Review of Active Thermal Control for Power Electronics: Potentials, Limitations, and Future Trends
The main factor that drives the aging of power semiconductor modules is the thermally induced stress caused by the maximum temperature and temperature swings. This thermally induced stress is usually counteracted in passive designs with oversizing of components, which brings additional cost to the s...
Ausführliche Beschreibung
Autor*in: |
Anas Ibrahim [verfasserIn] Mohamed Salem [verfasserIn] Mohamad Kamarol [verfasserIn] Maria Teresa Delgado [verfasserIn] Mohd Khairunaz Mat Desa [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Open Journal of Power Electronics - IEEE, 2021, 5(2024), Seite 414-435 |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2024 ; pages:414-435 |
Links: |
---|
DOI / URN: |
10.1109/OJPEL.2024.3376086 |
---|
Katalog-ID: |
DOAJ097344915 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ097344915 | ||
003 | DE-627 | ||
005 | 20240413181959.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/OJPEL.2024.3376086 |2 doi | |
035 | |a (DE-627)DOAJ097344915 | ||
035 | |a (DE-599)DOAJ6e9f771e8e8d40cdbafee78c4142edac | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Anas Ibrahim |e verfasserin |4 aut | |
245 | 1 | 0 | |a Review of Active Thermal Control for Power Electronics: Potentials, Limitations, and Future Trends |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The main factor that drives the aging of power semiconductor modules is the thermally induced stress caused by the maximum temperature and temperature swings. This thermally induced stress is usually counteracted in passive designs with oversizing of components, which brings additional cost to the system. This is a major limitation of future power electronic systems that are required to be more reliable with reasonable cost and for many applications to be lighter and smaller. Active thermal control (ATC) is a possibility to reduce the thermal stress of components during real-time operation without the need to modify the expensive converter power stage. Many studies have shown the potential of ATC to not only extend the lifetime of power converters because of the reduced stress, but also to increase the converter devices utilization by pushing them into their thermal limits with proper control. This makes ATC an appealing way to realize the contradicting reliability, cost, and power density requirements. This paper provides an overview of the benefits and objectives, structure, and implementation possibilities of ATC. It also provides and overview of the limitations and disadvantages of many ATC strategies. Based on this discussion, it highlights key issues that must be addressed by future research. Among them is minimizing the impact of different ATC strategies on the power losses, operational cost, and output voltage and current quality. | ||
650 | 4 | |a Active thermal control | |
650 | 4 | |a junction temperature control | |
650 | 4 | |a reliability enhancement | |
650 | 4 | |a power electronics | |
650 | 4 | |a semiconductor device lifetime | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Mohamed Salem |e verfasserin |4 aut | |
700 | 0 | |a Mohamad Kamarol |e verfasserin |4 aut | |
700 | 0 | |a Maria Teresa Delgado |e verfasserin |4 aut | |
700 | 0 | |a Mohd Khairunaz Mat Desa |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Open Journal of Power Electronics |d IEEE, 2021 |g 5(2024), Seite 414-435 |w (DE-627)1688451307 |w (DE-600)3006279-2 |x 26441314 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2024 |g pages:414-435 |
856 | 4 | 0 | |u https://doi.org/10.1109/OJPEL.2024.3376086 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6e9f771e8e8d40cdbafee78c4142edac |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/10470388/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2644-1314 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2024 |h 414-435 |
author_variant |
a i ai m s ms m k mk m t d mtd m k m d mkmd |
---|---|
matchkey_str |
article:26441314:2024----::eiwfciehracnrlopwrlcrncptnillm |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
TK |
publishDate |
2024 |
allfields |
10.1109/OJPEL.2024.3376086 doi (DE-627)DOAJ097344915 (DE-599)DOAJ6e9f771e8e8d40cdbafee78c4142edac DE-627 ger DE-627 rakwb eng TK1-9971 Anas Ibrahim verfasserin aut Review of Active Thermal Control for Power Electronics: Potentials, Limitations, and Future Trends 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The main factor that drives the aging of power semiconductor modules is the thermally induced stress caused by the maximum temperature and temperature swings. This thermally induced stress is usually counteracted in passive designs with oversizing of components, which brings additional cost to the system. This is a major limitation of future power electronic systems that are required to be more reliable with reasonable cost and for many applications to be lighter and smaller. Active thermal control (ATC) is a possibility to reduce the thermal stress of components during real-time operation without the need to modify the expensive converter power stage. Many studies have shown the potential of ATC to not only extend the lifetime of power converters because of the reduced stress, but also to increase the converter devices utilization by pushing them into their thermal limits with proper control. This makes ATC an appealing way to realize the