Query execution time estimation in graph databases based on graph neural networks
Query execution time estimation is an essential task for databases, accurate estimation results can help administrators to manage and monitor systems. This study proposes an interaction-aware and dependency-aware query execution time estimation approach that utilizes graph neural networks to capture...
Ausführliche Beschreibung
Autor*in: |
Zhenzhen He [verfasserIn] Jiong Yu [verfasserIn] Tiquan Gu [verfasserIn] Dexian Yang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of King Saud University: Computer and Information Sciences - Elsevier, 2016, 36(2024), 4, Seite 102018- |
---|---|
Übergeordnetes Werk: |
volume:36 ; year:2024 ; number:4 ; pages:102018- |
Links: |
---|
DOI / URN: |
10.1016/j.jksuci.2024.102018 |
---|
Katalog-ID: |
DOAJ097290440 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ097290440 | ||
003 | DE-627 | ||
005 | 20240413180800.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jksuci.2024.102018 |2 doi | |
035 | |a (DE-627)DOAJ097290440 | ||
035 | |a (DE-599)DOAJf3107d8cf9364559bef5657a375da5d3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA75.5-76.95 | |
100 | 0 | |a Zhenzhen He |e verfasserin |4 aut | |
245 | 1 | 0 | |a Query execution time estimation in graph databases based on graph neural networks |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Query execution time estimation is an essential task for databases, accurate estimation results can help administrators to manage and monitor systems. This study proposes an interaction-aware and dependency-aware query execution time estimation approach that utilizes graph neural networks to capture dependence and interaction relationships. We divide graph query execution time estimation tasks into three stages: workload generation and running, graph-based feature modeling and representation, training and estimation. Specifically, we generate query workloads and run them to collect the database and plan information when queries are executed. Then, the collected plan and database components are modeled into vertexes, the interaction and dependency between them are modeled into edges of graph-based feature representation. We develop an estimation model based on graph neural networks, in which the vertex embedding network is proposed to deal with the vertex heterogeneity, and the message passing network is proposed to aggregate the local representation into the global representation to obtain an embedding that can represent the higher-order feature information of the whole graph, and the estimation network is proposed to estimate execution times. The experiment results on datasets show that our estimation approach can improve estimation quality and outperform other estimation approaches in terms of estimation accuracy. | ||
650 | 4 | |a Neo4j database management systems | |
650 | 4 | |a Deep learning | |
650 | 4 | |a Graph neural network | |
650 | 4 | |a Graph queries | |
650 | 4 | |a Execution time estimation | |
653 | 0 | |a Electronic computers. Computer science | |
700 | 0 | |a Jiong Yu |e verfasserin |4 aut | |
700 | 0 | |a Tiquan Gu |e verfasserin |4 aut | |
700 | 0 | |a Dexian Yang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of King Saud University: Computer and Information Sciences |d Elsevier, 2016 |g 36(2024), 4, Seite 102018- |w (DE-627)746705778 |w (DE-600)2716720-3 |x 13191578 |7 nnns |
773 | 1 | 8 | |g volume:36 |g year:2024 |g number:4 |g pages:102018- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jksuci.2024.102018 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f3107d8cf9364559bef5657a375da5d3 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S1319157824001071 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1319-1578 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 36 |j 2024 |e 4 |h 102018- |
author_variant |
z h zh j y jy t g tg d y dy |
---|---|
matchkey_str |
article:13191578:2024----::ureeuiniesiainnrpdtbssaeo |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
QA |
publishDate |
2024 |
allfields |
10.1016/j.jksuci.2024.102018 doi (DE-627)DOAJ097290440 (DE-599)DOAJf3107d8cf9364559bef5657a375da5d3 DE-627 ger DE-627 rakwb eng QA75.5-76.95 Zhenzhen He verfasserin aut Query execution time estimation in graph databases based on graph neural networks 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Query execution time estimation is an essential task for databases, accurate estimation results can help administrators to manage and monitor systems. This study proposes an interaction-aware and dependency-aware query execution time estimation approach that utilizes graph neural networks to capture dependence and interaction relationships. We divide graph query execution time estimation tasks into three stages: workload generation and running, graph-based feature modeling and representation, training and estimation. Specifically, we generate query workloads and run them to collect the database and plan information when queries are executed. Then, the collected plan and database components are modeled into vertexes, the interaction and dependency between them are modeled into edges of graph-based feature representation. We develop an estimation model based on graph neural