence from epidemiologic studies suggested that phthalate metabolites might be associated with blood pressure (BP) changes. However, the special relationship between phthalate metabolites and BP changes in children has not been clearly elucidated in existing researches. Objectives We investigated the links between phthalate metabolites and various BP parameters, including systolic/diastolic BP, mean arterial pressure (MAP), and the presence of hypertension. Methods The population sample consisted of 1036 children aged 8 to 17 years from the 2013–2018 NHANES in the United States. High performance liquid chromatography-electrospray ionization-tandem mass spectrometry was used to measure urinary concentrations of 19 phthalate metabolites. Systolic/diastolic BP were derived from the average of three valid measurements, and MAP was calculated as (systolic BP + 2 × diastolic BP)/3. Hypertension was defined as mean systolic BP and/or diastolic BP that was ≥ 95th percentile for gender, age, and height reference. Linear regression, logistic regression, and weighted quantile sum (WQS) regression models were employed to assess the associations between phthalate exposure and systolic/diastolic BP, MAP, and hypertension. Results Ten of 19 phthalate metabolites including MCNP, MCOP, MECPP, MBP, MCPP, MEP, MEHHP, MiBP, MEOHP, and MBzP had detection frequencies < 85% with samples more than 1000. MCNP, MCOP, MECPP, MBP, MCPP, MEHHP, MiBP, MEOHP, and MBzP were generally negatively associated with systolic/diastolic BP and MAP, but not protective factors for hypertension. These associations were not modified by age (8–12 and 13–17 years) or sex (boys and girls). The above-mentioned associations were further confirmed by the application of the WQS analysis, and MCOP was identified as the chemical with the highest weight. Conclusion Phthalate metabolites were associated with modest reductions in systolic/diastolic BP, and MAP in children, while appeared not protective factors for hypertension. Given the inconsistent results among existing studies, our findings should be confirmed by other cohort studies. Phthalate metabolites Blood pressure Children Hypertension NHANES Medicine R Chengcheng Lou verfasserin aut Xiaoping Jing verfasserin aut Sirui Ding verfasserin aut Haifa Hong verfasserin aut Guodong Ding verfasserin aut Li Shen verfasserin aut In European Journal of Medical Research BMC, 2012 29(2024), 1, Seite 10 (DE-627)375977775 (DE-600)2129989-4 2047783X nnns volume:29 year:2024 number:1 pages:10 https://doi.org/10.1186/s40001-024-01785-9 kostenfrei https://doaj.org/article/fd234ddd52b74941822dafb890d0d781 kostenfrei https://doi.org/10.1186/s40001-024-01785-9 kostenfrei https://doaj.org/toc/2047-783X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 29 2024 1 10 |
language |
English |
source |
In European Journal of Medical Research 29(2024), 1, Seite 10 volume:29 year:2024 number:1 pages:10 |
sourceStr |
In European Journal of Medical Research 29(2024), 1, Seite 10 volume:29 year:2024 number:1 pages:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Phthalate metabolites Blood pressure Children Hypertension NHANES Medicine R |
isfreeaccess_bool |
true |
container_title |
European Journal of Medical Research |
authorswithroles_txt_mv |
Tan Cheng @@aut@@ Chengcheng Lou @@aut@@ Xiaoping Jing @@aut@@ Sirui Ding @@aut@@ Haifa Hong @@aut@@ Guodong Ding @@aut@@ Li Shen @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
375977775 |
id |
DOAJ097276529 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097276529</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413180526.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40001-024-01785-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097276529</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfd234ddd52b74941822dafb890d0d781</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Tan Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phthalate exposure and blood pressure in U.S. children aged 8–17 years (NHANES 2013–2018)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Current evidence from epidemiologic studies suggested that phthalate metabolites might be associated with blood pressure (BP) changes. However, the special relationship between phthalate metabolites and BP changes in children has not been clearly elucidated in existing researches. Objectives We investigated the links between phthalate metabolites and various BP parameters, including systolic/diastolic BP, mean arterial pressure (MAP), and the presence of hypertension. Methods The population sample consisted of 1036 children aged 8 to 17 years from the 2013–2018 NHANES in the United States. High performance liquid chromatography-electrospray ionization-tandem mass spectrometry was used to measure urinary concentrations of 19 phthalate metabolites. Systolic/diastolic BP were derived from the average of three valid measurements, and MAP was calculated as (systolic BP + 2 × diastolic BP)/3. Hypertension was defined as mean systolic BP and/or diastolic BP that was ≥ 95th percentile for gender, age, and height reference. Linear regression, logistic regression, and weighted quantile sum (WQS) regression models were employed to assess the