contradicting reliability, cost, and power density requirements. This paper provides an overview of the benefits and objectives, structure, and implementation possibilities of ATC. It also provides and overview of the limitations and disadvantages of many ATC strategies. Based on this discussion, it highlights key issues that must be addressed by future research. Among them is minimizing the impact of different ATC strategies on the power losses, operational cost, and output voltage and current quality. Active thermal control junction temperature control reliability enhancement power electronics semiconductor device lifetime Electrical engineering. Electronics. Nuclear engineering Mohamed Salem verfasserin aut Mohamad Kamarol verfasserin aut Maria Teresa Delgado verfasserin aut Mohd Khairunaz Mat Desa verfasserin aut In IEEE Open Journal of Power Electronics IEEE, 2021 5(2024), Seite 414-435 (DE-627)1688451307 (DE-600)3006279-2 26441314 nnns volume:5 year:2024 pages:414-435 https://doi.org/10.1109/OJPEL.2024.3376086 kostenfrei https://doaj.org/article/6e9f771e8e8d40cdbafee78c4142edac kostenfrei https://ieeexplore.ieee.org/document/10470388/ kostenfrei https://doaj.org/toc/2644-1314 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2024 414-435 |
spelling |
10.1109/OJPEL.2024.3376086 doi (DE-627)DOAJ097344915 (DE-599)DOAJ6e9f771e8e8d40cdbafee78c4142edac DE-627 ger DE-627 rakwb eng TK1-9971 Anas Ibrahim verfasserin aut Review of Active Thermal Control for Power Electronics: Potentials, Limitations, and Future Trends 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The main factor that drives the aging of power semiconductor modules is the thermally induced stress caused by the maximum temperature and temperature swings. This thermally induced stress is usually counteracted in passive designs with oversizing of components, which brings additional cost to the system. This is a major limitation of future power electronic systems that are required to be more reliable with reasonable cost and for many applications to be lighter and smaller. Active thermal control (ATC) is a possibility to reduce the thermal stress of components during real-time operation without the need to modify the expensive converter power stage. Many studies have shown the potential of ATC to not only extend the lifetime of power converters because of the reduced stress, but also to increase the converter devices utilization by pushing them into their thermal limits with proper control. This makes ATC an appealing way to realize the contradicting reliability, cost, and power density requirements. This paper provides an overview of the benefits and objectives, structure, and implementation possibilities of ATC. It also provides and overview of the limitations and disadvantages of many ATC strategies. Based on this discussion, it highlights key issues that must be addressed by future research. Among them is minimizing the impact of different ATC strategies on the power losses, operational cost, and output voltage and current quality. Active thermal control junction temperature control reliability enhancement power electronics semiconductor device lifetime Electrical engineering. Electronics. Nuclear engineering Mohamed Salem verfasserin aut Mohamad Kamarol verfasserin aut Maria Teresa Delgado verfasserin aut Mohd Khairunaz Mat Desa verfasserin aut In IEEE Open Journal of Power Electronics IEEE, 2021 5(2024), Seite 414-435 (DE-627)1688451307 (DE-600)3006279-2 26441314 nnns volume:5 year:2024 pages:414-435 https://doi.org/10.1109/OJPEL.2024.3376086 kostenfrei https://doaj.org/article/6e9f771e8e8d40cdbafee78c4142edac kostenfrei https://ieeexplore.ieee.org/document/10470388/ kostenfrei https://doaj.org/toc/2644-1314 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2024 414-435 |
allfields_unstemmed |
10.1109/OJPEL.2024.3376086 doi (DE-627)DOAJ097344915 (DE-599)DOAJ6e9f771e8e8d40cdbafee78c4142edac DE-627 ger DE-627 rakwb eng TK1-9971 Anas Ibrahim verfasserin aut Review of Active Thermal Control for Power Electronics: Potentials, Limitations, and Future Trends 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The main factor that drives the aging of power semiconductor modules is the thermally induced stress caused by the maximum temperature and temperature swings. This thermally induced stress is usually counteracted in passive designs with oversizing of components, which brings additional cost to the system. This is a major limitation of future power electronic systems that are required to be more reliable with reasonable cost and for many applications to be lighter and smaller. Active thermal control (ATC) is a possibility to reduce the thermal stress of components during real-time operation without the need to modify the expensive converter power stage. Many studies have shown the potential of ATC to not only extend the lifetime of power converters because of the reduced stress, but also to increase the converter devices utilization by pushing them into their thermal limits with proper control. This makes ATC an appealing way to realize the contradicting reliability, cost, and power density requirements. This paper provides an overview of the benefits and objectives, structure, and implementation possibilities of ATC. It also provides and overview of the limitations and disadvantages of many ATC strategies. Based on this discussion, it highlights key issues that must be addressed by