networks, in which the vertex embedding network is proposed to deal with the vertex heterogeneity, and the message passing network is proposed to aggregate the local representation into the global representation to obtain an embedding that can represent the higher-order feature information of the whole graph, and the estimation network is proposed to estimate execution times. The experiment results on datasets show that our estimation approach can improve estimation quality and outperform other estimation approaches in terms of estimation accuracy. Neo4j database management systems Deep learning Graph neural network Graph queries Execution time estimation Electronic computers. Computer science Jiong Yu verfasserin aut Tiquan Gu verfasserin aut Dexian Yang verfasserin aut In Journal of King Saud University: Computer and Information Sciences Elsevier, 2016 36(2024), 4, Seite 102018- (DE-627)746705778 (DE-600)2716720-3 13191578 nnns volume:36 year:2024 number:4 pages:102018- https://doi.org/10.1016/j.jksuci.2024.102018 kostenfrei https://doaj.org/article/f3107d8cf9364559bef5657a375da5d3 kostenfrei http://www.sciencedirect.com/science/article/pii/S1319157824001071 kostenfrei https://doaj.org/toc/1319-1578 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 36 2024 4 102018- |
spelling |
10.1016/j.jksuci.2024.102018 doi (DE-627)DOAJ097290440 (DE-599)DOAJf3107d8cf9364559bef5657a375da5d3 DE-627 ger DE-627 rakwb eng QA75.5-76.95 Zhenzhen He verfasserin aut Query execution time estimation in graph databases based on graph neural networks 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Query execution time estimation is an essential task for databases, accurate estimation results can help administrators to manage and monitor systems. This study proposes an interaction-aware and dependency-aware query execution time estimation approach that utilizes graph neural networks to capture dependence and interaction relationships. We divide graph query execution time estimation tasks into three stages: workload generation and running, graph-based feature modeling and representation, training and estimation. Specifically, we generate query workloads and run them to collect the database and plan information when queries are executed. Then, the collected plan and database components are modeled into vertexes, the interaction and dependency between them are modeled into edges of graph-based feature representation. We develop an estimation model based on graph neural networks, in which the vertex embedding network is proposed to deal with the vertex heterogeneity, and the message passing network is proposed to aggregate the local representation into the global representation to obtain an embedding that can represent the higher-order feature information of the whole graph, and the estimation network is proposed to estimate execution times. The experiment results on datasets show that our estimation approach can improve estimation quality and outperform other estimation approaches in terms of estimation accuracy. Neo4j database management systems Deep learning Graph neural network Graph queries Execution time estimation Electronic computers. Computer science Jiong Yu verfasserin aut Tiquan Gu verfasserin aut Dexian Yang verfasserin aut In Journal of King Saud University: Computer and Information Sciences Elsevier, 2016 36(2024), 4, Seite 102018- (DE-627)746705778 (DE-600)2716720-3 13191578 nnns volume:36 year:2024 number:4 pages:102018- https://doi.org/10.1016/j.jksuci.2024.102018 kostenfrei https://doaj.org/article/f3107d8cf9364559bef5657a375da5d3 kostenfrei http://www.sciencedirect.com/science/article/pii/S1319157824001071 kostenfrei https://doaj.org/toc/1319-1578 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 36 2024 4 102018- |
allfields_unstemmed |
10.1016/j.jksuci.2024.102018 doi (DE-627)DOAJ097290440 (DE-599)DOAJf3107d8cf9364559bef5657a375da5d3 DE-627 ger DE-627 rakwb eng QA75.5-76.95 Zhenzhen He verfasserin aut Query execution time estimation in graph databases based on graph neural networks 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Query execution time estimation is an essential task for databases, accurate estimation results can help administrators to manage and monitor systems. This study proposes an interaction-aware and dependency-aware query execution time estimation approach that utilizes graph neural networks to capture dependence and interaction relationships. We divide graph query execution time estimation tasks into three stages: workload generation and running, graph-based feature modeling and representation, training and estimation. Specifically, we generate query workloads and run them to collect the database and plan information when queries are executed. Then, the collected plan and database components are modeled into vertexes, the interaction and dependency between them are modeled into edges of graph-based feature representation. We develop an estimation model based on graph neural networks, in which the vertex embedding network is proposed to deal with the vertex heterogeneity, and the message passing network is proposed to aggregate the local representation into the global representation to obtain an embedding that can represent the higher-order feature information