associations between phthalate exposure and systolic/diastolic BP, MAP, and hypertension. Results Ten of 19 phthalate metabolites including MCNP, MCOP, MECPP, MBP, MCPP, MEP, MEHHP, MiBP, MEOHP, and MBzP had detection frequencies < 85% with samples more than 1000. MCNP, MCOP, MECPP, MBP, MCPP, MEHHP, MiBP, MEOHP, and MBzP were generally negatively associated with systolic/diastolic BP and MAP, but not protective factors for hypertension. These associations were not modified by age (8–12 and 13–17 years) or sex (boys and girls). The above-mentioned associations were further confirmed by the application of the WQS analysis, and MCOP was identified as the chemical with the highest weight. Conclusion Phthalate metabolites were associated with modest reductions in systolic/diastolic BP, and MAP in children, while appeared not protective factors for hypertension. Given the inconsistent results among existing studies, our findings should be confirmed by other cohort studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phthalate metabolites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood pressure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Children</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypertension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NHANES</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengcheng Lou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoping Jing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sirui Ding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haifa Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guodong Ding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">European Journal of Medical Research</subfield><subfield code="d">BMC, 2012</subfield><subfield code="g">29(2024), 1, Seite 10</subfield><subfield code="w">(DE-627)375977775</subfield><subfield code="w">(DE-600)2129989-4</subfield><subfield code="x">2047783X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s40001-024-01785-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fd234ddd52b74941822dafb890d0d781</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s40001-024-01785-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2047-783X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="h">10</subfield></datafield></record></collection>
|
author |
Tan Cheng |
spellingShingle |
Tan Cheng misc Phthalate metabolites misc Blood pressure misc Children misc Hypertension misc NHANES misc Medicine misc R Phthalate exposure and blood pressure in U.S. children aged 8–17 years (NHANES 2013–2018) |
authorStr |
Tan Cheng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)375977775 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2047783X |
topic_title |
Phthalate exposure and blood pressure in U.S. children aged 8–17 years (NHANES 2013–2018) Phthalate metabolites Blood pressure Children Hypertension NHANES |
topic |
misc Phthalate metabolites misc Blood pressure misc Children misc Hypertension misc NHANES misc Medicine misc R |
topic_unstemmed |
misc Phthalate metabolites misc Blood pressure misc Children misc Hypertension misc NHANES misc Medicine misc R |
topic_browse |
misc Phthalate metabolites misc Blood pressure misc Children misc Hypertension misc NHANES misc Medicine misc R |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
European Journal of Medical Research |
hierarchy_parent_id |
375977775 |
hierarchy_top_title |
European Journal of Medical Research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)375977775 (DE-600)2129989-4 |
title |
Phthalate exposure and blood pressure in U.S. children aged 8–17 years (NHANES 2013–2018) |
ctrlnum |
(DE-627)DOAJ097276529 (DE-599)DOAJfd234ddd52b74941822dafb890d0d781 |
title_full |
Phthalate exposure and blood pressure in U.S. children aged 8–17 years (NHANES 2013–2018) |
author_sort |
Tan Cheng |
journal |
European Journal of Medical Research |
journalStr |
European Journal of Medical Research |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
container_start_page |
10 |
author_browse |
Tan Cheng Chengcheng Lou Xiaoping Jing Sirui Ding Haifa Hong Guodong Ding Li Shen |
container_volume |
29 |
format_se |
Elektronische Aufsätze |
author-letter |
Tan Cheng |
doi_str_mv |
10.1186/s40001-024-01785-9 |
author2-role |
verfasserin |
title_sort |
phthalate exposure and blood pressure in u.s. children aged 8–17 years (nhanes 2013–2018) |
title_auth |
Phthalate exposure and blood pressure in U.S. children aged 8–17 years (NHANES 2013–2018) |
abstract |