future research. Among them is minimizing the impact of different ATC strategies on the power losses, operational cost, and output voltage and current quality. Active thermal control junction temperature control reliability enhancement power electronics semiconductor device lifetime Electrical engineering. Electronics. Nuclear engineering Mohamed Salem verfasserin aut Mohamad Kamarol verfasserin aut Maria Teresa Delgado verfasserin aut Mohd Khairunaz Mat Desa verfasserin aut In IEEE Open Journal of Power Electronics IEEE, 2021 5(2024), Seite 414-435 (DE-627)1688451307 (DE-600)3006279-2 26441314 nnns volume:5 year:2024 pages:414-435 https://doi.org/10.1109/OJPEL.2024.3376086 kostenfrei https://doaj.org/article/6e9f771e8e8d40cdbafee78c4142edac kostenfrei https://ieeexplore.ieee.org/document/10470388/ kostenfrei https://doaj.org/toc/2644-1314 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2024 414-435 |
allfieldsGer |
10.1109/OJPEL.2024.3376086 doi (DE-627)DOAJ097344915 (DE-599)DOAJ6e9f771e8e8d40cdbafee78c4142edac DE-627 ger DE-627 rakwb eng TK1-9971 Anas Ibrahim verfasserin aut Review of Active Thermal Control for Power Electronics: Potentials, Limitations, and Future Trends 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The main factor that drives the aging of power semiconductor modules is the thermally induced stress caused by the maximum temperature and temperature swings. This thermally induced stress is usually counteracted in passive designs with oversizing of components, which brings additional cost to the system. This is a major limitation of future power electronic systems that are required to be more reliable with reasonable cost and for many applications to be lighter and smaller. Active thermal control (ATC) is a possibility to reduce the thermal stress of components during real-time operation without the need to modify the expensive converter power stage. Many studies have shown the potential of ATC to not only extend the lifetime of power converters because of the reduced stress, but also to increase the converter devices utilization by pushing them into their thermal limits with proper control. This makes ATC an appealing way to realize the contradicting reliability, cost, and power density requirements. This paper provides an overview of the benefits and objectives, structure, and implementation possibilities of ATC. It also provides and overview of the limitations and disadvantages of many ATC strategies. Based on this discussion, it highlights key issues that must be addressed by future research. Among them is minimizing the impact of different ATC strategies on the power losses, operational cost, and output voltage and current quality. Active thermal control junction temperature control reliability enhancement power electronics semiconductor device lifetime Electrical engineering. Electronics. Nuclear engineering Mohamed Salem verfasserin aut Mohamad Kamarol verfasserin aut Maria Teresa Delgado verfasserin aut Mohd Khairunaz Mat Desa verfasserin aut In IEEE Open Journal of Power Electronics IEEE, 2021 5(2024), Seite 414-435 (DE-627)1688451307 (DE-600)3006279-2 26441314 nnns volume:5 year:2024 pages:414-435 https://doi.org/10.1109/OJPEL.2024.3376086 kostenfrei https://doaj.org/article/6e9f771e8e8d40cdbafee78c4142edac kostenfrei https://ieeexplore.ieee.org/document/10470388/ kostenfrei https://doaj.org/toc/2644-1314 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2024 414-435 |
allfieldsSound |
10.1109/OJPEL.2024.3376086 doi (DE-627)DOAJ097344915 (DE-599)DOAJ6e9f771e8e8d40cdbafee78c4142edac DE-627 ger DE-627 rakwb eng TK1-9971 Anas Ibrahim verfasserin aut Review of Active Thermal Control for Power Electronics: Potentials, Limitations, and Future Trends 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The main factor that drives the aging of power semiconductor modules is the thermally induced stress caused by the maximum temperature and temperature swings. This thermally induced stress is usually counteracted in passive designs with oversizing of components, which brings additional cost to the system. This is a major limitation of future power electronic systems that are required to be more reliable with reasonable cost and for many applications to be lighter and smaller. Active thermal control (ATC) is a possibility to reduce the thermal stress of components during real-time operation without the need to modify the expensive converter power stage. Many studies have shown the potential of ATC to not only extend the lifetime of power converters because of the reduced stress, but also to increase the converter devices utilization by pushing them into their thermal limits with proper control. This makes ATC an appealing way to realize the contradicting reliability, cost, and power density requirements. This paper provides an overview of the benefits and objectives, structure, and implementation possibilities of ATC. It also provides and overview of the limitations and disadvantages of many ATC strategies. Based on this discussion, it highlights key issues that must be addressed by future research. Among them is minimizing the impact of different ATC strategies on the power losses, operational cost, and output voltage and current quality. Active thermal control junction temperature control reliability enhancement power electronics semiconductor device lifetime Electrical engineering. Electronics. Nuclear engineering Mohamed Salem verfasserin aut Mohamad Kamarol verfasserin aut Maria Teresa Delgado verfasserin aut Mohd Khairunaz Mat Desa verfasserin aut In IEEE Open Journal of Power Electronics IEEE, 2021 5(2024), Seite 414-435 (DE-627)1688451307 (DE-600)3006279-2 26441314 nnns volume:5 year:2024 pages:414-435 https://doi.org/10.1109/OJPEL.2024.3376086 kostenfrei https://doaj.org/article/6e9f771e8e8d40cdbafee78c4142edac kostenfrei https://ieeexplore.ieee.org/document/10470388/ kostenfrei https://doaj.org/toc/2644-1314 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2024 414-435 |