of the whole graph, and the estimation network is proposed to estimate execution times. The experiment results on datasets show that our estimation approach can improve estimation quality and outperform other estimation approaches in terms of estimation accuracy. Neo4j database management systems Deep learning Graph neural network Graph queries Execution time estimation Electronic computers. Computer science Jiong Yu verfasserin aut Tiquan Gu verfasserin aut Dexian Yang verfasserin aut In Journal of King Saud University: Computer and Information Sciences Elsevier, 2016 36(2024), 4, Seite 102018- (DE-627)746705778 (DE-600)2716720-3 13191578 nnns volume:36 year:2024 number:4 pages:102018- https://doi.org/10.1016/j.jksuci.2024.102018 kostenfrei https://doaj.org/article/f3107d8cf9364559bef5657a375da5d3 kostenfrei http://www.sciencedirect.com/science/article/pii/S1319157824001071 kostenfrei https://doaj.org/toc/1319-1578 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 36 2024 4 102018- |
allfieldsGer |
10.1016/j.jksuci.2024.102018 doi (DE-627)DOAJ097290440 (DE-599)DOAJf3107d8cf9364559bef5657a375da5d3 DE-627 ger DE-627 rakwb eng QA75.5-76.95 Zhenzhen He verfasserin aut Query execution time estimation in graph databases based on graph neural networks 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Query execution time estimation is an essential task for databases, accurate estimation results can help administrators to manage and monitor systems. This study proposes an interaction-aware and dependency-aware query execution time estimation approach that utilizes graph neural networks to capture dependence and interaction relationships. We divide graph query execution time estimation tasks into three stages: workload generation and running, graph-based feature modeling and representation, training and estimation. Specifically, we generate query workloads and run them to collect the database and plan information when queries are executed. Then, the collected plan and database components are modeled into vertexes, the interaction and dependency between them are modeled into edges of graph-based feature representation. We develop an estimation model based on graph neural networks, in which the vertex embedding network is proposed to deal with the vertex heterogeneity, and the message passing network is proposed to aggregate the local representation into the global representation to obtain an embedding that can represent the higher-order feature information of the whole graph, and the estimation network is proposed to estimate execution times. The experiment results on datasets show that our estimation approach can improve estimation quality and outperform other estimation approaches in terms of estimation accuracy. Neo4j database management systems Deep learning Graph neural network Graph queries Execution time estimation Electronic computers. Computer science Jiong Yu verfasserin aut Tiquan Gu verfasserin aut Dexian Yang verfasserin aut In Journal of King Saud University: Computer and Information Sciences Elsevier, 2016 36(2024), 4, Seite 102018- (DE-627)746705778 (DE-600)2716720-3 13191578 nnns volume:36 year:2024 number:4 pages:102018- https://doi.org/10.1016/j.jksuci.2024.102018 kostenfrei https://doaj.org/article/f3107d8cf9364559bef5657a375da5d3 kostenfrei http://www.sciencedirect.com/science/article/pii/S1319157824001071 kostenfrei https://doaj.org/toc/1319-1578 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 36 2024 4 102018- |
allfieldsSound |
10.1016/j.jksuci.2024.102018 doi (DE-627)DOAJ097290440 (DE-599)DOAJf3107d8cf9364559bef5657a375da5d3 DE-627 ger DE-627 rakwb eng QA75.5-76.95 Zhenzhen He verfasserin aut Query execution time estimation in graph databases based on graph neural networks 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Query execution time estimation is an essential task for databases, accurate estimation results can help administrators to manage and monitor systems. This study proposes an interaction-aware and dependency-aware query execution time estimation approach that utilizes graph neural networks to capture dependence and interaction relationships. We divide graph query execution time estimation tasks into three stages: workload generation and running, graph-based feature modeling and representation, training and estimation. Specifically, we generate query workloads and run them to collect the database and plan information when queries are executed. Then, the collected plan and database components are modeled into vertexes, the interaction and dependency between them are modeled into edges of graph-based feature representation. We develop an estimation model based on graph neural networks, in which the vertex embedding network is proposed to deal with the vertex heterogeneity, and the message passing network is proposed to aggregate the local representation into the global representation to obtain an embedding that can represent the higher-order feature information of the whole graph, and the estimation network is proposed to estimate execution times. The experiment results on datasets show that our estimation approach can improve estimation quality and outperform other estimation approaches in terms of estimation accuracy. Neo4j database management systems Deep learning Graph neural network Graph queries Execution time estimation Electronic computers. Computer science Jiong Yu verfasserin aut Tiquan Gu verfasserin aut Dexian Yang verfasserin aut In Journal of King Saud University: Computer and Information Sciences Elsevier, 2016 36(2024), 4, Seite 102018- (DE-627)746705778 (DE-600)2716720-3 13191578 nnns volume:36 year:2024 number:4 pages:102018- https://doi.org/10.1016/j.jksuci.2024.102018 kostenfrei https://doaj.org/article/f3107d8cf9364559bef5657a375da5d3 kostenfrei http://www.sciencedirect.com/science/article/pii/S1319157824001071 kostenfrei https://doaj.org/toc/1319-1578 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 36 2024 4 102018- |