Abstract Background Current evidence from epidemiologic studies suggested that phthalate metabolites might be associated with blood pressure (BP) changes. However, the special relationship between phthalate metabolites and BP changes in children has not been clearly elucidated in existing researches. Objectives We investigated the links between phthalate metabolites and various BP parameters, including systolic/diastolic BP, mean arterial pressure (MAP), and the presence of hypertension. Methods The population sample consisted of 1036 children aged 8 to 17 years from the 2013–2018 NHANES in the United States. High performance liquid chromatography-electrospray ionization-tandem mass spectrometry was used to measure urinary concentrations of 19 phthalate metabolites. Systolic/diastolic BP were derived from the average of three valid measurements, and MAP was calculated as (systolic BP + 2 × diastolic BP)/3. Hypertension was defined as mean systolic BP and/or diastolic BP that was ≥ 95th percentile for gender, age, and height reference. Linear regression, logistic regression, and weighted quantile sum (WQS) regression models were employed to assess the associations between phthalate exposure and systolic/diastolic BP, MAP, and hypertension. Results Ten of 19 phthalate metabolites including MCNP, MCOP, MECPP, MBP, MCPP, MEP, MEHHP, MiBP, MEOHP, and MBzP had detection frequencies < 85% with samples more than 1000. MCNP, MCOP, MECPP, MBP, MCPP, MEHHP, MiBP, MEOHP, and MBzP were generally negatively associated with systolic/diastolic BP and MAP, but not protective factors for hypertension. These associations were not modified by age (8–12 and 13–17 years) or sex (boys and girls). The above-mentioned associations were further confirmed by the application of the WQS analysis, and MCOP was identified as the chemical with the highest weight. Conclusion Phthalate metabolites were associated with modest reductions in systolic/diastolic BP, and MAP in children, while appeared not protective factors for hypertension. Given the inconsistent results among existing studies, our findings should be confirmed by other cohort studies. |
abstractGer |
Abstract Background Current evidence from epidemiologic studies suggested that phthalate metabolites might be associated with blood pressure (BP) changes. However, the special relationship between phthalate metabolites and BP changes in children has not been clearly elucidated in existing researches. Objectives We investigated the links between phthalate metabolites and various BP parameters, including systolic/diastolic BP, mean arterial pressure (MAP), and the presence of hypertension. Methods The population sample consisted of 1036 children aged 8 to 17 years from the 2013–2018 NHANES in the United States. High performance liquid chromatography-electrospray ionization-tandem mass spectrometry was used to measure urinary concentrations of 19 phthalate metabolites. Systolic/diastolic BP were derived from the average of three valid measurements, and MAP was calculated as (systolic BP + 2 × diastolic BP)/3. Hypertension was defined as mean systolic BP and/or diastolic BP that was ≥ 95th percentile for gender, age, and height reference. Linear regression, logistic regression, and weighted quantile sum (WQS) regression models were employed to assess the associations between phthalate exposure and systolic/diastolic BP, MAP, and hypertension. Results Ten of 19 phthalate metabolites including MCNP, MCOP, MECPP, MBP, MCPP, MEP, MEHHP, MiBP, MEOHP, and MBzP had detection frequencies < 85% with samples more than 1000. MCNP, MCOP, MECPP, MBP, MCPP, MEHHP, MiBP, MEOHP, and MBzP were generally negatively associated with systolic/diastolic BP and MAP, but not protective factors for hypertension. These associations were not modified by age (8–12 and 13–17 years) or sex (boys and girls). The above-mentioned associations were further confirmed by the application of the WQS analysis, and MCOP was identified as the chemical with the highest weight. Conclusion Phthalate metabolites were associated with modest reductions in systolic/diastolic BP, and MAP in children, while appeared not protective factors for hypertension. Given the inconsistent results among existing studies, our findings should be confirmed by other cohort studies. |
abstract_unstemmed |
Abstract Background Current evidence from epidemiologic studies suggested that phthalate metabolites might be associated with blood pressure (BP) changes. However, the special relationship between phthalate metabolites and BP changes in children has not been clearly elucidated in existing researches. Objectives We investigated the links between phthalate metabolites and various BP parameters, including systolic/diastolic BP, mean arterial pressure (MAP), and the presence of hypertension. Methods The population sample consisted of 1036 children aged 8 to 17 years from the 2013–2018 NHANES in the United States. High performance liquid chromatography-electrospray ionization-tandem mass spectrometry was used to measure urinary concentrations of 19 phthalate metabolites. Systolic/diastolic BP were derived from the average of three valid measurements, and MAP was calculated as (systolic BP + 2 × diastolic BP)/3. Hypertension was defined as mean systolic BP and/or diastolic BP that was ≥ 95th percentile for gender, age, and height reference. Linear regression, logistic regression, and weighted quantile sum (WQS) regression models were employed to assess the associations between phthalate exposure and systolic/diastolic BP, MAP, and hypertension. Results Ten of 19 phthalate metabolites including MCNP, MCOP, MECPP, MBP, MCPP, MEP, MEHHP, MiBP, MEOHP, and MBzP had detection frequencies < 85% with samples more than 1000. MCNP, MCOP, MECPP, MBP, MCPP, MEHHP, MiBP, MEOHP, and MBzP were generally negatively associated with systolic/diastolic BP and MAP, but not protective factors for hypertension. These associations were not modified by age (8–12 and 13–17 years) or sex (boys and girls). The above-mentioned associations were further confirmed by the application of the WQS analysis, and MCOP was identified as the chemical with the highest weight. Conclusion Phthalate metabolites were associated with modest reductions in systolic/diastolic BP, and MAP in children, while appeared not protective factors for hypertension. Given the inconsistent results among existing studies, our findings should be confirmed by other cohort studies. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Phthalate exposure and blood pressure in U.S. children aged 8–17 years (NHANES 2013–2018) |