language |
English |
source |
In IEEE Open Journal of Power Electronics 5(2024), Seite 414-435 volume:5 year:2024 pages:414-435 |
sourceStr |
In IEEE Open Journal of Power Electronics 5(2024), Seite 414-435 volume:5 year:2024 pages:414-435 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Active thermal control junction temperature control reliability enhancement power electronics semiconductor device lifetime Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Open Journal of Power Electronics |
authorswithroles_txt_mv |
Anas Ibrahim @@aut@@ Mohamed Salem @@aut@@ Mohamad Kamarol @@aut@@ Maria Teresa Delgado @@aut@@ Mohd Khairunaz Mat Desa @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
1688451307 |
id |
DOAJ097344915 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097344915</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413181959.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/OJPEL.2024.3376086</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097344915</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6e9f771e8e8d40cdbafee78c4142edac</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Anas Ibrahim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Review of Active Thermal Control for Power Electronics: Potentials, Limitations, and Future Trends</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The main factor that drives the aging of power semiconductor modules is the thermally induced stress caused by the maximum temperature and temperature swings. This thermally induced stress is usually counteracted in passive designs with oversizing of components, which brings additional cost to the system. This is a major limitation of future power electronic systems that are required to be more reliable with reasonable cost and for many applications to be lighter and smaller. Active thermal control (ATC) is a possibility to reduce the thermal stress of components during real-time operation without the need to modify the expensive converter power stage. Many studies have shown the potential of ATC to not only extend the lifetime of power converters because of the reduced stress, but also to increase the converter devices utilization by pushing them into their thermal limits with proper control. This makes ATC an appealing way to realize the contradicting reliability, cost, and power density requirements. This paper provides an overview of the benefits and objectives, structure, and implementation possibilities of ATC. It also provides and overview of the limitations and disadvantages of many ATC strategies. Based on this discussion, it highlights key issues that must be addressed by future research. Among them is minimizing the impact of different ATC strategies on the power losses, operational cost, and output voltage and current quality.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Active thermal control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">junction temperature control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reliability enhancement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power electronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">semiconductor device lifetime</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohamed Salem</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohamad Kamarol</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria Teresa Delgado</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohd Khairunaz Mat Desa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Open Journal of Power Electronics</subfield><subfield code="d">IEEE, 2021</subfield><subfield code="g">5(2024), Seite 414-435</subfield><subfield code="w">(DE-627)1688451307</subfield><subfield code="w">(DE-600)3006279-2</subfield><subfield code="x">26441314</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2024</subfield><subfield code="g">pages:414-435</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/OJPEL.2024.3376086</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6e9f771e8e8d40cdbafee78c4142edac</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/10470388/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2644-1314</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2024</subfield><subfield code="h">414-435</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Anas Ibrahim |
spellingShingle |
Anas Ibrahim misc TK1-9971 misc Active thermal control misc junction temperature control misc reliability enhancement misc power electronics misc semiconductor device lifetime misc Electrical engineering. Electronics. Nuclear engineering Review of Active Thermal Control for Power Electronics: Potentials, Limitations, and Future Trends |
authorStr |
Anas Ibrahim |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1688451307 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
26441314 |