language |
English |
source |
In Journal of King Saud University: Computer and Information Sciences 36(2024), 4, Seite 102018- volume:36 year:2024 number:4 pages:102018- |
sourceStr |
In Journal of King Saud University: Computer and Information Sciences 36(2024), 4, Seite 102018- volume:36 year:2024 number:4 pages:102018- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Neo4j database management systems Deep learning Graph neural network Graph queries Execution time estimation Electronic computers. Computer science |
isfreeaccess_bool |
true |
container_title |
Journal of King Saud University: Computer and Information Sciences |
authorswithroles_txt_mv |
Zhenzhen He @@aut@@ Jiong Yu @@aut@@ Tiquan Gu @@aut@@ Dexian Yang @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
746705778 |
id |
DOAJ097290440 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097290440</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413180800.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jksuci.2024.102018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097290440</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf3107d8cf9364559bef5657a375da5d3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhenzhen He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Query execution time estimation in graph databases based on graph neural networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Query execution time estimation is an essential task for databases, accurate estimation results can help administrators to manage and monitor systems. This study proposes an interaction-aware and dependency-aware query execution time estimation approach that utilizes graph neural networks to capture dependence and interaction relationships. We divide graph query execution time estimation tasks into three stages: workload generation and running, graph-based feature modeling and representation, training and estimation. Specifically, we generate query workloads and run them to collect the database and plan information when queries are executed. Then, the collected plan and database components are modeled into vertexes, the interaction and dependency between them are modeled into edges of graph-based feature representation. We develop an estimation model based on graph neural networks, in which the vertex embedding network is proposed to deal with the vertex heterogeneity, and the message passing network is proposed to aggregate the local representation into the global representation to obtain an embedding that can represent the higher-order feature information of the whole graph, and the estimation network is proposed to estimate execution times. The experiment results on datasets show that our estimation approach can improve estimation quality and outperform other estimation approaches in terms of estimation accuracy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neo4j database management systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph queries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Execution time estimation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiong Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tiquan Gu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dexian Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of King Saud University: Computer and Information Sciences</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">36(2024), 4, Seite 102018-</subfield><subfield code="w">(DE-627)746705778</subfield><subfield code="w">(DE-600)2716720-3</subfield><subfield code="x">13191578</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:102018-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jksuci.2024.102018</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f3107d8cf9364559bef5657a375da5d3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1319157824001071</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1319-1578</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">2024</subfield><subfield code="e">4</subfield><subfield code="h">102018-</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Zhenzhen He |
spellingShingle |
Zhenzhen He misc QA75.5-76.95 misc Neo4j database management systems misc Deep learning misc Graph neural network misc Graph queries misc Execution time estimation misc Electronic computers. Computer science Query execution time estimation in graph databases based on graph neural networks |
authorStr |
Zhenzhen He |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)746705778 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA75 |