url |
https://doi.org/10.1186/s40001-024-01785-9 https://doaj.org/article/fd234ddd52b74941822dafb890d0d781 https://doaj.org/toc/2047-783X |
remote_bool |
true |
author2 |
Chengcheng Lou Xiaoping Jing Sirui Ding Haifa Hong Guodong Ding Li Shen |
author2Str |
Chengcheng Lou Xiaoping Jing Sirui Ding Haifa Hong Guodong Ding Li Shen |
ppnlink |
375977775 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40001-024-01785-9 |
up_date |
2024-07-04T00:33:46.690Z |
_version_ |
1803606532240179200 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097276529</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413180526.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40001-024-01785-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097276529</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfd234ddd52b74941822dafb890d0d781</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Tan Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phthalate exposure and blood pressure in U.S. children aged 8–17 years (NHANES 2013–2018)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Current evidence from epidemiologic studies suggested that phthalate metabolites might be associated with blood pressure (BP) changes. However, the special relationship between phthalate metabolites and BP changes in children has not been clearly elucidated in existing researches. Objectives We investigated the links between phthalate metabolites and various BP parameters, including systolic/diastolic BP, mean arterial pressure (MAP), and the presence of hypertension. Methods The population sample consisted of 1036 children aged 8 to 17 years from the 2013–2018 NHANES in the United States. High performance liquid chromatography-electrospray ionization-tandem mass spectrometry was used to measure urinary concentrations of 19 phthalate metabolites. Systolic/diastolic BP were derived from the average of three valid measurements, and MAP was calculated as (systolic BP + 2 × diastolic BP)/3. Hypertension was defined as mean systolic BP and/or diastolic BP that was ≥ 95th percentile for gender, age, and height reference. Linear regression, logistic regression, and weighted quantile sum (WQS) regression models were employed to assess the associations between phthalate exposure and systolic/diastolic BP, MAP, and hypertension. Results Ten of 19 phthalate metabolites including MCNP, MCOP, MECPP, MBP, MCPP, MEP, MEHHP, MiBP, MEOHP, and MBzP had detection frequencies < 85% with samples more than 1000. MCNP, MCOP, MECPP, MBP, MCPP, MEHHP, MiBP, MEOHP, and MBzP were generally negatively associated with systolic/diastolic BP and MAP, but not protective factors for hypertension. These associations were not modified by age (8–12 and 13–17 years) or sex (boys and girls). The above-mentioned associations were further confirmed by the application of the WQS analysis, and MCOP was identified as the chemical with the highest weight. Conclusion Phthalate metabolites were associated with modest reductions in systolic/diastolic BP, and MAP in children, while appeared not protective factors for hypertension. Given the inconsistent results among existing studies, our findings should be confirmed by other cohort studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phthalate metabolites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood pressure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Children</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypertension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NHANES</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengcheng Lou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoping Jing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sirui Ding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haifa Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guodong Ding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">European Journal of Medical Research</subfield><subfield code="d">BMC, 2012</subfield><subfield code="g">29(2024), 1, Seite 10</subfield><subfield code="w">(DE-627)375977775</subfield><subfield code="w">(DE-600)2129989-4</subfield><subfield code="x">2047783X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s40001-024-01785-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fd234ddd52b74941822dafb890d0d781</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s40001-024-01785-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2047-783X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="h">10</subfield></datafield></record></collection>
|
score |
7.40166 |