topic_title |
TK1-9971 Review of Active Thermal Control for Power Electronics: Potentials, Limitations, and Future Trends Active thermal control junction temperature control reliability enhancement power electronics semiconductor device lifetime |
topic |
misc TK1-9971 misc Active thermal control misc junction temperature control misc reliability enhancement misc power electronics misc semiconductor device lifetime misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Active thermal control misc junction temperature control misc reliability enhancement misc power electronics misc semiconductor device lifetime misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Active thermal control misc junction temperature control misc reliability enhancement misc power electronics misc semiconductor device lifetime misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Open Journal of Power Electronics |
hierarchy_parent_id |
1688451307 |
hierarchy_top_title |
IEEE Open Journal of Power Electronics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1688451307 (DE-600)3006279-2 |
title |
Review of Active Thermal Control for Power Electronics: Potentials, Limitations, and Future Trends |
ctrlnum |
(DE-627)DOAJ097344915 (DE-599)DOAJ6e9f771e8e8d40cdbafee78c4142edac |
title_full |
Review of Active Thermal Control for Power Electronics: Potentials, Limitations, and Future Trends |
author_sort |
Anas Ibrahim |
journal |
IEEE Open Journal of Power Electronics |
journalStr |
IEEE Open Journal of Power Electronics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
container_start_page |
414 |
author_browse |
Anas Ibrahim Mohamed Salem Mohamad Kamarol Maria Teresa Delgado Mohd Khairunaz Mat Desa |
container_volume |
5 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Anas Ibrahim |
doi_str_mv |
10.1109/OJPEL.2024.3376086 |
author2-role |
verfasserin |
title_sort |
review of active thermal control for power electronics: potentials, limitations, and future trends |
callnumber |
TK1-9971 |
title_auth |
Review of Active Thermal Control for Power Electronics: Potentials, Limitations, and Future Trends |
abstract |
The main factor that drives the aging of power semiconductor modules is the thermally induced stress caused by the maximum temperature and temperature swings. This thermally induced stress is usually counteracted in passive designs with oversizing of components, which brings additional cost to the system. This is a major limitation of future power electronic systems that are required to be more reliable with reasonable cost and for many applications to be lighter and smaller. Active thermal control (ATC) is a possibility to reduce the thermal stress of components during real-time operation without the need to modify the expensive converter power stage. Many studies have shown the potential of ATC to not only extend the lifetime of power converters because of the reduced stress, but also to increase the converter devices utilization by pushing them into their thermal limits with proper control. This makes ATC an appealing way to realize the contradicting reliability, cost, and power density requirements. This paper provides an overview of the benefits and objectives, structure, and implementation possibilities of ATC. It also provides and overview of the limitations and disadvantages of many ATC strategies. Based on this discussion, it highlights key issues that must be addressed by future research. Among them is minimizing the impact of different ATC strategies on the power losses, operational cost, and output voltage and current quality. |
abstractGer |
The main factor that drives the aging of power semiconductor modules is the thermally induced stress caused by the maximum temperature and temperature swings. This thermally induced stress is usually counteracted in passive designs with oversizing of components, which brings additional cost to the system. This is a major limitation of future power electronic systems that are required to be more reliable with reasonable cost and for many applications to be lighter and smaller. Active thermal control (ATC) is a possibility to reduce the thermal stress of components during real-time operation without the need to modify the expensive converter power stage. Many studies have shown the potential of ATC to not only extend the lifetime of power converters because of the reduced stress, but also to increase the converter devices utilization by pushing them into their thermal limits with proper control. This makes ATC an appealing way to realize the contradicting reliability, cost, and power density requirements. This paper provides an overview of the benefits and objectives, structure, and implementation possibilities of ATC. It also provides and overview of the limitations and disadvantages of many ATC strategies. Based on this discussion, it highlights key issues that must be addressed by future research. Among them is minimizing the impact of different ATC strategies on the power losses, operational cost, and output voltage and current quality. |
abstract_unstemmed |