illustrated |
Not Illustrated |
issn |
13191578 |
topic_title |
QA75.5-76.95 Query execution time estimation in graph databases based on graph neural networks Neo4j database management systems Deep learning Graph neural network Graph queries Execution time estimation |
topic |
misc QA75.5-76.95 misc Neo4j database management systems misc Deep learning misc Graph neural network misc Graph queries misc Execution time estimation misc Electronic computers. Computer science |
topic_unstemmed |
misc QA75.5-76.95 misc Neo4j database management systems misc Deep learning misc Graph neural network misc Graph queries misc Execution time estimation misc Electronic computers. Computer science |
topic_browse |
misc QA75.5-76.95 misc Neo4j database management systems misc Deep learning misc Graph neural network misc Graph queries misc Execution time estimation misc Electronic computers. Computer science |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of King Saud University: Computer and Information Sciences |
hierarchy_parent_id |
746705778 |
hierarchy_top_title |
Journal of King Saud University: Computer and Information Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)746705778 (DE-600)2716720-3 |
title |
Query execution time estimation in graph databases based on graph neural networks |
ctrlnum |
(DE-627)DOAJ097290440 (DE-599)DOAJf3107d8cf9364559bef5657a375da5d3 |
title_full |
Query execution time estimation in graph databases based on graph neural networks |
author_sort |
Zhenzhen He |
journal |
Journal of King Saud University: Computer and Information Sciences |
journalStr |
Journal of King Saud University: Computer and Information Sciences |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
container_start_page |
102018 |
author_browse |
Zhenzhen He Jiong Yu Tiquan Gu Dexian Yang |
container_volume |
36 |
class |
QA75.5-76.95 |
format_se |
Elektronische Aufsätze |
author-letter |
Zhenzhen He |
doi_str_mv |
10.1016/j.jksuci.2024.102018 |
author2-role |
verfasserin |
title_sort |
query execution time estimation in graph databases based on graph neural networks |
callnumber |
QA75.5-76.95 |
title_auth |
Query execution time estimation in graph databases based on graph neural networks |
abstract |
Query execution time estimation is an essential task for databases, accurate estimation results can help administrators to manage and monitor systems. This study proposes an interaction-aware and dependency-aware query execution time estimation approach that utilizes graph neural networks to capture dependence and interaction relationships. We divide graph query execution time estimation tasks into three stages: workload generation and running, graph-based feature modeling and representation, training and estimation. Specifically, we generate query workloads and run them to collect the database and plan information when queries are executed. Then, the collected plan and database components are modeled into vertexes, the interaction and dependency between them are modeled into edges of graph-based feature representation. We develop an estimation model based on graph neural networks, in which the vertex embedding network is proposed to deal with the vertex heterogeneity, and the message passing network is proposed to aggregate the local representation into the global representation to obtain an embedding that can represent the higher-order feature information of the whole graph, and the estimation network is proposed to estimate execution times. The experiment results on datasets show that our estimation approach can improve estimation quality and outperform other estimation approaches in terms of estimation accuracy. |
abstractGer |
Query execution time estimation is an essential task for databases, accurate estimation results can help administrators to manage and monitor systems. This study proposes an interaction-aware and dependency-aware query execution time estimation approach that utilizes graph neural networks to capture dependence and interaction relationships. We divide graph query execution time estimation tasks into three stages: workload generation and running, graph-based feature modeling and representation, training and estimation. Specifically, we generate query workloads and run them to collect the database and plan information when queries are executed. Then, the collected plan and database components are modeled into vertexes, the interaction and dependency between them are modeled into edges of graph-based feature representation. We develop an estimation model based on graph neural networks, in which the vertex embedding network is proposed to deal with the vertex heterogeneity, and the message passing network is proposed to aggregate the local representation into the global representation to obtain an embedding that can represent the higher-order feature information of the whole graph, and the estimation network is proposed to estimate execution times. The experiment results on datasets show that our estimation approach can improve estimation quality and outperform other estimation approaches in terms of estimation accuracy. |
abstract_unstemmed |