The main factor that drives the aging of power semiconductor modules is the thermally induced stress caused by the maximum temperature and temperature swings. This thermally induced stress is usually counteracted in passive designs with oversizing of components, which brings additional cost to the system. This is a major limitation of future power electronic systems that are required to be more reliable with reasonable cost and for many applications to be lighter and smaller. Active thermal control (ATC) is a possibility to reduce the thermal stress of components during real-time operation without the need to modify the expensive converter power stage. Many studies have shown the potential of ATC to not only extend the lifetime of power converters because of the reduced stress, but also to increase the converter devices utilization by pushing them into their thermal limits with proper control. This makes ATC an appealing way to realize the contradicting reliability, cost, and power density requirements. This paper provides an overview of the benefits and objectives, structure, and implementation possibilities of ATC. It also provides and overview of the limitations and disadvantages of many ATC strategies. Based on this discussion, it highlights key issues that must be addressed by future research. Among them is minimizing the impact of different ATC strategies on the power losses, operational cost, and output voltage and current quality. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Review of Active Thermal Control for Power Electronics: Potentials, Limitations, and Future Trends |
url |
https://doi.org/10.1109/OJPEL.2024.3376086 https://doaj.org/article/6e9f771e8e8d40cdbafee78c4142edac https://ieeexplore.ieee.org/document/10470388/ https://doaj.org/toc/2644-1314 |
remote_bool |
true |
author2 |
Mohamed Salem Mohamad Kamarol Maria Teresa Delgado Mohd Khairunaz Mat Desa |
author2Str |
Mohamed Salem Mohamad Kamarol Maria Teresa Delgado Mohd Khairunaz Mat Desa |
ppnlink |
1688451307 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/OJPEL.2024.3376086 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T00:53:25.223Z |
_version_ |
1803607768012161024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097344915</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413181959.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/OJPEL.2024.3376086</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097344915</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6e9f771e8e8d40cdbafee78c4142edac</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Anas Ibrahim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Review of Active Thermal Control for Power Electronics: Potentials, Limitations, and Future Trends</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The main factor that drives the aging of power semiconductor modules is the thermally induced stress caused by the maximum temperature and temperature swings. This thermally induced stress is usually counteracted in passive designs with oversizing of components, which brings additional cost to the system. This is a major limitation of future power electronic systems that are required to be more reliable with reasonable cost and for many applications to be lighter and smaller. Active thermal control (ATC) is a possibility to reduce the thermal stress of components during real-time operation without the need to modify the expensive converter power stage. Many studies have shown the potential of ATC to not only extend the lifetime of power converters because of the reduced stress, but also to increase the converter devices utilization by pushing them into their thermal limits with proper control. This makes ATC an appealing way to realize the contradicting reliability, cost, and power density requirements. This paper provides an overview of the benefits and objectives, structure, and implementation possibilities of ATC. It also provides and overview of the limitations and disadvantages of many ATC strategies. Based on this discussion, it highlights key issues that must be addressed by future research. Among them is minimizing the impact of different ATC strategies on the power losses, operational cost, and output voltage and current quality.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Active thermal control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">junction temperature control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reliability enhancement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power electronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">semiconductor device lifetime</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohamed Salem</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohamad Kamarol</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria Teresa Delgado</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohd Khairunaz Mat Desa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Open Journal of Power Electronics</subfield><subfield code="d">IEEE, 2021</subfield><subfield code="g">5(2024), Seite 414-435</subfield><subfield code="w">(DE-627)1688451307</subfield><subfield code="w">(DE-600)3006279-2</subfield><subfield code="x">26441314</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2024</subfield><subfield code="g">pages:414-435</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/OJPEL.2024.3376086</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6e9f771e8e8d40cdbafee78c4142edac</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/10470388/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2644-1314</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2024</subfield><subfield code="h">414-435</subfield></datafield></record></collection>
|
score |
7.4007044 |