Query execution time estimation is an essential task for databases, accurate estimation results can help administrators to manage and monitor systems. This study proposes an interaction-aware and dependency-aware query execution time estimation approach that utilizes graph neural networks to capture dependence and interaction relationships. We divide graph query execution time estimation tasks into three stages: workload generation and running, graph-based feature modeling and representation, training and estimation. Specifically, we generate query workloads and run them to collect the database and plan information when queries are executed. Then, the collected plan and database components are modeled into vertexes, the interaction and dependency between them are modeled into edges of graph-based feature representation. We develop an estimation model based on graph neural networks, in which the vertex embedding network is proposed to deal with the vertex heterogeneity, and the message passing network is proposed to aggregate the local representation into the global representation to obtain an embedding that can represent the higher-order feature information of the whole graph, and the estimation network is proposed to estimate execution times. The experiment results on datasets show that our estimation approach can improve estimation quality and outperform other estimation approaches in terms of estimation accuracy. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Query execution time estimation in graph databases based on graph neural networks |
url |
https://doi.org/10.1016/j.jksuci.2024.102018 https://doaj.org/article/f3107d8cf9364559bef5657a375da5d3 http://www.sciencedirect.com/science/article/pii/S1319157824001071 https://doaj.org/toc/1319-1578 |
remote_bool |
true |
author2 |
Jiong Yu Tiquan Gu Dexian Yang |
author2Str |
Jiong Yu Tiquan Gu Dexian Yang |
ppnlink |
746705778 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jksuci.2024.102018 |
callnumber-a |
QA75.5-76.95 |
up_date |
2024-07-04T00:40:14.687Z |
_version_ |
1803606939076132864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097290440</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413180800.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jksuci.2024.102018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097290440</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf3107d8cf9364559bef5657a375da5d3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhenzhen He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Query execution time estimation in graph databases based on graph neural networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Query execution time estimation is an essential task for databases, accurate estimation results can help administrators to manage and monitor systems. This study proposes an interaction-aware and dependency-aware query execution time estimation approach that utilizes graph neural networks to capture dependence and interaction relationships. We divide graph query execution time estimation tasks into three stages: workload generation and running, graph-based feature modeling and representation, training and estimation. Specifically, we generate query workloads and run them to collect the database and plan information when queries are executed. Then, the collected plan and database components are modeled into vertexes, the interaction and dependency between them are modeled into edges of graph-based feature representation. We develop an estimation model based on graph neural networks, in which the vertex embedding network is proposed to deal with the vertex heterogeneity, and the message passing network is proposed to aggregate the local representation into the global representation to obtain an embedding that can represent the higher-order feature information of the whole graph, and the estimation network is proposed to estimate execution times. The experiment results on datasets show that our estimation approach can improve estimation quality and outperform other estimation approaches in terms of estimation accuracy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neo4j database management systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph queries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Execution time estimation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiong Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tiquan Gu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dexian Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of King Saud University: Computer and Information Sciences</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">36(2024), 4, Seite 102018-</subfield><subfield code="w">(DE-627)746705778</subfield><subfield code="w">(DE-600)2716720-3</subfield><subfield code="x">13191578</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:102018-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jksuci.2024.102018</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f3107d8cf9364559bef5657a375da5d3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1319157824001071</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1319-1578</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">2024</subfield><subfield code="e">4</subfield><subfield code="h">102018-</subfield></datafield></record></collection>
|
score |
7.4015427 |